* Activate `LedgerRef` wrapper for `AccountsCache`
details:
`accounts_cache.nim` methods are indirectly processed by the wrapper
methods from `ledger.nim`.
This works for all sources except `test_state_db.nim` where the source
`accounts_cache.nim` is included (rather than imported) in order to
access objects privy to the very source.
* Provide facility to switch to a preselected `LedgerRef` type
details:
Can be set as suggestion when initialising `CommonRef`
* Update `CoreDb` test suite for better time tracking
details:
+ Allow time logging by pre-defined block intervals
+ Print `CoreDb`/`Ledger`profiling results (if enabled)
* Nimbus folder environment update
details:
* Integrated `CoreDbRef` for the sources in the `nimbus` sub-folder.
* The `nimbus` program does not compile yet as it needs the updates
in the parallel `stateless` sub-folder.
* Stateless environment update
details:
* Integrated `CoreDbRef` for the sources in the `stateless` sub-folder.
* The `nimbus` program compiles now.
* Premix environment update
details:
* Integrated `CoreDbRef` for the sources in the `premix` sub-folder.
* Fluffy environment update
details:
* Integrated `CoreDbRef` for the sources in the `fluffy` sub-folder.
* Tools environment update
details:
* Integrated `CoreDbRef` for the sources in the `tools` sub-folder.
* Nodocker environment update
details:
* Integrated `CoreDbRef` for the sources in the
`hive_integration/nodocker` sub-folder.
* Tests environment update
details:
* Integrated `CoreDbRef` for the sources in the `tests` sub-folder.
* The unit tests compile and run cleanly now.
* Generalise `CoreDbRef` to any `select_backend` supported database
why:
Generalisation was just missed due to overcoming some compiler oddity
which was tied to rocksdb for testing.
* Suppress compiler warning for `newChainDB()`
why:
Warning was added to this function which must be wrapped so that
any `CatchableError` is re-raised as `Defect`.
* Split off persistent `CoreDbRef` constructor into separate file
why:
This allows to compile a memory only database version without linking
the backend library.
* Use memory `CoreDbRef` database by default
detail:
Persistent DB constructor needs to import `db/core_db/persistent
why:
Most tests use memory DB anyway. This avoids linking `-lrocksdb` or
any other backend by default.
* fix `toLegacyBackend()` availability check
why:
got garbled after memory/persistent split.
* Clarify raw access to MPT for snap sync handler
why:
Logically, `kvt` is not the raw access for the hexary trie (although
this holds for the legacy database)
* Gwei conversion should use u256 because u64 can overflow.
* Make withdrawals follow the EIP-158 state-clearing rules.
(i.e. Empty accounts should be deleted.)
* Allow the zero address in normalizeNumber.
(Necessary for one of the new withdrawals-related tests.)
* Another fix with a withdrawals-related test.
* Refactoring in preparation for time-based forking.
* Timestamp-based hard-fork-transition.
* Workaround SideEffect issue / compiler bug for both failing locations in Portal history code
---------
Co-authored-by: kdeme <kim.demey@gmail.com>
* Removed some Windows specific unit test annoyances
details:
+ Short put()/get() cycles on persistent database have a race condition
with vendor rocksdb. On a specific (and slow) qemu/win7 a 50ms `sleep()`
in between will mostly do the job (i.e. unless heavy CPU load.) This
issue was not observed on github/ci.
+ Removed annoyances when qemu/Win7 keeps the rocksdb database files
locked even after closing the db. The problem is solved by strictly
using fresh names for each test. No assumption made to be able to
properly clean up. This issue was not observed on github/ci.
* Silence some compiler gossip -- part 7, misc/non(sync or graphql)
details:
Adding some missing exception annotation
* Added basic async capabilities for vm2.
This is a whole new Git branch, not the same one as last time
(https://github.com/status-im/nimbus-eth1/pull/1250) - there wasn't
much worth salvaging. Main differences:
I didn't do the "each opcode has to specify an async handler" junk
that I put in last time. Instead, in oph_memory.nim you can see
sloadOp calling asyncChainTo and passing in an async operation.
That async operation is then run by the execCallOrCreate (or
asyncExecCallOrCreate) code in interpreter_dispatch.nim.
In the test code, the (previously existing) macro called "assembler"
now allows you to add a section called "initialStorage", specifying
fake data to be used by the EVM computation run by that test. (In
the long run we'll obviously want to write tests that for-real use
the JSON-RPC API to asynchronously fetch data; for now, this was
just an expedient way to write a basic unit test that exercises the
async-EVM code pathway.)
There's also a new macro called "concurrentAssemblers" that allows
you to write a test that runs multiple assemblers concurrently (and
then waits for them all to finish). There's one example test using
this, in test_op_memory_lazy.nim, though you can't actually see it
doing so unless you uncomment some echo statements in
async_operations.nim (in which case you can see the two concurrently
running EVM computations each printing out what they're doing, and
you'll see that they interleave).
