* Add missing leaf cache update when a leaf turns to a branch with two
leaves (on merge) and vice versa (on delete) - this could lead to stale
leaves being returned from the cache causing validation failures - it
didn't happen because the leaf caches were not being used efficiently :)
* Replace `seq` with `ArrayBuf` in `Hike` allowing it to become
allocation-free - this PR also works around an inefficiency in nim in
returning large types via a `var` parameter
* Use the leaf cache instead of `getVtxRc` to fetch recent leaves - this
makes the vertex cache more efficient at caching branches because fewer
leaf requests pass through it.
Compared to `keyed_queue`, `minilru` uses significantly less memory, in
particular for the 32-byte hash keys where `kq` stores several copies of
the key redundantly.
* Extract sub-tree deletion functions into separate sub-modules
* Move/rename `aristo_desc.accLruSize` => `aristo_constants.ACC_LRU_SIZE`
* Lazily delete sub-trees
why:
This gives some control of the memory used to keep the deleted vertices
in the cached layers. For larger sub-trees, keys and vertices might be
on the persistent backend to a large extend. This would pull an amount
of extra information from the backend into the cached layer.
For lazy deleting it is enough to remember sub-trees by a small set of
(at most 16) sub-roots to be processed when storing persistent data.
Marking the tree root deleted immediately allows to let most of the code
base work as before.
* Comments and cosmetics
* No need to import all for `Aristo` here
* Kludge to make `chronicle` usage in sub-modules work with `fluffy`
why:
That `fluffy` would not run with any logging in `core_deb` is a problem
I have known for a while. Up to now, logging was only used for debugging.
With the current `Aristo` PR, there are cases where logging might be
wanted but this works only if `chronicles` runs without the
`json[dynamic]` sinks.
So this should be re-visited.
* More of a kludge
* Implement partial trees
why:
This is currently needed for unit tests to pre-load the database
with test data similar to `proof` node pre-load.
The basic features for `snap-sync` boundary proofs are available
as well for future use. What is missing is the final proof verification
and a complete storage data load/merge function (stub is available.)
* Cosmetics, clean up
* Aristo: Merge `delta_siblings` module into `deltaPersistent()`
* Aristo: Add `isEmpty()` for canonical checking whether a layer is empty
* Aristo: Merge `LayerDeltaRef` into `LayerObj`
why:
No need to maintain nested object refs anymore. Previously the
`LayerDeltaRef` object had a companion `LayerFinalRef` which held
non-delta layer information.
* Kvt: Merge `LayerDeltaRef` into `LayerRef`
why:
No need to maintain nested object refs (as with `Aristo`)
* Kvt: Re-write balancer logic similar to `Aristo`
why:
Although `Kvt` was a cheap copy of `Aristo` it sort of got out of
sync and the balancer code was wrong.
* Update iterator over forked peers
why:
Yield additional field `isLast` indicating that the last iteration
cycle was approached.
* Optimise balancer calculation.
why:
One can often avoid providing a new object containing the merge of two
layers for the balancer. This avoids copying tables. In some cases this
is replaced by `hasKey()` look ups though. One uses one of the two
to combine and merges the other into the first.
Of course, this needs some checks for making sure that none of the
components to merge is eventually shared with something else.
* Fix copyright year
When lazily verifying state roots, we may end up with an entire state
without roots that gets computed for the whole database - in the current
design, that would result in hashes for the entire trie being held in
memory.
Since the hash depends only on the data in the vertex, we can store it
directly at the top-most level derived from the verticies it depends on
- be that memory or database - this makes the memory usage broadly
linear with respect to the already-existing in-memory change set stored
in the layers.
It also ensures that if we have multiple forks in memory, hashes get
cached in the correct layer maximising reuse between forks.
The same layer numbering scheme as elsewhere is reused, where -2 is the
backend, -1 is the balancer, then 0+ is the top of the stack and stack.
A downside of this approach is that we create many small batches - a
future improvement could be to collect all such writes in a single
batch, though the memory profile of this approach should be examined
first (where is the batch kept, exactly?).
* Imported/rebase from `no-ext`, PR #2485
Store extension nodes together with the branch
Extension nodes must be followed by a branch - as such, it makes sense
to store the two together both in the database and in memory:
* fewer reads, writes and updates to traverse the tree
* simpler logic for maintaining the node structure
* less space used, both memory and storage, because there are fewer
nodes overall
There is also a downside: hashes can no longer be cached for an
extension - instead, only the extension+branch hash can be cached - this
seems like a fine tradeoff since computing it should be fast.
