# Fluffy # Copyright (c) 2021-2024 Status Research & Development GmbH # Licensed and distributed under either of # * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. ## Implementation of the Portal wire protocol as specified at: ## https://github.com/ethereum/portal-network-specs/blob/master/portal-wire-protocol.md {.push raises: [].} import std/[sequtils, sets, algorithm, tables], stew/[byteutils, leb128, endians2], results, chronicles, chronos, nimcrypto/hash, bearssl, ssz_serialization, metrics, faststreams, minilru, eth/rlp, eth/p2p/discoveryv5/[protocol, node, enr, routing_table, random2, nodes_verification], "."/[portal_stream, portal_protocol_config], ./messages export messages, routing_table, protocol declareCounter portal_message_requests_incoming, "Portal wire protocol incoming message requests", labels = ["protocol_id", "message_type"] declareCounter portal_message_decoding_failures, "Portal wire protocol message decoding failures", labels = ["protocol_id"] declareCounter portal_message_requests_outgoing, "Portal wire protocol outgoing message requests", labels = ["protocol_id", "message_type"] declareCounter portal_message_response_incoming, "Portal wire protocol incoming message responses", labels = ["protocol_id", "message_type"] const requestBuckets = [1.0, 3.0, 5.0, 7.0, 9.0, Inf] declareHistogram portal_lookup_node_requests, "Portal wire protocol amount of requests per node lookup", labels = ["protocol_id"], buckets = requestBuckets declareHistogram portal_lookup_content_requests, "Portal wire protocol amount of requests per node lookup", labels = ["protocol_id"], buckets = requestBuckets declareCounter portal_lookup_content_failures, "Portal wire protocol content lookup failures", labels = ["protocol_id"] const contentKeysBuckets = [0.0, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, Inf] declareHistogram portal_content_keys_offered, "Portal wire protocol amount of content keys per offer message send", labels = ["protocol_id"], buckets = contentKeysBuckets declareHistogram portal_content_keys_accepted, "Portal wire protocol amount of content keys per accept message received", labels = ["protocol_id"], buckets = contentKeysBuckets declareCounter portal_gossip_offers_successful, "Portal wire protocol successful content offers from neighborhood gossip", labels = ["protocol_id"] declareCounter portal_gossip_offers_failed, "Portal wire protocol failed content offers from neighborhood gossip", labels = ["protocol_id"] declareCounter portal_gossip_with_lookup, "Portal wire protocol neighborhood gossip that required a node lookup", labels = ["protocol_id"] declareCounter portal_gossip_without_lookup, "Portal wire protocol neighborhood gossip that did not require a node lookup", labels = ["protocol_id"] declareCounter portal_content_cache_hits, "Portal wire protocol local content lookups that hit the cache", labels = ["protocol_id"] declareCounter portal_content_cache_misses, "Portal wire protocol local content lookups that don't hit the cache", labels = ["protocol_id"] declareCounter portal_poke_offers, "Portal wire protocol offers through poke mechanism", labels = ["protocol_id"] # Note: These metrics are to get some idea on how many enrs are send on average. # Relevant issue: https://github.com/ethereum/portal-network-specs/issues/136 const enrsBuckets = [0.0, 1.0, 3.0, 5.0, 8.0, 9.0, Inf] declareHistogram portal_nodes_enrs_packed, "Portal wire protocol amount of enrs packed in a nodes message", labels = ["protocol_id"], buckets = enrsBuckets # This one will currently hit the max numbers because all neighbours are send, # not only the ones closer to the content. declareHistogram portal_content_enrs_packed, "Portal wire protocol amount of enrs packed in a content message", labels = ["protocol_id"], buckets = enrsBuckets const distanceBuckets = [ float64 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, ] declareHistogram portal_find_content_log_distance, "Portal wire protocol logarithmic distance of requested content", labels = ["protocol_id"], buckets = distanceBuckets declareHistogram portal_offer_log_distance, "Portal wire protocol logarithmic distance of offered content", labels = ["protocol_id"], buckets = distanceBuckets logScope: topics = "portal_wire" const alpha = 3 ## Kademlia concurrency factor enrsResultLimit* = 32 ## Maximum amount of ENRs in the total Nodes messages ## that will be processed refreshInterval = 5.minutes ## Interval of launching a random query to ## refresh the routing table. revalidateMax = 4000 ## Revalidation of a peer is done between 0 and this ## value in milliseconds initialLookups = 1 ## Amount of lookups done when populating the routing table # These are the concurrent offers per Portal wire protocol that is running. # Using the `offerQueue` allows for limiting the amount of offers send and # thus how many streams can be started. # TODO: # More thought needs to go into this as it is currently on a per network # basis. Keep it simple like that? Or limit it better at the stream transport # level? In the latter case, this might still need to be checked/blocked at # the very start of sending the offer, because blocking/waiting too long # between the received accept message and actually starting the stream and # sending data could give issues due to timeouts on the other side. # And then there are still limits to be applied also for FindContent and the # incoming directions. concurrentOffers = 50 type ToContentIdHandler* = proc(contentKey: ContentKeyByteList): results.Opt[ContentId] {.raises: [], gcsafe.} DbGetHandler* = proc( contentKey: ContentKeyByteList, contentId: ContentId ): results.Opt[seq[byte]] {.raises: [], gcsafe.} DbStoreHandler* = proc( contentKey: ContentKeyByteList, contentId: ContentId, content: seq[byte] ) {.raises: [], gcsafe.} DbRadiusHandler* = proc(): UInt256 {.raises: [], gcsafe.} PortalProtocolId* = array[2, byte] RadiusCache* = LRUCache[NodeId, UInt256] ContentCache = LRUCache[ContentId, seq[byte]] ContentKV* = object contentKey*: ContentKeyByteList content*: seq[byte] OfferRequestType = enum Direct Database OfferRequest = object dst: Node case kind: OfferRequestType of Direct: contentList: List[ContentKV, contentKeysLimit] of Database: contentKeys: ContentKeysList PortalProtocol* = ref object of TalkProtocol protocolId*: PortalProtocolId routingTable*: RoutingTable baseProtocol*: protocol.Protocol toContentId*: ToContentIdHandler contentCache: ContentCache dbGet*: DbGetHandler dbPut*: DbStoreHandler dataRadius*: DbRadiusHandler bootstrapRecords*: seq[Record] lastLookup: chronos.Moment refreshLoop: Future[void] revalidateLoop: Future[void] stream*: PortalStream radiusCache: RadiusCache offerQueue: AsyncQueue[OfferRequest] offerWorkers: seq[Future[void]] pingTimings: Table[NodeId, chronos.Moment] config*: PortalProtocolConfig PortalResult*[T] = Result[T, string] FoundContentKind* = enum Nodes Content FoundContent* = object src*: Node case kind*: FoundContentKind of Content: content*: seq[byte] utpTransfer*: bool of Nodes: nodes*: seq[Node] ContentLookupResult* = object content*: seq[byte] utpTransfer*: bool # List of nodes which do not have requested content, and for which # content is in their range nodesInterestedInContent*: seq[Node] TraceResponse* = object durationMs*: int64 respondedWith*: seq[NodeId] NodeMetadata* = object enr*: Record distance*: