# nimbus-eth1 # Copyright (c) 2023-2024 Status Research & Development GmbH # Licensed under either of # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or # http://www.apache.org/licenses/LICENSE-2.0) # * MIT license ([LICENSE-MIT](LICENSE-MIT) or # http://opensource.org/licenses/MIT) # at your option. This file may not be copied, modified, or distributed # except according to those terms. ## Aristo DB -- Patricia Trie structural data types ## ================================================ ## {.push raises: [].} import std/[hashes, tables], stint, eth/common, ./desc_identifiers export stint type LeafTiePayload* = object ## Generalised key-value pair for a sub-trie. The main trie is the ## sub-trie with `root=VertexID(1)`. leafTie*: LeafTie ## Full `Patricia Trie` path root-to-leaf payload*: LeafPayload ## Leaf data payload (see below) VertexType* = enum ## Type of `Aristo Trie` vertex Leaf Branch AristoAccount* = object ## Application relevant part of an Ethereum account. Note that the storage ## data/tree reference is not part of the account (see `LeafPayload` below.) nonce*: AccountNonce ## Some `uint64` type balance*: UInt256 codeHash*: Hash256 PayloadType* = enum ## Type of leaf data. RawData ## Generic data AccountData ## `Aristo account` with vertex IDs links StoData ## Slot storage data StorageID* = tuple ## Once a storage tree is allocated, its root vertex ID is registered in ## the leaf payload of an acoount. After subsequent storage tree deletion ## the root vertex ID will be kept in the leaf payload for re-use but set ## disabled (`.isValid` = `false`). isValid: bool ## See also `isValid()` for `VertexID` vid: VertexID ## Storage root vertex ID LeafPayload* = object ## The payload type depends on the sub-tree used. The `VertexID(1)` rooted ## sub-tree only has `AccountData` type payload, stoID-based have StoData ## while generic have RawData case pType*: PayloadType of RawData: rawBlob*: Blob ## Opaque data, default value of AccountData: account*: AristoAccount stoID*: StorageID ## Storage vertex ID (if any) of StoData: stoData*: UInt256 VertexRef* = ref object of RootRef ## Vertex for building a hexary Patricia or Merkle Patricia Trie case vType*: VertexType of Leaf: lPfx*: NibblesBuf ## Portion of path segment lData*: LeafPayload ## Reference to data payload of Branch: ePfx*: NibblesBuf ## Portion of path segment - if non-empty, ## it's an extension node! bVid*: array[16,VertexID] ## Edge list with vertex IDs NodeRef* = ref object of VertexRef ## Combined record for a *traditional* ``Merkle Patricia Tree` node merged ## with a structural `VertexRef` type object. key*: array[16,HashKey] ## Merkle hash/es for vertices # ---------------------- VidVtxPair* = object ## Handy helper structure vid*: VertexID ## Table lookup vertex ID (if any) vtx*: VertexRef ## Reference to vertex SavedState* = object ## Last saved state key*: Hash256 ## Some state hash (if any) serial*: uint64 ## Generic identifier from application LayerRef* = ref LayerObj LayerObj* = object ## Delta layers are stacked implying a tables hierarchy. Table entries on ## a higher level take precedence over lower layer table entries. So an ## existing key-value table entry of a layer on top supersedes same key ## entries on all lower layers. A missing entry on a higher layer indicates ## that the key-value pair might be fond on some lower layer. ## ## A zero value (`nil`, empty hash etc.) is considered am missing key-value ## pair. Tables on the `LayerDelta` may have stray zero key-value pairs for ## missing entries due to repeated transactions while adding and deleting ## entries. There is no need to purge redundant zero entries. ## ## As for `kMap[]` entries, there might be a zero value entriy relating ## (i.e. indexed by the same vertex ID) to an `sMap[]` non-zero value entry ## (of the same layer or a lower layer whatever comes first.) This