TODO: fix commented code
* Fix merge functions and `toNode()`
* Update `merkleSignCommit()` prototype
why:
Result is always a 32bit hash
* Update short Merkle hash key generation
details:
Ethereum reference MPTs use Keccak hashes as node links if the size of
an RLP encoded node is at least 32 bytes. Otherwise, the RLP encoded
node value is used as a pseudo node link (rather than a hash.) This is
specified in the yellow paper, appendix D.
Different to the `Aristo` implementation, the reference MPT would not
store such a node on the key-value database. Rather the RLP encoded node value is stored instead of a node link in a parent node
is stored as a node link on the parent database.
Only for the root hash, the top level node is always referred to by the
hash.
* Fix/update `Extension` sections
why:
Were commented out after removal of a dedicated `Extension` type which
left the system disfunctional.
* Clean up unused error codes
* Update unit tests
* Update docu
---------
Co-authored-by: Jacek Sieka <jacek@status.im>
This PR adds a storage hike cache similar to the account hike cache
already present - this cache is less efficient because account storage
is already partically cached in the account ledger but nonetheless helps
keep hiking down.
Notably, there's an opportunity to optimise this cache and the others so
that they cooperate better insteado of overlapping, which is left for a
future PR.
This PR also fixes an O(N) memory usage for storage slots where the
delete would keep the full storage in a work list which on mainnet can
grow very large - the work list is replaced with a more conventional
recursive `O(log N)` approach.
The Vertex type unifies branches, extensions and leaves into a single
memory area where the larges member is the branch (128 bytes + overhead) -
the payloads we have are all smaller than 128 thus wrapping them in an
extra layer of `ref` is wasteful from a memory usage perspective.
Further, the ref:s must be visited during the M&S phase of garbage
collection - since we keep millions of these, many of them
short-lived, this takes up significant CPU time.
```
Function CPU Time: Total CPU Time: Self Module Function (Full) Source File Start Address
system::markStackAndRegisters 10.0% 4.922s nimbus system::markStackAndRegisters(var<system::GcHeap>).constprop.0 gc.nim 0x701230`
```
hike allocations (and the garbage collection maintenance that follows)
are responsible for some 10% of cpu time (not wall time!) at this point
- this PR avoids them by stepping through the layers one step at a time,
simplifying the code at the same time.
The state and account MPT:s currenty share key space in the database
based on that vertex id:s are assigned essentially randomly, which means
that when two adjacent slot values from the same contract are accessed,
they might reside at large distance from each other.
Here, we prefix each vertex id by its root causing them to be sorted
together thus bringing all data belonging to a particular contract
closer together - the same effect also happens for the main state MPT
whose nodes now end up clustered together more tightly.
In the future, the prefix given to the storage keys can also be used to
perform range operations such as reading all the storage at once and/or
deleting an account with a batch operation.
Notably, parts of the API already supported this rooting concept while
parts didn't - this PR makes the API consistent by always working with a
root+vid.
The storage id is frequently accessed when executing contract code and
finding the path via the database requires several hops making the
process slow - here, we add a cache to keep the most recently used
account storage id:s in memory.
A possible future improvement would be to cache all account accesses so
that for example updating the balance doesn't cause several hikes.
* Provide dedicated functions for fetching accounts and storage trees
why:
Different prototypes for each class `account`, `generic` and
`storage`.
* Remove `fetchPayload()` and other cruft from API, `aristo_fetch`, etc.
* Fix typos, debugging left overs, comments
* bump rockdb
* Rename `KVT` objects related to filters according to `Aristo` naming
details:
filter* => delta*
roFilter => balancer
* Compulsory error handling if `persistent()` fails
* Add return code to `reCentre()`
why:
Might eventually fail if re-centring is blocked. Some logic will be
added in subsequent patch sets.
* Add column families from earlier session to rocksdb in opening procedure
why:
All previously used CFs must be declared when re-opening an existing
database.
* Update `init()` and add rocksdb `reinit()` methods for changing parameters
why:
Opening a set column families (with different open options) must span
at least the ones that are already on disk.