UInt256 TraceObject* = object origin*: NodeId targetId: UInt256 receivedFrom*: Opt[NodeId] responses*: Table[string, TraceResponse] metadata*: Table[string, NodeMetadata] cancelled*: seq[NodeId] startedAtMs*: int64 TraceContentLookupResult* = object content*: Opt[seq[byte]] utpTransfer*: bool trace*: TraceObject func init*(T: type ContentKV, contentKey: ContentKeyByteList, content: seq[byte]): T = ContentKV(contentKey: contentKey, content: content) func init*( T: type ContentLookupResult, content: seq[byte], utpTransfer: bool, nodesInterestedInContent: seq[Node], ): T = ContentLookupResult( content: content, utpTransfer: utpTransfer, nodesInterestedInContent: nodesInterestedInContent, ) func getProtocolId*( network: PortalNetwork, subnetwork: PortalSubnetwork ): PortalProtocolId = const portalPrefix = byte(0x50) case network of PortalNetwork.none, PortalNetwork.mainnet: case subnetwork of PortalSubnetwork.state: [portalPrefix, 0x0A] of PortalSubnetwork.history: [portalPrefix, 0x0B] of PortalSubnetwork.beacon: [portalPrefix, 0x0C] of PortalSubnetwork.transactionIndex: [portalPrefix, 0x0D] of PortalSubnetwork.verkleState: [portalPrefix, 0x0E] of PortalSubnetwork.transactionGossip: [portalPrefix, 0x0F] of PortalNetwork.angelfood: case subnetwork of PortalSubnetwork.state: [portalPrefix, 0x4A] of PortalSubnetwork.history: [portalPrefix, 0x4B] of PortalSubnetwork.beacon: [portalPrefix, 0x4C] of PortalSubnetwork.transactionIndex: [portalPrefix, 0x4D] of PortalSubnetwork.verkleState: [portalPrefix, 0x4E] of PortalSubnetwork.transactionGossip: [portalPrefix, 0x4F] func `$`(id: PortalProtocolId): string = id.toHex() proc addNode*(p: PortalProtocol, node: Node): NodeStatus = p.routingTable.addNode(node) proc addNode*(p: PortalProtocol, r: Record): bool = p.addNode(Node.fromRecord(r)) == Added func getNode*(p: PortalProtocol, id: NodeId): Opt[Node] = p.routingTable.getNode(id) func localNode*(p: PortalProtocol): Node = p.baseProtocol.localNode func neighbours*(p: PortalProtocol, id: NodeId, seenOnly = false): seq[Node] = p.routingTable.neighbours(id = id, seenOnly = seenOnly) func distance(p: PortalProtocol, a, b: NodeId): UInt256 = p.routingTable.distance(a, b) func logDistance(p: PortalProtocol, a, b: NodeId): uint16 = p.routingTable.logDistance(a, b) func inRange( p: PortalProtocol, nodeId: NodeId, nodeRadius: UInt256, contentId: ContentId ): bool = let distance = p.distance(nodeId, contentId) distance <= nodeRadius proc inRange*(p: PortalProtocol, contentId: ContentId): bool = p.inRange(p.localNode.id, p.dataRadius(), contentId) func truncateEnrs( nodes: seq[Node], maxSize: int, enrOverhead: int ): List[ByteList[2048], 32] = var enrs: List[ByteList[2048], 32] var totalSize = 0 for n in nodes: let enr = ByteList[2048].init(n.record.raw) if totalSize + enr.len() + enrOverhead <= maxSize: let res = enrs.add(enr) # With max payload of discv5 and the sizes of ENRs this should not occur. doAssert(res, "32 limit will not be reached") totalSize = totalSize + enr.len() + enrOverhead else: break enrs proc handlePing(p: PortalProtocol, ping: PingMessage, srcId: NodeId): seq[byte] = # TODO: This should become custom per Portal Network # TODO: Need to think about the effect of malicious actor sending lots of # pings from different nodes to clear the LRU. let customPayloadDecoded = try: SSZ.decode(ping.customPayload.asSeq(), CustomPayload) except SerializationError: # invalid custom payload, send empty back return @[] p.radiusCache.put(srcId, customPayloadDecoded.dataRadius) let customPayload = CustomPayload(dataRadius: p.dataRadius()) let p = PongMessage( enrSeq: p.localNode.record.seqNum, customPayload: ByteList[2048](SSZ.encode(customPayload)), ) encodeMessage(p) proc handleFindNodes(p: PortalProtocol, fn: FindNodesMessage): seq[byte] = if fn.distances.len == 0: let enrs = List[ByteList[2048], 32](@[]) encodeMessage(NodesMessage(total: 1, enrs: enrs)) elif fn.distances.contains(0): # A request for our own record. let enr = ByteList[2048](rlp.encode(p.localNode.record)) encodeMessage(NodesMessage(total: 1, enrs: List[ByteList[2048], 32](@[enr]))) else: let distances = fn.distances.asSeq() if distances.all( proc(x: uint16): bool = return x <= 256 ): let nodes = p.routingTable.neighboursAtDistances(distances, seenOnly = true) # TODO: Total amount of messages is set fixed to 1 for now, else we would # need to either move the send of the talkresp messages here, or allow for # returning multiple messages. # On the long run, it might just be better to use a stream in these cases? # Size calculation is done to truncate the ENR results in order to not go # over the discv5 packet size limits. ENRs are sorted so the closest nodes # will still be passed. const nodesOverhead = 1 + 1 + 4 # msg id + total + container offset maxPayloadSize = maxDiscv5TalkRespPayload - nodesOverhead enrOverhead = 4 # per added ENR, 4 bytes offset overhead let enrs = truncateEnrs(nodes, maxPayloadSize, enrOverhead) portal_nodes_enrs_packed.observe(enrs.len().int64, labelValues = [$p.protocolId]) encodeMessage(NodesMessage(total: 1, enrs: enrs)) else: # invalid request, send empty back let enrs = List[ByteList[2048], 32](@[]) encodeMessage(NodesMessage(total: 1, enrs: enrs)) proc handleFindContent( p: PortalProtocol, fc: FindContentMessage, srcId: NodeId ): seq[byte] = const contentOverhead = 1 + 1 # msg id + SSZ Union selector maxPayloadSize = maxDiscv5TalkRespPayload - contentOverhead enrOverhead = 4 # per added ENR, 4 bytes offset overhead let contentId = p.toContentId(fc.contentKey).valueOr: # Return empty response when content key validation fails # TODO: Better would be to return no message at all? Needs changes on # discv5 layer. return @[] let logDistance = p.logDistance(contentId, p.localNode.id) portal_find_content_log_distance.observe( int64(logDistance), labelValues = [$p.protocolId] ) # Check first if content is in range, as this is a cheaper operation if p.inRange(contentId): let contentResult = p.dbGet(fc.contentKey, contentId) if contentResult.isOk(): let content = contentResult.get() if content.len <= maxPayloadSize: return encodeMessage( ContentMessage( contentMessageType: contentType, content: ByteList[2048](content) ) ) else: let connectionId = p.stream.addContentRequest(srcId, content) return encodeMessage( ContentMessage( contentMessageType: connectionIdType, connectionId: connectionId ) ) # Node does not have the content, or content is not even in radius, # send closest neighbours to the requested content id. let closestNodes = p.routingTable.neighbours(NodeId(contentId), seenOnly = true) enrs = truncateEnrs(closestNodes, maxPayloadSize, enrOverhead) portal_content_enrs_packed.observe(enrs.len().int64, labelValues = [$p.protocolId]) encodeMessage(ContentMessage(contentMessageType: enrsType, enrs: enrs)) proc handleOffer(p: PortalProtocol, o: OfferMessage, srcId: NodeId): seq[byte] = # Early return when our contentQueue is full. This means there is a backlog # of content to process and potentially gossip around. Don't accept more # data in this case. if p.stream.contentQueue.full(): return encodeMessage( AcceptMessage( connectionId: Bytes2([byte 0x00, 0x00]), contentKeys: ContentKeysBitList.init(o.contentKeys.len), ) ) var contentKeysBitList = ContentKeysBitList.init(o.contentKeys.len) var contentKeys = ContentKeysList.init(@[]) # TODO: Do we need some protection