entry ## is kept as a reminder that the hash value of the `kMap[]` entry needs ## to be re-compiled. ## ## The reasoning behind the above scenario is that every vertex held on the ## `sTab[]` tables must correspond to a hash entry held on the `kMap[]` ## tables. So a corresponding zero value or missing entry produces an ## inconsistent state that must be resolved. ## sTab*: Table[RootedVertexID,VertexRef] ## Structural vertex table kMap*: Table[RootedVertexID,HashKey] ## Merkle hash key mapping vTop*: VertexID ## Last used vertex ID delTree*: seq[RootedVertexID] ## Not yet fully deleted sub-trees accLeaves*: Table[Hash256, VertexRef] ## Account path -> VertexRef stoLeaves*: Table[Hash256, VertexRef] ## Storage path -> VertexRef txUid*: uint ## Transaction identifier if positive # ------------------------------------------------------------------------------ # Public helpers (misc) # ------------------------------------------------------------------------------ func init*(T: type LayerRef): T = ## Constructor, returns empty layer T() func hash*(node: NodeRef): Hash = ## Table/KeyedQueue/HashSet mixin cast[pointer](node).hash # ------------------------------------------------------------------------------ # Public helpers: `NodeRef` and `LeafPayload` # ------------------------------------------------------------------------------ proc `==`*(a, b: LeafPayload): bool = ## Beware, potential deep comparison if unsafeAddr(a) != unsafeAddr(b): if a.pType != b.pType: return false case a.pType: of RawData: if a.rawBlob != b.rawBlob: return false of AccountData: if a.account != b.account or a.stoID != b.stoID: return false of StoData: if a.stoData != b.stoData: return false true proc `==`*(a, b: VertexRef): bool = ## Beware, potential deep comparison if a.isNil: return b.isNil if b.isNil: return false if unsafeAddr(a[]) != unsafeAddr(b[]): if a.vType != b.vType: return false case a.vType: of Leaf: if a.lPfx != b.lPfx or a.lData != b.lData: return false of Branch: if a.ePfx != b.ePfx or a.bVid != b.bVid: return false true proc `==`*(a, b: NodeRef): bool = ## Beware, potential deep comparison if a.VertexRef != b.VertexRef: return false case a.vType: of Branch: for n in 0..15: if a.bVid[n] != 0.VertexID or b.bVid[n] != 0.VertexID: if a.key[n] != b.key[n]: return false else: discard true # ------------------------------------------------------------------------------ # Public helpers, miscellaneous functions # ------------------------------------------------------------------------------ func dup*(pld: LeafPayload): LeafPayload = ## Duplicate payload. case pld.pType: of RawData: LeafPayload( pType: RawData, rawBlob: pld.rawBlob) of AccountData: LeafPayload( pType: AccountData, account: pld.account, stoID: pld.stoID) of StoData: LeafPayload( pType: StoData, stoData: pld.stoData ) func dup*(vtx: VertexRef): VertexRef = ## Duplicate vertex. # Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.) if vtx.isNil: VertexRef(nil) else: case vtx.vType: of Leaf: VertexRef( vType: Leaf, lPfx: vtx.lPfx, lData: vtx.lData.dup) of Branch: VertexRef( vType: Branch, ePfx: vtx.ePfx, bVid: vtx.bVid) func dup*(node: NodeRef): NodeRef = ## Duplicate node. # Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.) if node.isNil: NodeRef(nil) else: case node.vType: of Leaf: NodeRef( vType: Leaf, lPfx: node.lPfx, lData: node.lData.dup, key: node.key) of Branch: NodeRef( vType: Branch, ePfx: node.ePfx, bVid: node.bVid, key: node.key) func dup*(wp: VidVtxPair): VidVtxPair = ## Safe copy of `wp` argument VidVtxPair( vid: wp.vid, vtx: wp.vtx.dup) # --------------- func to*(node: NodeRef; T: type VertexRef): T = ## Extract a copy of the `VertexRef` part from a `NodeRef`. node.VertexRef.dup # ------------------------------------------------------------------------------ # End # ------------------------------------------------------------------------------