* Provide write-trigger-event interface into `Aristo` backend
why:
This allows to save data from a guest application (think `KVT`) to
get synced with the write cycle so the guest and `Aristo` save all
atomically.
* Use `KVT` with new column family interface from `Aristo`
* Remove obsolete guest interface
* Implement `KVT` piggyback on `Aristo` backend
* CoreDb: Add separate `KVT`/`Aristo` backend mode for debugging
* Remove `rocks_db` import from `persist()` function
why:
Some systems (i.p `fluffy` and friends) use the `Aristo` memory
backend emulation and do not link against rocksdb when building the
application. So this should fix that problem.
* Remove all journal related stuff
* Refactor function names journal*() => delta*(), filter*() => delta*()
* remove `trg` fileld from `FilterRef`
why:
Same as `kMap[$1]`
* Re-type FilterRef.src as `HashKey`
why:
So it is directly comparable to `kMap[$1]`
* Moved `vGen[]` field from `LayerFinalRef` to `LayerDeltaRef`
why:
Then a separate `FilterRef` type is not needed, anymore
* Rename `roFilter` field in `AristoDbRef` => `balancer`
why:
New name more appropriate.
* Replace `FilterRef` by `LayerDeltaRef` type
why:
This allows to avoid copying into the `balancer` (see next patch set)
most of the time. Typically, only one instance is running on the backend
and the `balancer` is only used as a stage before saving data.
* Refactor way how to store data persistently
why:
Avoid useless copy when staging `top` layer for persistently saving to
backend.
* Fix copyright header?
* Aristo: Allow to define/set `FilterID` for journal filter records
why:
After some changes, the `FilterID` is isomorphic to the `BlockNumber`
scalar (well, the first 2^64 entries of a `BlockNumber`.)
The needed change for `FilterID` is that the `FilterID(0)` value is
valid part of the `FilterID` scalar. A non-valid `FilterID` entry is
represented by `none(FilterID)`.
* Aristo: Split off function `persist()` as persistent version of `stow()`
why:
In production, `stow(persistent=false,..)` is currently unused. So,
using `persist()` rather than `stow(persistent=true,..)` improves
readability and is better to maintain.
* CoreDb+Aristo: Store block numbers in journal records
why:
This makes journal records searchable by block numbers
* Aristo: Rename some journal related functions
why:
The name *journal* is more appropriate to api functions than something
with *fifo* or *filter*.
* CoreDb+Aristo: Update last/oldest journal state retrieval
* CoreDb+Aristo: Register block number with state root in journal
why:
No need anymore for extra lookup table `stRootToBlockNum` which maps
a storage root -> block number.
* Aristo: Remove unused function `getFilUbe()` from api
* CoreDb: Remove now unused virtual table `stRootToBlockNum`
why:
Was used to map a state root to a block number. This functionality
is now embedded into the recovery journal backend.
* Turn of API tracking (will fail on `fluffy`)
* CoreDb+Aristo: Fix handler code
* Aristo+Kvt: Remove cruft
* Aristo+Kvt: The function `forkTop()` always provides a single transaction
why:
Previously it provided a single squashed tx only if there were any. Now
it will provide a blind one if there were none.
* Fix Copyright header
* Aristo+Kvt: Fix backend `dup()` function in api setup
why:
Backend object is subject to an inheritance cascade which was not
taken care of, before. Only the base object was duplicated.
* Kvt: Simplify DB clone/peers management
* Aristo: Simplify DB clone/peers management
* Aristo: Adjust unit test for working with memory DB only
why:
This currently causes some memory corruption persumably in the
`libc` background layer.
* CoredDb+Kvt: Simplify API for KVT
why:
Simplified storage models (was over engineered) for better performance
and code maintenance.
* CoredDb+Aristo: Simplify API for `Aristo`
why:
Only single database state needed here. Accessing a similar state will
be implemented from outside this module using a context layer. This
gives better performance and improves code maintenance.
* Fix Copyright headers
* CoreDb: Turn off API tracking
why:
CI would ot go through. Was accidentally turned on.
* Aristo: Reorg `hashify()` using different schedule algorithm
why:
Directly calculating the search tree top down from the roots turns
out to be faster than using the cached structures left over by `merge()`
and `delete()`.
Time gains is short of 20%
* Aristo: Remove `lTab[]` leaf entry object type
why:
Not used anymore. It was previously needed to build the schedule for
`hashify()`.