against a peer offering lots (64x) of # content that fits our Radius but is actually bogus? # Additional TODO, but more of a specification clarification: What if we don't # want any of the content? Reply with empty bitlist and a connectionId of # all zeroes but don't actually allow an uTP connection? for i, contentKey in o.contentKeys: let contentIdResult = p.toContentId(contentKey) if contentIdResult.isOk(): let contentId = contentIdResult.get() let logDistance = p.logDistance(contentId, p.localNode.id) portal_offer_log_distance.observe( int64(logDistance), labelValues = [$p.protocolId] ) if p.inRange(contentId): if p.dbGet(contentKey, contentId).isErr: contentKeysBitList.setBit(i) discard contentKeys.add(contentKey) else: # Return empty response when content key validation fails return @[] let connectionId = if contentKeysBitList.countOnes() != 0: p.stream.addContentOffer(srcId, contentKeys) else: # When the node does not accept any of the content offered, reply with an # all zeroes bitlist and connectionId. # Note: What to do in this scenario is not defined in the Portal spec. Bytes2([byte 0x00, 0x00]) encodeMessage( AcceptMessage(connectionId: connectionId, contentKeys: contentKeysBitList) ) proc messageHandler( protocol: TalkProtocol, request: seq[byte], srcId: NodeId, srcUdpAddress: Address, nodeOpt: Opt[Node], ): seq[byte] = doAssert(protocol of PortalProtocol) logScope: protocolId = p.protocolId let p = PortalProtocol(protocol) let decoded = decodeMessage(request) if decoded.isOk(): let message = decoded.get() trace "Received message request", srcId, srcUdpAddress, kind = message.kind # Received a proper Portal message, check first if an ENR is provided by # the discovery v5 layer and add it to the portal network routing table. # If not provided through the handshake, try to get it from the discovery v5 # routing table. # When the node would be eligable for the portal network routing table, it # is possible that it exists in the base discv5 routing table as the same # node ids are used. It is not certain at all however as more nodes might # exists on the base layer, and it will also depend on the distance, # order of lookups, etc. # Note: As third measure, could run a findNodes request with distance 0. if nodeOpt.isSome(): let node = nodeOpt.value() let status = p.addNode(node) trace "Adding new node to routing table after incoming request", status, node else: let nodeOpt = p.baseProtocol.getNode(srcId) if nodeOpt.isSome(): let node = nodeOpt.value() let status = p.addNode(node) trace "Adding new node to routing table after incoming request", status, node portal_message_requests_incoming.inc(labelValues = [$p.protocolId, $message.kind]) case message.kind of MessageKind.ping: p.handlePing(message.ping, srcId) of MessageKind.findNodes: p.handleFindNodes(message.findNodes) of MessageKind.findContent: p.handleFindContent(message.findContent, srcId) of MessageKind.offer: p.handleOffer(message.offer, srcId) else: # This would mean a that Portal wire response message is being send over a # discv5 talkreq message. debug "Invalid Portal wire message type over talkreq", kind = message.kind @[] else: portal_message_decoding_failures.inc(labelValues = [$p.protocolId]) debug "Packet decoding error", error = decoded.error, srcId, srcUdpAddress @[] proc new*( T: type PortalProtocol, baseProtocol: protocol.Protocol, protocolId: PortalProtocolId, toContentId: ToContentIdHandler, dbGet: DbGetHandler, dbPut: DbStoreHandler, dbRadius: DbRadiusHandler, stream: PortalStream, bootstrapRecords: openArray[Record] = [], distanceCalculator: DistanceCalculator = XorDistanceCalculator, config: PortalProtocolConfig = defaultPortalProtocolConfig, ): T = let proto = PortalProtocol( protocolHandler: messageHandler, protocolId: protocolId, routingTable: RoutingTable.init( baseProtocol.localNode, config.bitsPerHop, config.tableIpLimits, baseProtocol.rng, distanceCalculator, ), baseProtocol: baseProtocol, toContentId: toContentId, contentCache: ContentCache.init(if config.disableContentCache: 0 else: config.contentCacheSize), dbGet: dbGet, dbPut: dbPut, dataRadius: dbRadius, bootstrapRecords: @bootstrapRecords, stream: stream, radiusCache: RadiusCache.init(256), offerQueue: newAsyncQueue[OfferRequest](concurrentOffers), pingTimings: Table[NodeId, chronos.Moment](), config: config, ) proto.baseProtocol.registerTalkProtocol(@(proto.protocolId), proto).expect( "Only one protocol should have this id" ) proto # Sends the discv5 talkreq message with provided Portal message, awaits and # validates the proper response, and updates the Portal Network routing table. proc reqResponse[Request: SomeMessage, Response: SomeMessage]( p: PortalProtocol, dst: Node, request: Request ): Future[PortalResult[Response]] {.async: (raises: [CancelledError]).} = logScope: protocolId = p.protocolId trace "Send message request", dstId = dst.id, kind = messageKind(Request) portal_message_requests_outgoing.inc( labelValues = [$p.protocolId, $messageKind(Request)] ) let talkresp = await talkReq(p.baseProtocol, dst, @(p.protocolId), encodeMessage(request)) # Note: Failure of `decodeMessage` might also simply mean that the peer is # not supporting the specific talk protocol, as according to specification # an empty response needs to be send in that case. # See: https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#talkreq-request-0x05 let messageResponse = talkresp .mapErr( proc(x: cstring): string = $x ) .flatMap( proc(x: seq[byte]): Result[Message, string] = decodeMessage(x) ) .flatMap( proc(m: Message): Result[Response, string] = getInnerMessage[Response](m) ) if messageResponse.isOk(): trace "Received message response", srcId = dst.id, srcAddress = dst.address, kind = messageKind(Response) portal_message_response_incoming.inc( labelValues = [$p.protocolId, $messageKind(Response)] ) p.routingTable.setJustSeen(dst) else: debug "Error receiving message response", error = messageResponse.error, srcId = dst.id, srcAddress = dst.address p.pingTimings.del(dst.id) p.routingTable.replaceNode(dst) return messageResponse proc pingImpl*( p: PortalProtocol, dst: Node ): Future[PortalResult[PongMessage]] {.async: (raises: [CancelledError]).} = let customPayload = CustomPayload(dataRadius: p.dataRadius()) let ping = PingMessage( enrSeq: p.localNode.record.seqNum, customPayload: ByteList[2048](SSZ.encode(customPayload)), ) return await reqResponse[PingMessage, PongMessage](p, dst, ping) proc findNodesImpl*( p: PortalProtocol, dst: Node, distances: List[uint16, 256] ): Future[PortalResult[NodesMessage]] {.async: (raises: [CancelledError]).} = let fn = FindNodesMessage(distances: distances) # TODO Add nodes validation return await reqResponse[FindNodesMessage, NodesMessage](p, dst, fn) proc findContentImpl*( p: PortalProtocol, dst: Node, contentKey: ContentKeyByteList ): Future[PortalResult[ContentMessage]] {.async: (raises: [CancelledError]).} = let fc = FindContentMessage(contentKey: contentKey) return await reqResponse[FindContentMessage, ContentMessage](p, dst, fc) proc offerImpl*( p: PortalProtocol, dst: Node, contentKeys: ContentKeysList ): Future[PortalResult[AcceptMessage]] {.async: (raises: [CancelledError]).