A question: is it possible to make EVMC work asynchronously? (For
now, this code compiles and "make test" passes even if ENABLE_EVMC
is turned on, but it doesn't actually work asynchronously, it just
falls back on doing the usual synchronous EVMC thing. See
FIXME-asyncAndEvmc.)
* Moved the AsyncOperationFactory to the BaseVMState object.
* Made the AsyncOperationFactory into a table of fn pointers.
Also ditched the plain-data Vm2AsyncOperation type; it wasn't
really serving much purpose. Instead, the pendingAsyncOperation
field directly contains the Future.
* Removed the hasStorage idea.
It's not the right solution to the "how do we know whether we
still need to fetch the storage value or not?" problem. I
haven't implemented the right solution yet, but at least
we're better off not putting in a wrong one.
* Added/modified/removed some comments.
(Based on feedback on the PR.)
* Removed the waitFor from execCallOrCreate.
There was some back-and-forth in the PR regarding whether nested
waitFor calls are acceptable:
https://github.com/status-im/nimbus-eth1/pull/1260#discussion_r998587449
The eventual decision was to just change the waitFor to a doAssert
(since we probably won't want this extra functionality when running
synchronously anyway) to make sure that the Future is already
finished.
* Squashed snap-sync-preview patch
why:
Providing end results makes it easier to have an overview.
Collected patch set comments are available as nimbus/sync/ChangeLog.md
in chronological order, oldest first.
* Removed some cruft and obsolete imports, normalised logging
* Redesign of BaseVMState descriptor
why:
BaseVMState provides an environment for executing transactions. The
current descriptor also provides data that cannot generally be known
within the execution environment, e.g. the total gasUsed which is
available not before after all transactions have finished.
Also, the BaseVMState constructor has been replaced by a constructor
that does not need pre-initialised input of the account database.
also:
Previous constructor and some fields are provided with a deprecated
annotation (producing a lot of noise.)
* Replace legacy directives in production sources
* Replace legacy directives in unit test sources
* fix CI (missing premix update)
* Remove legacy directives
* chase CI problem
* rebased
* Re-introduce 'AccountsCache' constructor optimisation for 'BaseVmState' re-initialisation
why:
Constructing a new 'AccountsCache' descriptor can be avoided sometimes
when the current state root is properly positioned already. Such a
feature existed already as the update function 'initStateDB()' for the
'BaseChanDB' where the accounts cache was linked into this desctiptor.
The function 'initStateDB()' was removed and re-implemented into the
'BaseVmState' constructor without optimisation. The old version was of
restricted use as a wrong accounts cache state would unconditionally
throw an exception rather than conceptually ask for a remedy.
The optimised 'BaseVmState' re-initialisation has been implemented for
the 'persistBlocks()' function.
also:
moved some test helpers to 'test/replay' folder
* Remove unused & undocumented fields from Chain descriptor
why:
Reduces attack surface in general & improves reading the code.
previously, every time the VMState was created, it will also create
new stateDB, and this action will nullify the advantages of cached accounts.
the new changes will conserve the accounts cache if the executed blocks
are contiguous. if not the stateDB need to be reinited.
this changes also allow rpcCallEvm and rpcEstimateGas executed properly
using current stateDB instead of creating new one each time they are called.
File `vm_types2` is obsolete. Remove this file and divert all imports to the
common forks list outside the EVM, or in some cases they don't need it anyway.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Simplify transaction validations to use `runComputation`; drop other code.
Getting everything right up to this point to pass all the tests was trickier
than it looks.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Simplify how JSON fixtures tests are run to use `runComputation`.
Drop other code.
These use the `noTransfer` option, which is similar enough to calling
`c.executeOpcodes()` instead of `c.execComputation()`.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Simplify `estimateGas` to use `runComputation`; drop other code.
The RPC/GraphQL `estimateGas` operation is quite different from the `call`
operation. It is much more like ordinary transaction execution than `call`,
though there are still enough differences that tx validation cannot be used.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Simplify `call` to use `runComputation`; drop other code.
The RPC/GraphQL `call` operation differs in many ways from regular transaction
calls. The following flags are set, to disable various steps in processing.
All four are true (disabling the corresponding step) for `call`:
- `noIntrinsic`: Don't charge intrinsic gas.
- `noAccessList`: Don't initialise EIP2929 access list.
- `noGasCharge`: Don't charge sender account for gas.
- `noRefund`: Don't apply gas refund/burn rule.
Interestingly, the RPC/GraphQL `estimateGas` operation doesn't behave so
differently from regular transactions. It might be that not all these steps
should be disabled for `call` either. But until we investigate what
RPC/GraphQL clients are expecting, keep the same behaviour as before.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Change fixtures tests to use shared `setupComputation` instead of
their own slightly different variant.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Change RPC/GraphQL calls to the EVM to use shared `setupComputation`
instead of their own special variant.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
There are currently six entry points to running an EVM computation, all with
slightly different parameters, and expecting slightly different EVM behaviours.