* Aristo: Avoid unnecessary re-org of the vertex ID recycling list
why:
This list can become quite large so a heuristic is employed whether
it makes sense to re-org.
Also, re-org check is only done by `delete()` functions.
* Aristo: Remove key/reverse lookup table from tx layers
why:
It is ignored except for handling proof nodes and costs unnecessary
run time resources.
This feature was originally needed to accommodate the mental transition
from the legacy MPT to the `Aristo` trie :).
* Fix copyright year
* CoreDb: update test suite
* Aristo: Simplify reverse key map
why:
The reverse key map `pAmk: (root,key) -> {vid,..}` as been simplified to
`pAmk: key -> {vid,..}` as the state `root` domain argument is not used,
anymore
* Aristo: Remove `HashLabel` object type and replace it by `HashKey`
why:
The `HashLabel` object attaches a root hash to a hash key. This is
nowhere used, anymore.
* Fix copyright
* Aristo: Update unit test suite
* Aristo/Kvt: Fix iterators
why:
Generic iterators were not properly updated after backend change
* Aristo: Add sub-trie deletion functionality
why:
For storage tries linked to an account payload vertex ID, a the
whole storage trie needs to be deleted with the account.
* Aristo: Reserve vertex ID numbers for static custom state roots
why:
Static custom state roots may be controlled by an application,
e.g. for a receipt or a transaction root. The `Aristo` functions
are agnostic of what the static state roots are when different
from the internal tree vertex ID 1.
details;
The `merge()` function applied to a non-static state root (assumed
to be a storage root) will check the payload of an accounts leaf
and mark its Merkle keys to be re-checked.
* Aristo: Correct error code symbol
* Aristo: Update error code symbols
* Aristo: Code cosmetics/comments
* Aristo: Fix hashify schedule calculator
why:
Had a tendency to stop early leaving an incomplete job
* Aristo: Re-phrase `LayerDelta` and `LayerFinal` as object references
why:
Avoids copying in some cases
* Fix copyright header
* Aristo: Verify `leafTie.root` function argument for `merge()` proc
why:
Zero root will lead to inconsistent DB entry
* Aristo: Update failure condition for hash labels compiler `hashify()`
why:
Node need not be rejected as long as links are on the schedule. In
that case, `redo[]` is to become `wff.base[]` at a later stage.
This amends an earlier fix, part of #1952 by also testing against
the target nodes of the `wff.base[]` sets.
* Aristo: Add storage root glue record to `hashify()` schedule
why:
An account leaf node might refer to a non-resolvable storage root ID.
Storage root node chains will end up at the storage root. So the link
`storage-root->account-leaf` needs an extra item in the schedule.
* Aristo: fix error code returned by `fetchPayload()`
details:
Final error code is implied by the error code form the `hikeUp()`
function.
* CoreDb: Discard `createOk` argument in API `getRoot()` function
why:
Not needed for the legacy DB. For the `Arsto` DB, a lazy approach is
implemented where a stprage root node is created on-the-fly.
* CoreDb: Prevent `$$` logging in some cases
why:
Logging the function `$$` is not useful when it is used for internal
use, i.e. retrieving an an error text for logging.
* CoreDb: Add `tryHashFn()` to API for pretty printing
why:
Pretty printing must not change the hashification status for the
`Aristo` DB. So there is an independent API wrapper for getting the
node hash which never updated the hashes.
* CoreDb: Discard `update` argument in API `hash()` function
why:
When calling the API function `hash()`, the latest state is always
wanted. For a version that uses the current state as-is without checking,
the function `tryHash()` was added to the backend.
* CoreDb: Update opaque vertex ID objects for the `Aristo` backend
why:
For `Aristo`, vID objects encapsulate a numeric `VertexID`
referencing a vertex (rather than a node hash as used on the
legacy backend.) For storage sub-tries, there might be no initial
vertex known when the descriptor is created. So opaque vertex ID
objects are supported without a valid `VertexID` which will be
initalised on-the-fly when the first item is merged.
* CoreDb: Add pretty printer for opaque vertex ID objects
* Cosmetics, printing profiling data
* CoreDb: Fix segfault in `Aristo` backend when creating MPT descriptor
why:
Missing initialisation error
* CoreDb: Allow MPT to inherit shared context on `Aristo` backend
why:
Creates descriptors with different storage roots for the same
shared `Aristo` DB descriptor.