} = let offer = OfferMessage(contentKeys: contentKeys) return await reqResponse[OfferMessage, AcceptMessage](p, dst, offer) proc recordsFromBytes*( rawRecords: List[ByteList[2048], 32] ): PortalResult[seq[Record]] = var records: seq[Record] for r in rawRecords.asSeq(): let record = enr.Record.fromBytes(r.asSeq()).valueOr: # If any of the ENRs is invalid, fail immediatly. This is similar as what # is done on the discovery v5 layer. return err("Deserialization of an ENR failed") records.add(record) ok(records) proc ping*( p: PortalProtocol, dst: Node ): Future[PortalResult[PongMessage]] {.async: (raises: [CancelledError]).} = let pongResponse = await p.pingImpl(dst) if pongResponse.isOk(): # Update last time we pinged this node p.pingTimings[dst.id] = now(chronos.Moment) let pong = pongResponse.get() # TODO: This should become custom per Portal Network let customPayloadDecoded = try: SSZ.decode(pong.customPayload.asSeq(), CustomPayload) except SerializationError: # invalid custom payload return err("Pong message contains invalid custom payload") p.radiusCache.put(dst.id, customPayloadDecoded.dataRadius) return pongResponse proc findNodes*( p: PortalProtocol, dst: Node, distances: seq[uint16] ): Future[PortalResult[seq[Node]]] {.async: (raises: [CancelledError]).} = let nodesMessage = await p.findNodesImpl(dst, List[uint16, 256](distances)) if nodesMessage.isOk(): let records = recordsFromBytes(nodesMessage.get().enrs) if records.isOk(): # TODO: distance function is wrong here for state, fix + tests return ok(verifyNodesRecords(records.get(), dst, enrsResultLimit, distances)) else: return err(records.error) else: return err(nodesMessage.error) proc findContent*( p: PortalProtocol, dst: Node, contentKey: ContentKeyByteList ): Future[PortalResult[FoundContent]] {.async: (raises: [CancelledError]).} = logScope: node = dst contentKey let contentMessageResponse = await p.findContentImpl(dst, contentKey) if contentMessageResponse.isOk(): let m = contentMessageResponse.get() case m.contentMessageType of connectionIdType: let nodeAddress = NodeAddress.init(dst) if nodeAddress.isNone(): # It should not happen as we are already after the succesfull # talkreq/talkresp cycle error "Trying to connect to node with unknown address", id = dst.id return err("Trying to connect to node with unknown address") # uTP protocol uses BE for all values in the header, incl. connection id let socket = ( await p.stream.connectTo( nodeAddress.unsafeGet(), uint16.fromBytesBE(m.connectionId) ) ).valueOr: debug "uTP connection error for find content", error return err("Error connecting uTP socket") try: # Read all bytes from the socket # This will either end with a FIN, or because the read action times out. # A FIN does not necessarily mean that the data read is complete. # Further validation is required, using a length prefix here might be # beneficial for this. let readFut = socket.read() readFut.cancelCallback = proc(udate: pointer) {.gcsafe.} = debug "Socket read cancelled", socketKey = socket.socketKey # In case this `findContent` gets cancelled while reading the data, # send a FIN and clean up the socket. socket.close() if await readFut.withTimeout(p.stream.contentReadTimeout): let content = await readFut # socket received remote FIN and drained whole buffer, it can be # safely destroyed without notifing remote debug "Socket read fully", socketKey = socket.socketKey socket.destroy() return ok( FoundContent(src: dst, kind: Content, content: content, utpTransfer: true) ) else: debug "Socket read time-out", socketKey = socket.socketKey # Note: This might look a bit strange, but not doing a socket.close() # here as this is already done internally. utp_socket `checkTimeouts` # already does a socket.destroy() on timeout. Might want to change the # API on this later though. return err("Reading data from socket timed out, content request failed") except CancelledError as exc: # even though we already installed cancelCallback on readFut, it is worth # catching CancelledError in case that withTimeout throws CancelledError # but readFut have already finished. debug "Socket read cancelled", socketKey = socket.socketKey socket.close() raise exc of contentType: return ok( FoundContent( src: dst, kind: Content, content: m.content.asSeq(), utpTransfer: false ) ) of enrsType: let records = recordsFromBytes(m.enrs) if records.isOk(): let verifiedNodes = verifyNodesRecords(records.get(), dst, enrsResultLimit) return ok(FoundContent(src: dst, kind: Nodes, nodes: verifiedNodes)) else: return err("Content message returned invalid ENRs") else: warn "FindContent failed due to find content request failure ", error = contentMessageResponse.error return err("No content response") proc getContentKeys(o: OfferRequest): ContentKeysList = case o.kind of Direct: var contentKeys: ContentKeysList for info in o.contentList: discard contentKeys.add(info.contentKey) return contentKeys of Database: return o.contentKeys func getMaxOfferedContentKeys*(protocolIdLen: uint32, maxKeySize: uint32): int = ## Calculates how many ContentKeys will fit in one offer message which ## will be small enouch to fit into discv5 limit. ## This is neccesarry as contentKeysLimit (64) is sometimes to big, and even ## half of this can be too much to fit into discv5 limits. let maxTalkReqPayload = maxDiscv5PacketSize - getTalkReqOverhead(int(protocolIdLen)) # To calculate how much bytes, `n` content keys of size `maxKeySize` will take # we can use following equation: # bytes = (n * (maxKeySize + perContentKeyOverhead)) + offerMessageOverhead # to calculate maximal number of keys which will given space this can be # transformed to: # n = trunc((bytes - offerMessageOverhead) / (maxKeySize + perContentKeyOverhead)) return ((maxTalkReqPayload - 5) div (int(maxKeySize) + 4)) proc offer( p: PortalProtocol, o: OfferRequest ): Future[PortalResult[ContentKeysBitList]] {.async: (raises: [CancelledError]).} = ## Offer triggers offer-accept interaction with one peer ## Whole flow has two phases: ## 1. Come to an agreement on what content to transfer, by using offer and ## accept messages. ## 2. Open uTP stream from content provider to content receiver and transfer ## agreed content. ## There are two types of possible offer requests: ## Direct - when caller provides content to transfer. This way, content is ## guaranteed to be transferred as it stays in memory until whole transfer ## is completed. ## Database - when caller provides keys of content to be transferred. This ## way content is provided from database just before it is transferred through ## uTP socket. This is useful when there is a lot of content to be transferred ## to many peers, and keeping it all in memory could exhaust node resources. ## Main drawback is that content may be deleted from the node database ## by the cleanup process before it will be transferred, so this way does not ## guarantee content transfer. let contentKeys = getContentKeys(o) logScope: node = o.dst contentKeys debug "Offering content" portal_content_keys_offered.observe( contentKeys.len().int64, labelValues = [$p.protocolId] ) let acceptMessageResponse = await p.offerImpl(o.dst, contentKeys) if acceptMessageResponse.isOk(): let m = acceptMessageResponse.get() let contentKeysLen = case o.kind of Direct: o.contentList.len() of Database: o.contentKeys.len() if m.contentKeys.len() != contentKeysLen: # TODO: # When there is such system, the peer should get scored negatively here. error "Accepted content key bitlist has invalid size" return err("Accepted content key bitlist has invalid