# nimbus-eth1 # Copyright (c) 2023-2024 Status Research & Development GmbH # Licensed under either of # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or # http://www.apache.org/licenses/LICENSE-2.0) # * MIT license ([LICENSE-MIT](LICENSE-MIT) or # http://opensource.org/licenses/MIT) # at your option. This file may not be copied, modified, or distributed # except according to those terms. ## Aristo DB -- Patricia Trie structural data types ## ================================================ ## {.push raises: [].} import std/[hashes, sets, tables], eth/[common, trie/nibbles], "."/[desc_error, desc_identifiers] type VertexType* = enum ## Type of `Aristo Trie` vertex Leaf Extension Branch AristoAccount* = object nonce*: AccountNonce ## Some `uint64` type balance*: UInt256 storageID*: VertexID ## Implies storage root Merkle hash key codeHash*: Hash256 PayloadType* = enum ## Type of leaf data. RawData ## Generic data RlpData ## Marked RLP encoded AccountData ## `Aristo account` with vertex IDs links PayloadRef* = ref object case pType*: PayloadType of RawData: rawBlob*: Blob ## Opaque data, default value of RlpData: rlpBlob*: Blob ## Opaque data marked RLP encoded of AccountData: account*: AristoAccount VertexRef* = ref object of RootRef ## Vertex for building a hexary Patricia or Merkle Patricia Trie case vType*: VertexType of Leaf: lPfx*: NibblesSeq ## Portion of path segment lData*: PayloadRef ## Reference to data payload of Extension: ePfx*: NibblesSeq ## Portion of path segment eVid*: VertexID ## Edge to vertex with ID `eVid` of Branch: bVid*: array[16,VertexID] ## Edge list with vertex IDs NodeRef* = ref object of VertexRef ## Combined record for a *traditional* ``Merkle Patricia Tree` node merged ## with a structural `VertexRef` type object. error*: AristoError ## Used for error signalling in RLP decoder key*: array[16,HashKey] ## Merkle hash/es for vertices # ---------------------- FilterRef* = ref object ## Delta layer with expanded sequences for quick access. fid*: FilterID ## Filter identifier src*: Hash256 ## Applicable to this state root trg*: Hash256 ## Resulting state root (i.e. `kMap[1]`) sTab*: Table[VertexID,VertexRef] ## Filter structural vertex table kMap*: Table[VertexID,HashKey] ## Filter Merkle hash key mapping vGen*: seq[VertexID] ## Filter unique vertex ID generator VidsByKeyTab* = Table[HashKey,HashSet[VertexID]] ## Reverse lookup searching `VertexID` by the hash key. LayerDeltaRef* = ref object ## Delta layers are stacked implying a tables hierarchy. Table entries on ## a higher level take precedence over lower layer table entries. So an ## existing key-value table entry of a layer on top supersedes same key ## entries on all lower layers. A missing entry on a higher layer indicates ## that the key-value pair might be fond on some lower layer. ## ## A zero value (`nil`, empty hash etc.) is considered am missing key-value ## pair. Tables on the `LayerDelta` may have stray zero key-value pairs for ## missing entries due to repeated transactions while adding and deleting ## entries. There is no need to purge redundant zero entries. ## ## As for `kMap[]` entries, there might be a zero value entriy relating ## (i.e. indexed by the same vertex ID) to an `sMap[]` non-zero value entry ## (of the same layer or a lower layer whatever comes first.) This entry ## is kept as a reminder that the hash value of the `kMap[]` entry needs ## to be re-compiled. ## ## The reasoning behind the above scenario is that every vertex held on the ## `sTab[]` tables must correspond to a hash entry held on the `kMap[]` ## tables. So a corresponding zero value or missing entry produces an ## inconsistent state that must be resolved. ## sTab*: Table[VertexID,VertexRef] ## Structural vertex table kMap*: Table[VertexID,HashKey] ## Merkle hash key mapping pAmk*: VidsByKeyTab ## Reverse `kMap` entries, hash key lookup LayerFinalRef* = ref object ## Final tables fully supersede tables on lower layers when stacked as a ## whole. Missing entries on a higher layers are the final state (for the ## the top layer version of the table.) ## ## These structures are used for tables which are typically smaller then ## the ones on the `LayerDelta` object. ## lTab*: Table[LeafTie,VertexID] ## Access path to leaf vertex pPrf*: HashSet[VertexID] ## Locked vertices (proof nodes) vGen*: seq[VertexID] ## Unique vertex ID generator dirty*: bool ## Needs to be hashified if `true` LayerRef* = ref LayerObj LayerObj* = object ## Hexary trie database layer structures. Any layer holds the full ## change relative to the backend. delta*: LayerDeltaRef ## Most structural tables held as deltas final*: LayerFinalRef ## Stored as latest version txUid*: uint ## Transaction identifier if positive # ---------------------- QidLayoutRef* = ref object ## Layout of cascaded list of filter ID slot queues where a slot queue ## with index `N+1` serves as an overflow queue of slot queue `N`. q*: array[4,QidSpec] QidSpec* = tuple ## Layout of a filter ID slot queue size: uint ## Capacity of queue, length within `1..wrap` width: uint ## Instance gaps (relative to prev. item) wrap: QueueID ## Range `1..wrap` for round-robin queue QidSchedRef* = ref object of RootRef ## Current state of the filter queues ctx*: QidLayoutRef ## Organisation of the FIFO state*: seq[(QueueID,QueueID)] ## Current fill state const DefaultQidWrap = QueueID(0x3fff_ffff_ffff_ffffu64) QidSpecSizeMax* = high(uint32).uint ## Maximum value allowed for a `size` value of a `QidSpec` object QidSpecWidthMax* = high(uint32).uint ## Maximum value allowed for a `width` value of a `QidSpec` object # ------------------------------------------------------------------------------ # Private helpers # ------------------------------------------------------------------------------ func max(a, b, c: int): int = max(max(a,b),c) # ------------------------------------------------------------------------------ # Public helpers: `NodeRef` and `PayloadRef` # ------------------------------------------------------------------------------ func init*(T: type LayerRef): T = ## Constructor, returns empty layer T(delta: LayerDeltaRef(), final: LayerFinalRef()) func hash*(node: NodeRef): Hash = ## Table/KeyedQueue/HashSet mixin cast[pointer](node).hash # --------------- proc `==`*(a, b: PayloadRef): bool = ## Beware, potential deep comparison if a.isNil: return b.isNil if b.isNil: return false if unsafeAddr(a) != unsafeAddr(b): if a.pType != b.pType: return false case a.pType: of RawData: if a.rawBlob != b.rawBlob: return false of RlpData: if a.rlpBlob != b.rlpBlob: return false of AccountData: if a.account != b.account: return false true proc `==`*(a, b: VertexRef): bool = ## Beware, potential deep comparison if a.isNil: return b.isNil if b.isNil: return false if unsafeAddr(a[]) != unsafeAddr(b[]): if a.vType != b.vType: return false case a.vType: of Leaf: if a.lPfx != b.lPfx or a.lData != b.lData: return false of Extension: if a.ePfx != b.ePfx or a.eVid != b.eVid: return false of Branch: for n in 0..15: if a.bVid[n] != b.bVid[n]: return false true proc `==`*(a, b: NodeRef): bool = ## Beware, potential deep comparison if a.VertexRef != b.VertexRef: return false case a.vType: of Extension: if a.key[0] != b.key[0]: return false of Branch: for n in 0..15: if a.bVid[n] != 0.VertexID and a.key[n] != b.key[n]: return false else: discard true # ------------------------------------------------------------------------------ # Public helpers, miscellaneous functions # ------------------------------------------------------------------------------ func dup*(pld: PayloadRef): PayloadRef = ## Duplicate payload. case pld.pType: of RawData: PayloadRef( pType: RawData, rawBlob: pld.rawBlob) of RlpData: PayloadRef( pType: RlpData, rlpBlob: pld.rlpBlob) of AccountData: PayloadRef( pType: AccountData, account: pld.account) func dup*(vtx: VertexRef): VertexRef = ## Duplicate vertex. # Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.) if vtx.isNil: VertexRef(nil) else: case vtx.vType: of Leaf: VertexRef( vType: Leaf, lPfx: vtx.lPfx, lData: vtx.lData.dup) of Extension: VertexRef( vType: Extension, ePfx: vtx.ePfx, eVid: vtx.eVid) of Branch: VertexRef( vType: Branch, bVid: vtx.bVid) func dup*(node: NodeRef): NodeRef = ## Duplicate node. # Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.) if node.isNil: NodeRef(nil) else: case node.vType: of Leaf: NodeRef( vType: Leaf, lPfx: node.lPfx, lData: node.lData.dup, key: node.key) of Extension: NodeRef( vType: Extension, ePfx: node.ePfx, eVid: node.eVid, key: node.key) of Branch: NodeRef( vType: Branch, bVid: node.bVid, key: node.key) func dup*(final: LayerFinalRef): LayerFinalRef = ## Duplicate final layer. LayerFinalRef( lTab: final.lTab, pPrf: final.pPrf, vGen: final.vGen, dirty: final.dirty) # --------------- func to*(node: NodeRef; T: type VertexRef): T = ## Extract a copy of the `VertexRef` part from a `NodeRef`. node.VertexRef.dup func to*(a: array[4,tuple[size, width: int]]; T: type QidLayoutRef): T = ## Convert a size-width array to a `QidLayoutRef` layout. Over large ## array field values are adjusted to its maximal size. var q: array[4,QidSpec] for n in 0..3: q[n] = (min(a[n].size.uint, QidSpecSizeMax), min(a[n].width.uint, QidSpecWidthMax), DefaultQidWrap) q[0].width = 0 T(q: q) func to*(a: array[4,tuple[size, width, wrap: int]]; T: type QidLayoutRef): T = ## Convert a size-width-wrap array to a `QidLayoutRef` layout. Over large ## array field values are adjusted to its maximal size. Too small `wrap` ## values are adjusted to its minimal size. var q: array[4,QidSpec] for n in 0..2: q[n] = (min(a[n].size.uint, QidSpecSizeMax), min(a[n].width.uint, QidSpecWidthMax), QueueID(max(a[n].size + a[n+1].width, a[n].width+1, a[n].wrap))) q[0].width = 0 q[3] = (min(a[3].size.uint, QidSpecSizeMax), min(a[3].width.uint, QidSpecWidthMax), QueueID(max(a[3].size, a[3].width, a[3].wrap))) T(q: q) # ------------------------------------------------------------------------------ # Public constructors for filter slot scheduler state # ------------------------------------------------------------------------------ func init*(T: type QidSchedRef; a: array[4,(int,int)]): T = ## Constructor, see comments at the coverter function `to()` for adjustments ## of the layout argument `a`. T(ctx: a.to(QidLayoutRef)) func init*(T: type QidSchedRef; a: array[4,(int,int,int)]): T = ## Constructor, see comments at the coverter function `to()` for adjustments ## of the layout argument `a`. T(ctx: a.to(QidLayoutRef)) func init*(T: type QidSchedRef; ctx: QidLayoutRef): T = T(ctx: ctx) # ------------------------------------------------------------------------------ # End # ------------------------------------------------------------------------------