* Cosmetics, update diagnostic message items for `Aristo` backend
* Fix Copyright year
* Fix kvt headers
* Provide differential layers for KVT transaction stack
why:
Significant performance improvement
* Provide abstraction layer for database top cache layer
why:
This will eventually implemented as a differential database layers
or transaction layers. The latter is needed to improve performance.
behavioural changes:
Zero vertex and keys (i.e. delete requests) are not optimised out
until the last layer is written to the database.
* Provide differential layers for Aristo transaction stack
why:
Significant performance improvement
* Register paths for added leafs because of trie re-balancing
why:
While the payload would not change, the prefix in the leaf vertex
would. So it needs to be flagged for hash recompilation for the
`hashify()` module.
also:
Make sure that `Hike` paths which might have vertex links into the
backend filter are replaced by vertex copies before manipulating.
Otherwise the vertices on the immutable filter might be involuntarily
changed.
* Also check for paths where the leaf vertex is on the backend, already
why:
A a path can have dome vertices on the top layer cache with the
`Leaf` vertex on the backend.
* Re-define a void `HashLabel` type.
why:
A `HashLabel` type is a pair `(root-vertex-ID, Keccak-hash)`. Previously,
a valid `HashLabel` consisted of a non-empty hash and a non-zero vertex
ID. This definition leads to a non-unique representation of a void
`HashLabel` with either root-ID or has void. This has been changed to
the unique void `HashLabel` exactly if the hash entry is void.
* Update consistency checkers
* Re-org `hashify()` procedure
why:
Syncing against block chain showed serious deficiencies which produced
wrong hashes or simply bailed out with error.
So all fringe cases (mainly due to deleted entries) could be integrated
into the labelling schedule rather than handling separate fringe cases.
* Disable `TransactionID` related functions from `state_db.nim`
why:
Functions `getCommittedStorage()` and `updateOriginalRoot()` from
the `state_db` module are nowhere used. The emulation of a legacy
`TransactionID` type functionality is administratively expensive to
provide by `Aristo` (the legacy DB version is only partially
implemented, anyway).
As there is no other place where `TransactionID`s are used, they will
not be provided by the `Aristo` variant of the `CoreDb`. For the
legacy DB API, nothing will change.
* Fix copyright headers in source code
* Get rid of compiler warning
* Update Aristo code, remove unused `merge()` variant, export `hashify()`
why:
Adapt to upcoming `CoreDb` wrapper
* Remove synced tx feature from `Aristo`
why:
+ This feature allowed to synchronise transaction methods like begin,
commit, and rollback for a group of descriptors.
+ The feature is over engineered and not needed for `CoreDb`, neither
is it complete (some convergence features missing.)
* Add debugging helpers to `Kvt`
also:
Update database iterator, add count variable yield argument similar
to `Aristo`.
* Provide optional destructors for `CoreDb` API
why;
For the upcoming Aristo wrapper, this allows to control when certain
smart destruction and update can take place. The auto destructor works
fine in general when the storage/cache strategy is known and acceptable
when creating descriptors.
* Add update option for `CoreDb` API function `hash()`
why;
The hash function is typically used to get the state root of the MPT.
Due to lazy hashing, this might be not available on the `Aristo` DB.
So the `update` function asks for re-hashing the gurrent state changes
if needed.
* Update API tracking log mode: `info` => `debug
* Use shared `Kvt` descriptor in new Ledger API
why:
No need to create a new descriptor all the time
* Fix debug noise in `hashify()` for perfectly normal situation
why:
Was previously considered a fixable error
* Fix test sample file names
why:
The larger test file `goerli68161.txt.gz` is already in the local
archive. So there is no need to use the smaller one from the external
repo.
* Activate `accounts_cache` module from `db/ledger`
why:
A copy of the original `accounts_cache.nim` source to be integrated
into the `Ledger` module wrapper which allows to switch between
different `accounts_cache` implementations unser tha same API.
details:
At a later state, the `db/accounts_cache.nim` wrapper will be
removed so that there is only one access to that module via
`db/ledger/accounts_cache.nim`.