size") let acceptedKeysAmount = m.contentKeys.countOnes() portal_content_keys_accepted.observe( acceptedKeysAmount.int64, labelValues = [$p.protocolId] ) if acceptedKeysAmount == 0: debug "No content accepted" # Don't open an uTP stream if no content was requested return ok(m.contentKeys) let nodeAddress = NodeAddress.init(o.dst) if nodeAddress.isNone(): # It should not happen as we are already after succesfull talkreq/talkresp # cycle error "Trying to connect to node with unknown address", id = o.dst.id return err("Trying to connect to node with unknown address") let socket = ( await p.stream.connectTo( nodeAddress.unsafeGet(), uint16.fromBytesBE(m.connectionId) ) ).valueOr: debug "uTP connection error for offer content", error return err("Error connecting uTP socket") template lenu32(x: untyped): untyped = uint32(len(x)) case o.kind of Direct: for i, b in m.contentKeys: if b: let content = o.contentList[i].content # TODO: stop using faststreams for this var output = memoryOutput() try: output.write(toBytes(content.lenu32, Leb128).toOpenArray()) output.write(content) except IOError as e: # This should not happen in case of in-memory streams raiseAssert e.msg let dataWritten = (await socket.write(output.getOutput)).valueOr: debug "Error writing requested data", error # No point in trying to continue writing data socket.close() return err("Error writing requested data") trace "Offered content item send", dataWritten = dataWritten of Database: for i, b in m.contentKeys: if b: let contentKey = o.contentKeys[i] contentIdResult = p.toContentId(contentKey) if contentIdResult.isOk(): let contentId = contentIdResult.get() contentResult = p.dbGet(contentKey, contentId) var output = memoryOutput() if contentResult.isOk(): let content = contentResult.get() try: output.write(toBytes(content.lenu32, Leb128).toOpenArray()) output.write(content) except IOError as e: # This should not happen in case of in-memory streams raiseAssert e.msg else: try: # When data turns out missing, add a 0 size varint output.write(toBytes(0'u8, Leb128).toOpenArray()) except IOError as e: raiseAssert e.msg let dataWritten = (await socket.write(output.getOutput)).valueOr: debug "Error writing requested data", error # No point in trying to continue writing data socket.close() return err("Error writing requested data") trace "Offered content item send", dataWritten = dataWritten await socket.closeWait() debug "Content successfully offered" return ok(m.contentKeys) else: warn "Offer failed due to accept request failure ", error = acceptMessageResponse.error return err("No accept response") proc offer*( p: PortalProtocol, dst: Node, contentKeys: ContentKeysList ): Future[PortalResult[ContentKeysBitList]] {.async: (raises: [CancelledError]).} = let req = OfferRequest(dst: dst, kind: Database, contentKeys: contentKeys) return await p.offer(req) proc offer*( p: PortalProtocol, dst: Node, content: seq[ContentKV] ): Future[PortalResult[ContentKeysBitList]] {.async: (raises: [CancelledError]).} = if len(content) > contentKeysLimit: return err("Cannot offer more than 64 content items") if len(content) == 0: return err("Cannot offer empty content list") let contentList = List[ContentKV, contentKeysLimit].init(content) let req = OfferRequest(dst: dst, kind: Direct, contentList: contentList) return await p.offer(req) proc offerWorker(p: PortalProtocol) {.async: (raises: [CancelledError]).} = while true: let req = await p.offerQueue.popFirst() let res = await p.offer(req) if res.isOk(): portal_gossip_offers_successful.inc(labelValues = [$p.protocolId]) else: portal_gossip_offers_failed.inc(labelValues = [$p.protocolId]) proc offerQueueEmpty*(p: PortalProtocol): bool = p.offerQueue.empty() proc lookupWorker( p: PortalProtocol, dst: Node, target: NodeId ): Future[seq[Node]] {.async: (raises: [CancelledError]).} = let distances = lookupDistances(target, dst.id) let nodesMessage = await p.findNodes(dst, distances) if nodesMessage.isOk(): let nodes = nodesMessage.get() # Attempt to add all nodes discovered for n in nodes: discard p.addNode(n) return nodes else: return @[] proc lookup*( p: PortalProtocol, target: NodeId ): Future[seq[Node]] {.async: (raises: [CancelledError]).} = ## Perform a lookup for the given target, return the closest n nodes to the ## target. Maximum value for n is `BUCKET_SIZE`. # `closestNodes` holds the k closest nodes to target found, sorted by distance # Unvalidated nodes are used for requests as a form of validation. var closestNodes = p.routingTable.neighbours(target, BUCKET_SIZE, seenOnly = false) var asked, seen = HashSet[NodeId]() asked.incl(p.localNode.id) # No need to ask our own node seen.incl(p.localNode.id) # No need to discover our own node for node in closestNodes: seen.incl(node.id) var pendingQueries = newSeqOfCap[Future[seq[Node]].Raising([CancelledError])](alpha) var requestAmount = 0'i64 while true: var i = 0 # Doing `alpha` amount of requests at once as long as closer non queried # nodes are discovered. while i < closestNodes.len and pendingQueries.len < alpha: let n = closestNodes[i] if not asked.containsOrIncl(n.id): pendingQueries.add(p.lookupWorker(n, target)) requestAmount.inc() inc i trace "Pending lookup queries", total = pendingQueries.len if pendingQueries.len == 0: break let query = try: await one(pendingQueries) except ValueError: raiseAssert("pendingQueries should not have been empty") trace "Got lookup query response" let index = pendingQueries.find(query) if index != -1: pendingQueries.del(index) else: error "Resulting query should have been in the pending queries" let nodes = await query # TODO: Remove node on timed-out query? for n in nodes: if not seen.containsOrIncl(n.id): # If it wasn't seen before, insert node while remaining sorted closestNodes.insert( n, closestNodes.lowerBound( n, proc(x: Node, n: Node): int = cmp(p.distance(x.id, target), p.distance(n.id, target)), ), ) if closestNodes.len > BUCKET_SIZE: closestNodes.del(closestNodes.high()) portal_lookup_node_requests.observe(requestAmount, labelValues = [$p.protocolId]) p.lastLookup = now(chronos.Moment) return closestNodes proc triggerPoke*( p: PortalProtocol, nodes: seq[Node], contentKey: ContentKeyByteList, content: seq[byte], ) = ## In order to properly test gossip mechanisms (e.g. in Portal Hive), ## we need the option to turn off the POKE functionality as it influences ## how data moves around the network. if p.config.disablePoke: return ## Triggers asynchronous offer-accept interaction to provided nodes. ## Provided content should be in range of provided nodes. for node in nodes: if not p.offerQueue.full(): try: let contentKV = ContentKV(contentKey: contentKey, content: content) list = List[ContentKV, contentKeysLimit].init(@[contentKV]) req = OfferRequest(dst: node, kind: Direct, contentList: list) p.offerQueue.putNoWait(req) portal_poke_offers.inc(labelValues = [$p.protocolId]) except AsyncQueueFullError as e: # Should not occur as full() check is done. raiseAssert(e.msg) else: # Offer queue is full, do not start more offer-accept interactions return # TODO ContentLookup and Lookup look almost exactly the same, also lookups in other # networks will probably be very similar. Extract lookup function to separate module # and make it more generaic proc contentLookup*( p: PortalProtocol, target: ContentKeyByteList, targetId: UInt256 ): Future[Opt[ContentLookupResult]] {.async: (raises: [CancelledError]).