First step in merging them is a common `setupComputation` that replaces all
the different `*...SetupComputation` functions.
This uses the `TransactionHost` type because it's a step towards using that
type for all EVM calls using only EVMC. For now an EVMC message is created
then translated to EVM-internal `Message`. It is done this way to build up
the new interface in stages where all tests pass at each stage.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Each place in `call_evm` that sets up an EVM call calculates the new contract
address for contract creations. But it's redundant, because `newComputation`
ignores the provided value and does the calculation again.
Remove the unused address calculation.
This is also a step to merging different entry points and EVMC. This change
ends up with the same value in both `msg.contractAddress` and `msg.codeAddress`
for every entry point, and this is good because it matches the EVMC message
structure, where they are replaced by only one value called `msg.destination`
Signed-off-by: Jamie Lokier <jamie@shareable.org>
`c.executeOpcodes` is called by some JSON fixture tests. These tests bypass
some of the setup and return, and because of this call, continuations aren't
processed either. Opcodes that use continuations will behave incorrectly.
The opcodes used in these particular tests don't use continuations currently,
so just add some assertions to verify this remains the case.
This is only used by local tests, and the call to `c.executeOpcodes` will be
replaced by the common entry point (that handles things like this correctly in
all cases) so we don't need to spend more time on this.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Move the EVM setup and call in precompile tests to `fixtureCallEvm` in
`call_evm`. Extra return values needed for testing are returned specially, and
the convention for reporting gas used is changed to match `asmCallEvm`.
Although the precompile tests used `execPrecompiles` before, `executeOpcodes`
does perfectly well as a substitute, allowing `fixtureCallEvm` to be shared.
_Significantly, this patch also makes `Computation` more or less an internal
type of the EVM now._
Nothing outside the EVM (except `call_evm`) needs access any more to
`Computation`, `execComputation`, `executeOpcodes` or `execPrecompiles`.
Many imports can be trimmed, some files removed, and EVMC is much closer.
(As a bonus, the functions in `call_evm` reveal what capabilities parts of the
program have needed over time, makes certain bugs and inconsistencies clearer,
and suggests how to refactor into a more useful shared entry point.)
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Allow the fork to be specified consistently through an `option[Fork]` instead
of varying inconsistencies depending on which call. When fork is not
specified, the `BaseVMState` code picks the correct fork by default for the
block number and chain.
This change actually deletes code, because a number of functions (RPC etc) had
redundant code to pick the fork, which always resolved to same as default.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Move the EVM setup and call in fixtures "vm json tests" to new function
`fixtureCallEvm` in `call_evm`. Extra return values needed for testing are
returned specially.
This entry point is different from all other `..CallEvm` type functions,
because it uses `executeOpcodes` instead of `execComputation`, so it doesn't
update the account balance or nonce on entry and exit from the EVM.
The new code is a bit redundant and simplistic intentionally, as the purpose is
to move functionality to `call_evm` with high confidence nothing really
changed. The calls will be jointly refactored afterwards to merge differences.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
In the `text_vm_json` ("fixtures") test code, there is another variant of
`rpcSetupComputation` and `txSetupComputation` with slightly different
paremeters. The similarity is obvious.
It is a special setup for testing, though, as it requires slightly different
parameters.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
usually, there is always a sender around `getRecipient` call.
no need to recalculate sender. and more important, in some of
JSON-RPC/GraphQL call, the sender is come from `rpcCallData`,
not from `tx.getSender`. or in ohter situation when the tx is
an unsigned tx, without `r,s,v` fields to calculate sender.
Move the EVM setup and call in `macro_assembler` (`runVM`) entirely to new
function `asmCallEvm` in `call_evm`. Extra return values needed for
testing are returned specially from `asmCallEvm`.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
The second `asmSetupComputation looks up state by block number and preceding
block number, modifies the first transaction with code for testing, and uses
some parts of that transaction to setup an an EVM test.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
In the `macro_assembler` test code, `initComputation` is another variant of
`rpcSetupComputation` and `txSetupComputation` with slightly different
paremeters. The similarity is obvious.
It is a special setup for testing, though, as it requires a contract-creation
transaction for parameters, but sets up a `CALL` execution not `CREATE`.
Gather this into `call_evm`: `initComputation` -> `asmSetupComputation`.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
The point of the `call_vm` exercise is to allow `Computation` to become an
internal type of the EVM, not used as API by the rest of the program. So
`rpcSetupComputation` should be private. It was left exported by mistake.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Split out and move the EVM setup and call in `processTransaction` to
`call_evm`. This is the last part of the main program which calls the EVM
to be moved. (There's still test code.)
While we're here, move the EIP2929 access list setup too, as the similarity
to `rpcInitialAccessListEIP2929` is obvious.
Signed-off-by: Jamie Lokier <jamie@shareable.org>