* Fix copyright headers in source code
* Aristo: Provide key-value list signature calculator
detail:
Simple wrappers around `Aristo` core functionality
* Update new API for `CoreDb`
details:
+ Renamed new API functions `contains()` => `hasKey()` or `hasPath()`
which disables the `in` operator on non-boolean `contains()` functions
+ The functions `get()` and `fetch()` always return a not-found error if
there is no item, available. The new functions `getOrEmpty()` and
`mergeOrEmpty()` return an an empty `Blob` if there is no such key
found.
* Rewrite `core_apps.nim` using new API from `CoreDb`
* Use `Aristo` functionality for calculating Merkle signatures
details:
For debugging, the `VerifyAristoForMerkleRootCalc` can be set so
that `Aristo` results will be verified against the legacy versions.
* Provide general interface for Merkle signing key-value tables
details:
Export `Aristo` wrappers
* Activate `CoreDb` tests
why:
Now, API seems to be stable enough for general tests.
* Update `toHex()` usage
why:
Byteutils' `toHex()` is superior to `toSeq.mapIt(it.toHex(2)).join`
* Split `aristo_transcode` => `aristo_serialise` + `aristo_blobify`
why:
+ Different modules for different purposes
+ `aristo_serialise`: RLP encoding/decoding
+ `aristo_blobify`: Aristo database encoding/decoding
* Compacted representation of small nodes' links instead of Keccak hashes
why:
Ethereum MPTs use Keccak hashes as node links if the size of an RLP
encoded node is at least 32 bytes. Otherwise, the RLP encoded node
value is used as a pseudo node link (rather than a hash.) Such a node
is nor stored on key-value database. Rather the RLP encoded node value
is stored instead of a lode link in a parent node instead. Only for
the root hash, the top level node is always referred to by the hash.
This feature needed an abstraction of the `HashKey` object which is now
either a hash or a blob of length at most 31 bytes. This leaves two
ways of representing an empty/void `HashKey` type, either as an empty
blob of zero length, or the hash of an empty blob.
* Update `CoreDb` interface (mainly reducing logger noise)
* Fix copyright years (to make `Lint` happy)
* Split `core_db/base.nim` into several sources
* Rename `core_db/legacy.nim` => `core_db/legacy_db.nim`
* Update `CoreDb` API, dual methods returning `Result[]` or plain value
detail:
Plain value methods implemet the legacy API, they defect on error results
* Redesign `CoreDB` direct backend access
why:
Made the `backend` directive integral part of the API
* Discontinue providing unused or otherwise available functions
details:
+ setTransactionID() removed, not used and not easily replicable in Aristo
+ maybeGet() removed, available via direct backend access
+ newPhk() removed, never used & was experimental anyway
* Update/reorg backend API
why:
+ Added error print function `$$()`
+ General descriptor completion (and optional validation) via `bless()`
* Update `Aristo`/`Kvt` exception handling
why:
Avoid `CatchableError` exceptions, rather pass them as error code where
appropriate.
* More `CoreDB` compliant `Aristo` and `Kvt` methods
details:
+ Providing functions like `contains()`, `getVtxRc()` (returns `Result[]`).
+ Additional error code: `NotImplemented`
* Rewrite/reorg of Aristo DB constructor
why:
Previously used global object `DefaultQidLayoutRef` as default
initialiser. This object was created at compile time which lead to
non-gc safe functions.
* Update nimbus/db/core_db/legacy_db.nim
Co-authored-by: Kim De Mey <kim.demey@gmail.com>
* Update nimbus/db/aristo/aristo_transcode.nim
Co-authored-by: Kim De Mey <kim.demey@gmail.com>
* Update nimbus/db/core_db/legacy_db.nim
Co-authored-by: Kim De Mey <kim.demey@gmail.com>
---------
Co-authored-by: Kim De Mey <kim.demey@gmail.com>
* Update docu
* Update Aristo/Kvt constructor prototype
why:
Previous version used an `enum` value to indicate what backend is to
be used. This was replaced by using the backend object type.
* Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]`
why:
Better code maintenance. Previously, the `Hike` object was returned. It
had an internal error field so partial success was also available on
a failure. This error field has been removed.
* Use `openArray[byte]` rather than `Blob` in functions prototypes
* Provide synchronised multi instance transactions
why:
The `CoreDB` object was geared towards the legacy DB which used a single
transaction for the key-value backend DB. Different state roots are
provided by the backend database, so all instances work directly on the
same backend.