} = ## Perform a lookup for the given target, return the closest n nodes to the ## target. Maximum value for n is `BUCKET_SIZE`. # `closestNodes` holds the k closest nodes to target found, sorted by distance # Unvalidated nodes are used for requests as a form of validation. var closestNodes = p.routingTable.neighbours(targetId, BUCKET_SIZE, seenOnly = false) # Shuffling the order of the nodes in order to not always hit the same node # first for the same request. p.baseProtocol.rng[].shuffle(closestNodes) var asked, seen = HashSet[NodeId]() asked.incl(p.localNode.id) # No need to ask our own node seen.incl(p.localNode.id) # No need to discover our own node for node in closestNodes: seen.incl(node.id) var pendingQueries = newSeqOfCap[Future[PortalResult[FoundContent]].Raising([CancelledError])](alpha) var requestAmount = 0'i64 var nodesWithoutContent: seq[Node] = newSeq[Node]() while true: var i = 0 # Doing `alpha` amount of requests at once as long as closer non queried # nodes are discovered. while i < closestNodes.len and pendingQueries.len < alpha: let n = closestNodes[i] if not asked.containsOrIncl(n.id): pendingQueries.add(p.findContent(n, target)) requestAmount.inc() inc i trace "Pending lookup queries", total = pendingQueries.len if pendingQueries.len == 0: break let query = try: await one(pendingQueries) except ValueError: raiseAssert("pendingQueries should not have been empty") trace "Got lookup query response" let index = pendingQueries.find(query) if index != -1: pendingQueries.del(index) else: error "Resulting query should have been in the pending queries" let contentResult = await query if contentResult.isOk(): let content = contentResult.get() case content.kind of Nodes: let maybeRadius = p.radiusCache.get(content.src.id) if maybeRadius.isSome() and p.inRange(content.src.id, maybeRadius.unsafeGet(), targetId): # Only return nodes which may be interested in content. # No need to check for duplicates in nodesWithoutContent # as requests are never made two times to the same node. nodesWithoutContent.add(content.src) for n in content.nodes: if not seen.containsOrIncl(n.id): discard p.addNode(n) # If it wasn't seen before, insert node while remaining sorted closestNodes.insert( n, closestNodes.lowerBound( n, proc(x: Node, n: Node): int = cmp(p.distance(x.id, targetId), p.distance(n.id, targetId)), ), ) if closestNodes.len > BUCKET_SIZE: closestNodes.del(closestNodes.high()) of Content: # cancel any pending queries as the content has been found for f in pendingQueries: f.cancelSoon() portal_lookup_content_requests.observe( requestAmount, labelValues = [$p.protocolId] ) return Opt.some( ContentLookupResult.init( content.content, content.utpTransfer, nodesWithoutContent ) ) else: # TODO: Should we do something with the node that failed responding our # query? discard portal_lookup_content_failures.inc(labelValues = [$p.protocolId]) return Opt.none(ContentLookupResult) proc traceContentLookup*( p: PortalProtocol, target: ContentKeyByteList, targetId: UInt256 ): Future[TraceContentLookupResult] {.async: (raises: [CancelledError]).} = ## Perform a lookup for the given target, return the closest n nodes to the ## target. Maximum value for n is `BUCKET_SIZE`. # `closestNodes` holds the k closest nodes to target found, sorted by distance # Unvalidated nodes are used for requests as a form of validation. var closestNodes = p.routingTable.neighbours(targetId, BUCKET_SIZE, seenOnly = false) # Shuffling the order of the nodes in order to not always hit the same node # first for the same request. p.baseProtocol.rng[].shuffle(closestNodes) let ts = now(chronos.Moment) var responses = Table[string, TraceResponse]() var metadata = Table[string, NodeMetadata]() var asked, seen = HashSet[NodeId]() asked.incl(p.localNode.id) # No need to ask our own node seen.incl(p.localNode.id) # No need to discover our own node for node in closestNodes: seen.incl(node.id) # Local node should be part of the responses responses["0x" & $p.localNode.id] = TraceResponse(durationMs: 0, respondedWith: seen.toSeq()) metadata["0x" & $p.localNode.id] = NodeMetadata( enr: p.localNode.record, distance: p.distance(p.localNode.id, targetId) ) # We should also have metadata for all the closes nodes # in order to be able to show cancelled requests for cn in closestNodes: metadata["0x" & $cn.id] = NodeMetadata(enr: cn.record, distance: p.distance(cn.id, targetId)) var pendingQueries = newSeqOfCap[Future[PortalResult[FoundContent]].Raising([CancelledError])](alpha) var pendingNodes = newSeq[Node]() var requestAmount = 0'i64 var nodesWithoutContent: seq[Node] = newSeq[Node]() while true: var i = 0 # Doing `alpha` amount of requests at once as long as closer non queried # nodes are discovered. while i < closestNodes.len and pendingQueries.len < alpha: let n = closestNodes[i] if not asked.containsOrIncl(n.id): pendingQueries.add(p.findContent(n, target)) pendingNodes.add(n) requestAmount.inc() inc i trace "Pending lookup queries", total = pendingQueries.len if pendingQueries.len == 0: break let query = try: await one(pendingQueries) except ValueError: raiseAssert("pendingQueries should not have been empty") trace "Got lookup query response" let index = pendingQueries.find(query) if index != -1: pendingQueries.del(index) pendingNodes.del(index) else: error "Resulting query should have been in the pending queries" let contentResult = await query if contentResult.isOk(): let content = contentResult.get() case content.kind of Nodes: let duration = chronos.milliseconds(now(chronos.Moment) - ts) let maybeRadius = p.radiusCache.get(content.src.id) if maybeRadius.isSome() and p.inRange(content.src.id, maybeRadius.unsafeGet(), targetId): # Only return nodes which may be interested in content. # No need to check for duplicates in nodesWithoutContent # as requests are never made two times to the same node. nodesWithoutContent.add(content.src) var respondedWith = newSeq[NodeId]() for n in content.nodes: let dist = p.distance(n.id, targetId) metadata["0x" & $n.id] = NodeMetadata(enr: n.record, distance: dist) respondedWith.add(n.id) if not seen.containsOrIncl(n.id): discard p.addNode(n) # If it wasn't seen before, insert node while remaining sorted closestNodes.insert( n, closestNodes.lowerBound( n, proc(x: Node, n: Node): int = cmp(p.distance(x.id, targetId), dist), ), ) if closestNodes.len > BUCKET_SIZE: closestNodes.del(closestNodes.high()) let distance = p.distance(content.src.id, targetId) responses["0x" & $content.src.id] = TraceResponse(durationMs: duration, respondedWith: respondedWith) metadata["0x" & $content.src.id] = NodeMetadata(enr: content.src.record, distance: distance) of Content: let duration = chronos.milliseconds(now(chronos.Moment) - ts) # cancel any pending queries as the content has been found for f in pendingQueries: f.cancelSoon() portal_lookup_content_requests.observe( requestAmount, labelValues = [$p.protocolId] ) let distance = p.distance(content.src.id, targetId) responses["0x" & $content.src.id] = TraceResponse(durationMs: duration, respondedWith: newSeq[NodeId]()) metadata["0x" & $content.src.id] = NodeMetadata(enr: content.src.record, distance: distance) var pendingNodeIds = newSeq[NodeId]() for pn in pendingNodes: pendingNodeIds.add(pn.id) metadata["0x" & $pn.id] = NodeMetadata(enr: pn.record, distance: p.distance(pn.id, targetId)) return TraceContentLookupResult( content: Opt.some(content.content), utpTransfer: content.utpTransfer, trace: TraceObject( origin: p.localNode.id, targetId: targetId, receivedFrom: Opt.some(content.src.id), responses: responses, metadata: metadata, cancelled: pendingNodeIds, startedAtMs: chronos.epochNanoSeconds(ts) div 1_000_000, # nanoseconds to milliseconds ), ) else: # TODO: Should we do something with the node that failed responding our # query? discard portal_lookup_content_failures.inc(labelValues = [$p.protocolId]) return TraceContentLookupResult( content: Opt.none(seq[byte]), utpTransfer: false, trace: TraceObject( origin: p.localNode.id, targetId: targetId, receivedFrom: Opt.none(NodeId), responses: responses, metadata: metadata, cancelled: newSeq[NodeId](), startedAtMs: chronos.epochNanoSeconds(ts) div 1_000_000, # nanoseconds to milliseconds ), ) proc query*( p: PortalProtocol, target: NodeId, k = BUCKET_SIZE ): Future[seq[Node]] {.async: (raises: [CancelledError]).