# nimbus-eth1 # Copyright (c) 2023-2024 Status Research & Development GmbH # Licensed under either of # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or # http://www.apache.org/licenses/LICENSE-2.0) # * MIT license ([LICENSE-MIT](LICENSE-MIT) or # http://opensource.org/licenses/MIT) # at your option. This file may not be copied, modified, or distributed # except according to those terms. {.push raises: [].} import eth/common, results, stew/arraybuf, "."/[aristo_desc, aristo_get] const HikeAcceptableStopsNotFound* = { HikeBranchTailEmpty, HikeBranchMissingEdge, HikeLeafUnexpected, HikeNoLegs} ## When trying to find a leaf vertex the Patricia tree, there are several ## conditions where the search stops which do not constitute a problem ## with the trie (aka sysetm error.) # ------------------------------------------------------------------------------ # Private functions # ------------------------------------------------------------------------------ func getNibblesImpl(hike: Hike; start = 0; maxLen = high(int)): NibblesBuf = ## May be needed for partial rebuild, as well for n in start ..< min(hike.legs.len, maxLen): let leg = hike.legs[n] case leg.wp.vtx.vType: of Branch: result = result & leg.wp.vtx.pfx & NibblesBuf.nibble(leg.nibble.byte) of Leaf: result = result & leg.wp.vtx.pfx # ------------------------------------------------------------------------------ # Public functions # ------------------------------------------------------------------------------ func to*(rc: Result[Hike,(VertexID,AristoError,Hike)]; T: type Hike): T = ## Extract `Hike` from either ok ot error part of argument `rc`. if rc.isOk: rc.value else: rc.error[2] func to*(hike: Hike; T: type NibblesBuf): T = ## Convert back hike.getNibblesImpl() & hike.tail func legsTo*(hike: Hike; T: type NibblesBuf): T = ## Convert back hike.getNibblesImpl() func legsTo*(hike: Hike; numLegs: int; T: type NibblesBuf): T = ## variant of `legsTo()` hike.getNibblesImpl(0, numLegs) # -------- proc step*( path: NibblesBuf, rvid: RootedVertexID, db: AristoDbRef ): Result[(VertexRef, NibblesBuf, VertexID), AristoError] = # Fetch next vertex let (vtx, _) = db.getVtxRc(rvid).valueOr: if error != GetVtxNotFound: return err(error) if rvid.root == rvid.vid: return err(HikeNoLegs) # The vertex ID `vid` was a follow up from a parent vertex, but there is # no child vertex on the database. So `vid` is a dangling link which is # allowed only if there is a partial trie (e.g. with `snap` sync.) return err(HikeDanglingEdge) case vtx.vType: of Leaf: # This must be the last vertex, so there cannot be any `tail` left. if path.len != path.sharedPrefixLen(vtx.pfx): return err(HikeLeafUnexpected) ok (vtx, NibblesBuf(), VertexID(0)) of Branch: # There must be some more data (aka `tail`) after a `Branch` vertex. if path.len <= vtx.pfx.len: return err(HikeBranchTailEmpty) let nibble = path[vtx.pfx.len].int8 nextVid = vtx.bVid[nibble] if not nextVid.isValid: return err(HikeBranchMissingEdge) ok (vtx, path.slice(vtx.pfx.len + 1), nextVid) iterator stepUp*( path: NibblesBuf; # Partial path root: VertexID; # Start vertex db: AristoDbRef; # Database ): Result[VertexRef, AristoError] = ## For the argument `path`, iterate over the logest possible path in the ## argument database `db`. var path = path next = root vtx: VertexRef block iter: while true: (vtx, path, next) = step(path, (root, next), db).valueOr: yield Result[VertexRef, AristoError].err(error) break iter yield Result[VertexRef, AristoError].ok(vtx) if path.len == 0: break proc hikeUp*( path: NibblesBuf; # Partial path root: VertexID; # Start vertex db: AristoDbRef; # Database leaf: Opt[VertexRef]; hike: var Hike; ): Result[void,(VertexID,AristoError)] = ## For the argument `path`, find and return the logest possible path in the ## argument database `db` - this may result in a partial match in which case ## hike.tail will be non-empty. ## ## If a leaf is given, it gets used for the "last" leg of the hike. hike.root = root hike.tail = path hike.legs.setLen(0) if not root.isValid: return err((VertexID(0),HikeRootMissing)) if path.len == 0: return err((VertexID(0),HikeEmptyPath)) var vid = root while true: if leaf.isSome() and leaf[].isValid and path == leaf[].pfx: hike.legs.add Leg(wp: VidVtxPair(vid: vid, vtx: leaf[]), nibble: -1) reset(hike.tail) break let (vtx, path, next) = step(hike.tail, (root, vid), db).valueOr: return err((vid,error)) let wp = VidVtxPair(vid:vid, vtx:vtx) case vtx.vType of Leaf: hike.legs.add Leg(wp: wp, nibble: -1) hike.tail = path break of Branch: hike.legs.add Leg(wp: wp, nibble: int8 hike.tail[vtx.pfx.len]) hike.tail = path vid = next ok() proc hikeUp*( lty: LeafTie; db: AristoDbRef; leaf: Opt[VertexRef]; hike: var Hike ): Result[void,(VertexID,AristoError)] = ## Variant of `hike()` lty.path.to(NibblesBuf).hikeUp(lty.root, db, leaf, hike) proc hikeUp*( path: openArray[byte]; root: VertexID; db: AristoDbRef; leaf: Opt[VertexRef]; hike: var Hike ): Result[void,(VertexID,AristoError)] = ## Variant of `hike()` NibblesBuf.fromBytes(path).hikeUp(root, db, leaf, hike) proc hikeUp*( path: Hash32; root: VertexID; db: AristoDbRef; leaf: Opt[VertexRef]; hike: var Hike ): Result[void,(VertexID,AristoError)] = ## Variant of `hike()` NibblesBuf.fromBytes(path.data).hikeUp(root, db, leaf, hike) # ------------------------------------------------------------------------------ # End # ------------------------------------------------------------------------------