Aristo db instances have different in-memory mappings (aka different
state roots) and the transactions are on top of there mappings. So each
instance might run different transactions.
Multi instance transactions are a compromise to converge towards the
legacy behaviour. The synchronised transactions span over all instances
available at the time when base transaction was opened. Instances
created later are unaffected.
* Provide key-value pair database iterator
why:
Needed in `CoreDB` for `replicate()` emulation
also:
Some update of internal code
* Extend API (i.e. prototype variants)
why:
Needed for `CoreDB` geared towards the legacy backend which has a more
basic API than Aristo.
* Reorg of distributed backend access
details:
Now handled via API provided in `aristo_desc`.
* Rename `checkCache()` => `checkTop()`
why:
Better naming for top layer cache checker
also:
Provide cascaded fifos checker
* Provide `eq` directive for finding filter by exact filter ID (think block number)
* Some code beautification (for better code reading)
* State root reposition and reorg
details:
Repositioning is supported by forking a new descriptor. Reorg is then
accomplished by writing this forked state on the backend database.
* Add backwards index `[]` operator into fifo
also:
Need another maintenance instruction: The last overflow queue must
irrevocably delete some item in order to make space for a new one.
* Add re-org scheduler
details:
Generates instructions how to extract and merge some leading entries
* Add filter ID selector
details:
This allows to find the next filter now newer that a given filter ID
* Message update
* Rename FilterID => QueueID
why:
The current usage does not identify a particular filter but uses it as
storage tag to manage it on the database (to be organised in a set of
FIFOs or queues.)
* Split `aristo_filter` source into sub-files
why:
Make space for filter management API
* Store filter queue IDs in pairs on the backend
why:
Any pair will will describe a FIFO accessed by bottom/top IDs
* Reorg some source file names
why:
The "aristo_" prefix for make local/private files is tedious to
use, so removed.
* Implement filter slot scheduler
details:
Filters will be stored on the database on cascaded FIFOs. When a FIFO
queue is full, some filter items are bundled together and stored on the
next FIFO.
* Remove unused unit test sources
* Redefine and document serialised data records for Aristo backend
why:
Unique record types determined by marker byte, i.e. the last byte of a
serialisation record. This just needed some tweaking after adding new
record types.
* Remove concept of empty/blind filters
why:
Not needed. A non-existent filter is is coded as a nil reference.
* Slightly generalised backend iterators
why:
* VertexID as key for the ID generator state makes no sense
* there will be more tables addressed by non-VertexID keys
* Store serialised/blobified vertices on memory backend
why:
This is more in line with the RocksDB backend so more appropriate
for testing when comparing behaviour. For a speedy memory database,
a backend-less variant should be used.
* Drop the `Aristo` prefix from names `AristoLayerRef`, etc.
* Suppress compiler warning
why:
duplicate imports
* Add filter serialisation transcoder
why:
Will be used as storage format
* Fix hashing algorithm
why:
Particular case where a sub-tree is on the backend, linked by an
Extension vertex to the top level.
* Update backend verification to report `dirty` top layer
* Implement distributed merge of backend filters
* Implement distributed backend access management
details:
Implemented and tested as described in chapter 5 of the `README.md`
file.
* Renamed type `NoneBackendRef` => `VoidBackendRef`
* Clarify names: `BE=filter+backend` and `UBE=backend (unfiltered)`
why:
Most functions used full names as `getVtxUnfilteredBackend()` or
`getKeyBackend()`. After defining abbreviations (and its meaning) it
seems easier to use `getVtxUBE()` and `getKeyBE()`.
* Integrate `hashify()` process into transaction logic
why:
Is now transparent unless explicitly controlled.
details:
Cache changes imply setting a `dirty` flag which in turn triggers
`hashify()` processing in transaction and `pack()` directives.
* Removed `aristo_tx.exec()` directive
why:
Inconsistent implementation, functionality will be provided with a
different paradigm.
* Provide deep copy for each transaction layer
why:
Localising changes. Selective deep copy was just overlooked.
* Generalise vertex ID generator state reorg function `vidReorg()`
why:
makes it somewhat easier to handle when saving layers.
* Provide dummy back end descriptor `NoneBackendRef`
* Optional read-only filter between backend and transaction cache
why:
Some staging area for accumulating changes to the backend DB. This
will eventually be an access layer for emulating a backend with
multiple/historic state roots.