} = ## Query k nodes for the given target, returns all nodes found, including the ## nodes queried. ## ## This will take k nodes from the routing table closest to target and ## query them for nodes closest to target. If there are less than k nodes in ## the routing table, nodes returned by the first queries will be used. var queryBuffer = p.routingTable.neighbours(target, k, seenOnly = false) var asked, seen = HashSet[NodeId]() asked.incl(p.localNode.id) # No need to ask our own node seen.incl(p.localNode.id) # No need to discover our own node for node in queryBuffer: seen.incl(node.id) var pendingQueries = newSeqOfCap[Future[seq[Node]].Raising([CancelledError])](alpha) while true: var i = 0 while i < min(queryBuffer.len, k) and pendingQueries.len < alpha: let n = queryBuffer[i] if not asked.containsOrIncl(n.id): pendingQueries.add(p.lookupWorker(n, target)) inc i trace "Pending lookup queries", total = pendingQueries.len if pendingQueries.len == 0: break let query = try: await one(pendingQueries) except ValueError: raiseAssert("pendingQueries should not have been empty") trace "Got lookup query response" let index = pendingQueries.find(query) if index != -1: pendingQueries.del(index) else: error "Resulting query should have been in the pending queries" let nodes = await query # TODO: Remove node on timed-out query? for n in nodes: if not seen.containsOrIncl(n.id): queryBuffer.add(n) p.lastLookup = now(chronos.Moment) return queryBuffer proc queryRandom*( p: PortalProtocol ): Future[seq[Node]] {.async: (raw: true, raises: [CancelledError]).} = ## Perform a query for a random target, return all nodes discovered. p.query(NodeId.random(p.baseProtocol.rng[])) proc getNClosestNodesWithRadius*( p: PortalProtocol, targetId: NodeId, n: int, seenOnly: bool = false ): seq[(Node, UInt256)] = let closestLocalNodes = p.routingTable.neighbours(targetId, k = n, seenOnly = seenOnly) var nodesWithRadiuses: seq[(Node, UInt256)] for node in closestLocalNodes: let radius = p.radiusCache.get(node.id) if radius.isSome(): nodesWithRadiuses.add((node, radius.unsafeGet())) return nodesWithRadiuses proc neighborhoodGossip*( p: PortalProtocol, srcNodeId: Opt[NodeId], contentKeys: ContentKeysList, content: seq[seq[byte]], ): Future[int] {.async: (raises: [CancelledError]).} = ## Run neighborhood gossip for provided content. ## Returns the number of peers to which content was attempted to be gossiped. if content.len() == 0: return 0 var contentList = List[ContentKV, contentKeysLimit].init(@[]) for i, contentItem in content: let contentKV = ContentKV(contentKey: contentKeys[i], content: contentItem) discard contentList.add(contentKV) # Just taking the first content item as target id. # TODO: come up with something better? let contentId = p.toContentId(contentList[0].contentKey).valueOr: return 0 # For selecting the closest nodes to whom to gossip the content a mixed # approach is taken: # 1. Select the closest neighbours in the routing table # 2. Check if the radius is known for these these nodes and whether they are # in range of the content to be offered. # 3. If more than n (= maxGossipNodes) nodes are in range, offer these nodes # the content (maxed out at n). # 4. If less than n nodes are in range, do a node lookup, and offer the nodes # returned from the lookup the content (max nodes set at 8) # # This should give a bigger rate of success and avoid the data being stopped # in its propagation than when looking only for nodes in the own routing # table, but at the same time avoid unnecessary node lookups. # It might still cause issues in data getting propagated in a wider id range. let closestLocalNodes = p.routingTable.neighbours(NodeId(contentId), k = 16, seenOnly = true) var gossipNodes: seq[Node] for node in closestLocalNodes: let radius = p.radiusCache.get(node.id) if radius.isSome(): if p.inRange(node.id, radius.unsafeGet(), contentId): if srcNodeId.isNone: gossipNodes.add(node) elif node.id != srcNodeId.get(): gossipNodes.add(node) if gossipNodes.len >= p.config.maxGossipNodes: # use local nodes for gossip portal_gossip_without_lookup.inc(labelValues = [$p.protocolId]) let numberOfGossipedNodes = min(gossipNodes.len, p.config.maxGossipNodes) for node in gossipNodes[0 ..< numberOfGossipedNodes]: let req = OfferRequest(dst: node, kind: Direct, contentList: contentList) await p.offerQueue.addLast(req) return numberOfGossipedNodes else: # use looked up nodes for gossip portal_gossip_with_lookup.inc(labelValues = [$p.protocolId]) let closestNodes = await p.lookup(NodeId(contentId)) let numberOfGossipedNodes = min(closestNodes.len, p.config.maxGossipNodes) for node in closestNodes[0 ..< numberOfGossipedNodes]: # Note: opportunistically not checking if the radius of the node is known # and thus if the node is in radius with the content. Reason is, these # should really be the closest nodes in the DHT, and thus are most likely # going to be in range of the requested content. let req = OfferRequest(dst: node, kind: Direct, contentList: contentList) await p.offerQueue.addLast(req) return numberOfGossipedNodes proc neighborhoodGossipDiscardPeers*( p: PortalProtocol, srcNodeId: Opt[NodeId], contentKeys: ContentKeysList, content: seq[seq[byte]], ): Future[void] {.async: (raises: [CancelledError]).} = discard await p.neighborhoodGossip(srcNodeId, contentKeys, content) proc randomGossip*( p: PortalProtocol, srcNodeId: Opt[NodeId], contentKeys: ContentKeysList, content: seq[seq[byte]], ): Future[int] {.async: (raises: [CancelledError]).} = ## Run random gossip for provided content. ## Returns the number of peers to which content was attempted to be gossiped. if content.len() == 0: return 0 var contentList = List[ContentKV, contentKeysLimit].init(@[]) for i, contentItem in content: let contentKV = ContentKV(contentKey: contentKeys[i], content: contentItem) discard contentList.add(contentKV) let nodes = p.routingTable.randomNodes(p.config.maxGossipNodes) for node in nodes[0 ..< nodes.len()]: let req = OfferRequest(dst: node, kind: Direct, contentList: contentList) await p.offerQueue.addLast(req) return nodes.len() proc randomGossipDiscardPeers*( p: PortalProtocol, srcNodeId: Opt[NodeId], contentKeys: ContentKeysList, content: seq[seq[byte]], ): Future[void] {.async: (raises: [CancelledError]).