* Re-factor `persistent()` with filter between backend/tx-cache => `stow()`
why:
The filter provides an abstraction from the physically stored data on
disk. So, there can be several MPT instances using the same disk data
with different state roots. Of course, all the MPT instances should
not differ too much for practical reasons :).
TODO:
Filter administration tools need to be provided.
* Better error handling
why:
Bail out on some error as early as possible before any changes.
* Implement `fetch()` as opposite of `merge()`
rationale:
In the `Aristo` realm, the action named `fetch()` and `merge()` indicate
leaf value related actions on the MPT, while actions `get()` and `put()`
handle vertex or hash key related operations that constitute the MPT.
* Re-factor `merge()` prototypes
why:
The most used variant of `merge()` should have the simplest prototype.
* Persistent DB constructor needs to import `aristo/aristo_init/persistent`
why:
Most applications use memory DB anyway. This avoids linking `-lrocksdb`
or any other back end libraries by default.
* Re-factor transaction module
why:
Got the paradigm wrong. The transaction descriptor did replace the
database one but should be handled separately.
* Provide transaction based interface for standard operations
* Provide unit tests for new Aristo interface using transactions
details:
These new tests combine and replace several single-purpose tests.
The now unused test sources will be kept for a while to be eventually
removed.
* Slightly tighten some self-check conditions
* Redefined the database descriptor object as reference (to the object)
why:
The upcoming transaction wrapper will work with a database reference
rather than the object itself
* Append state before `save()` to the Aristo descriptor
why:
This stae was previously returned by the function. Appending it to
a field of the Aristo descriptor seems easier to handle.
* Fix vertex ID generator state handling for rocksdb backend
why:
* Key error in walk iterator
* Needs to be loaded when opening the database
* Use non-zero sub-table prefixes for rocksdb
why:
Handy for debugging
* Fix error code for missing key on rocksdb backend
why:
Previously returned `VOID_HASH_KEY` rather than `GetKeyNotFound`
* Explicitly copy vertex data between internal table and function/result argument
why:
Function argument or return reference may still refer to the same data
object.
* Updated error symbols
why:
Error symbol names for the hike module now start with the prefix `Hike`.
* Write back modified branch node into local top layer cache
why:
With the backend available, the source of the branch node references
might not be the top layer cache. So any change must be explicitely
recorded.
* Generalised Aristo DB constructor for any type of backend
details:
* Records to be deleted are represented as key-void (rather than
key-value) pairs by the put-function arguments
* Allow direct driver access, iterators as example implementation and
for testing.
* Provide backend storage interface
details:
Stores the top layer onto backend tables
* Implemented Rocks DB backend
details:
Transaction based `put()` functionality
Iterators (based on direct RocksDB access)
* Fix include
why:
Eth67 not default yet so that got missed
* Rename `LeafKey` => `LeafTie`
why:
Name is a pen picture of what this object is for. Also, it avoids the
ubiquitous term `key`.
* Provided `getOrVoid()` wrapper for `getOrDefault()`
also:
Provide `isValid()` syntactic sugar for `.isNil.not`, `!= 0` etc.
Reorg descriptor source, split into sub-sources
* Bundled `NodeKey` objects with root ID and called it `HashLabel`
why:
`NodeKey` (aka repurposed Hash265) objects are unique only within a
particular sub-trie (e.g. storage slots) which are kept separated
(i.e non-interleaved) by design. This is not applied to the backend
as the map VertexID->NodeKey labelling the nodes needs not be injective.
For the in-memory database (transaction) layers, the injective map
VertexID->(VertexID,NodeKey) is used where the first field of the image
tuple is the root ID of the sub-trie the `NodeKey` object is valid. So
identical storage tries for different accounts can be represented.
* Exclude some storage tests
why:
These test running on external dumps slipped through. The particular
dumps were reported earlier as somehow dodgy.
This was changed in `#1457` but having a second look, the change on
hexary_interpolate.nim(350) might be incorrect.
* Redesign `Aristo DB` descriptor for transaction based layers
why:
Previous descriptor layout made it cumbersome to push/pop
database delta layers.
The new architecture keeps each layer with the full delta set
relative to the database backend.
* Keep root ID as part of the `Patricia Trie` leaf path
why;
That way, forests are supported