} = discard await p.randomGossip(srcNodeId, contentKeys, content) proc storeContent*( p: PortalProtocol, contentKey: ContentKeyByteList, contentId: ContentId, content: seq[byte], cacheContent = false, ): bool {.discardable.} = if cacheContent and not p.config.disableContentCache: # We cache content regardless of whether it is in our radius or not p.contentCache.put(contentId, content) # Always re-check that the key is still in the node range to make sure only # content in range is stored. if p.inRange(contentId): doAssert(p.dbPut != nil) p.dbPut(contentKey, contentId, content) true else: false proc getLocalContent*( p: PortalProtocol, contentKey: ContentKeyByteList, contentId: ContentId ): Opt[seq[byte]] = # The cache can contain content that is not in our radius let maybeContent = p.contentCache.get(contentId) if maybeContent.isSome(): portal_content_cache_hits.inc(labelValues = [$p.protocolId]) return maybeContent portal_content_cache_misses.inc(labelValues = [$p.protocolId]) # Check first if content is in range, as this is a cheaper operation # than the database lookup. if p.inRange(contentId): doAssert(p.dbGet != nil) p.dbGet(contentKey, contentId) else: Opt.none(seq[byte]) proc seedTable*(p: PortalProtocol) = ## Seed the table with specifically provided Portal bootstrap nodes. These are ## nodes that must support the wire protocol for the specific content network. # Note: We allow replacing the bootstrap nodes in the routing table as it is # possible that some of these are not supporting the specific portal network. # Other note: One could also pick nodes from the discv5 routing table to # bootstrap the portal networks, however it would require a flag in the ENR to # be added and there might be none in the routing table due to low amount of # Portal nodes versus other nodes. logScope: protocolId = p.protocolId for record in p.bootstrapRecords: if p.addNode(record): debug "Added bootstrap node", uri = toURI(record), protocolId = p.protocolId else: error "Bootstrap node could not be added", uri = toURI(record), protocolId = p.protocolId proc populateTable(p: PortalProtocol) {.async: (raises: [CancelledError]).} = ## Do a set of initial lookups to quickly populate the table. # start with a self target query (neighbour nodes) logScope: protocolId = p.protocolId let selfQuery = await p.query(p.localNode.id) trace "Discovered nodes in self target query", nodes = selfQuery.len for i in 0 ..< initialLookups: let randomQuery = await p.queryRandom() trace "Discovered nodes in random target query", nodes = randomQuery.len debug "Total nodes in routing table after populate", total = p.routingTable.len() proc revalidateNode*(p: PortalProtocol, n: Node) {.async: (raises: [CancelledError]).} = let pong = await p.ping(n) if pong.isOk(): let res = pong.get() if res.enrSeq > n.record.seqNum: # Request new ENR let nodesMessage = await p.findNodes(n, @[0'u16]) if nodesMessage.isOk(): let nodes = nodesMessage.get() if nodes.len > 0: # Normally a node should only return 1 record actually discard p.addNode(nodes[0]) proc getNodeForRevalidation(p: PortalProtocol): Opt[Node] = let node = p.routingTable.nodeToRevalidate() if node.isNil: # This should not occur except for when the RT is empty return Opt.none(Node) let now = now(chronos.Moment) let timestamp = p.pingTimings.getOrDefault(node.id, Moment.init(0'i64, Second)) if (timestamp + revalidationTimeout) < now: Opt.some(node) else: Opt.none(Node) proc revalidateLoop(p: PortalProtocol) {.async: (raises: []).} = ## Loop which revalidates the nodes in the routing table by sending the ping ## message. try: while true: await sleepAsync(milliseconds(p.baseProtocol.rng[].rand(revalidateMax))) let n = getNodeForRevalidation(p) if n.isSome: asyncSpawn p.revalidateNode(n.get()) except CancelledError: trace "revalidateLoop canceled" proc refreshLoop(p: PortalProtocol) {.async: (raises: []).} = ## Loop that refreshes the routing table by starting a random query in case ## no queries were done since `refreshInterval` or more. ## It also refreshes the majority address voted for via pong responses. logScope: protocolId = p.protocolId try: while true: # TODO: It would be nicer and more secure if this was event based and/or # steered from the routing table. while p.routingTable.len() == 0: p.seedTable() await p.populateTable() await sleepAsync(5.seconds) let currentTime = now(chronos.Moment) if currentTime > (p.lastLookup + refreshInterval): let randomQuery = await p.queryRandom() trace "Discovered nodes in random target query", nodes = randomQuery.len debug "Total nodes in routing table", total = p.routingTable.len() await sleepAsync(refreshInterval) except CancelledError: trace "refreshLoop canceled" proc start*(p: PortalProtocol) = p.refreshLoop = refreshLoop(p) p.revalidateLoop = revalidateLoop(p) for i in 0 ..< concurrentOffers: p.offerWorkers.add(offerWorker(p)) proc stop*(p: PortalProtocol) {.async: (raises: []).} = var futures: seq[Future[void]] if not p.revalidateLoop.isNil(): futures.add(p.revalidateLoop.cancelAndWait()) if not p.refreshLoop.isNil(): futures.add(p.refreshLoop.cancelAndWait()) for worker in p.offerWorkers: futures.add(worker.cancelAndWait()) await noCancel(allFutures(futures)) p.revalidateLoop = nil p.refreshLoop = nil p.offerWorkers = @[] proc resolve*( p: PortalProtocol, id: NodeId ): Future[Opt[Node]] {.async: (raises: [CancelledError]).} = ## Resolve a `Node` based on provided `NodeId`. ## ## This will first look in the own routing table. If the node is known, it ## will try to contact if for newer information. If node is not known or it ## does not reply, a lookup is done to see if it can find a (newer) record of ## the node on the network. if id == p.localNode.id: return Opt.some(p.localNode) let node = p.getNode(id) if node.isSome(): let nodesMessage = await p.findNodes(node.get(), @[0'u16]) # TODO: Handle failures better. E.g. stop on different failures than timeout if nodesMessage.isOk() and nodesMessage[].len > 0: return Opt.some(nodesMessage[][0]) let discovered = await p.lookup(id) for n in discovered: if n.id == id: if node.isSome() and node.get().record.seqNum >= n.record.seqNum: return node else: return Opt.some(n) return node proc resolveWithRadius*( p: PortalProtocol, id: NodeId ): Future[Opt[(Node, UInt256)]] {.async: (raises: [CancelledError]).} = ## Resolve a `Node` based on provided `NodeId`, also try to establish what ## is known radius of found node. ## ## This will first look in the own routing table. If the node is known, it ## will try to contact if for newer information. If node is not known or it ## does not reply, a lookup is done to see if it can find a (newer) record of ## the node on the network. ## ## If node is found, radius will be first checked in radius cache, it radius ## is not known node will be pinged to establish what is its current radius ## let n = await p.resolve(id) if n.isNone(): return Opt.none((Node, UInt256)) let node = n.unsafeGet() let r = p.radiusCache.get(id) if r.isSome(): return Opt.some((node, r.unsafeGet())) let pongResult = await p.ping(node) if pongResult.isOk(): let maybeRadius = p.radiusCache.get(id) # After successful ping radius should already be in cache, but for the # unlikely case that it is not, check it just to be sure. # TODO: refactor ping to return node radius. if maybeRadius.isNone(): return Opt.none((Node, UInt256)) else: return Opt.some((node, maybeRadius.unsafeGet())) else: return Opt.none((Node, UInt256))