* Renamed type `NoneBackendRef` => `VoidBackendRef`
* Clarify names: `BE=filter+backend` and `UBE=backend (unfiltered)`
why:
Most functions used full names as `getVtxUnfilteredBackend()` or
`getKeyBackend()`. After defining abbreviations (and its meaning) it
seems easier to use `getVtxUBE()` and `getKeyBE()`.
* Integrate `hashify()` process into transaction logic
why:
Is now transparent unless explicitly controlled.
details:
Cache changes imply setting a `dirty` flag which in turn triggers
`hashify()` processing in transaction and `pack()` directives.
* Removed `aristo_tx.exec()` directive
why:
Inconsistent implementation, functionality will be provided with a
different paradigm.
* Provide deep copy for each transaction layer
why:
Localising changes. Selective deep copy was just overlooked.
* Generalise vertex ID generator state reorg function `vidReorg()`
why:
makes it somewhat easier to handle when saving layers.
* Provide dummy back end descriptor `NoneBackendRef`
* Optional read-only filter between backend and transaction cache
why:
Some staging area for accumulating changes to the backend DB. This
will eventually be an access layer for emulating a backend with
multiple/historic state roots.
* Re-factor `persistent()` with filter between backend/tx-cache => `stow()`
why:
The filter provides an abstraction from the physically stored data on
disk. So, there can be several MPT instances using the same disk data
with different state roots. Of course, all the MPT instances should
not differ too much for practical reasons :).
TODO:
Filter administration tools need to be provided.
* Better error handling
why:
Bail out on some error as early as possible before any changes.
* Implement `fetch()` as opposite of `merge()`
rationale:
In the `Aristo` realm, the action named `fetch()` and `merge()` indicate
leaf value related actions on the MPT, while actions `get()` and `put()`
handle vertex or hash key related operations that constitute the MPT.
* Re-factor `merge()` prototypes
why:
The most used variant of `merge()` should have the simplest prototype.
* Persistent DB constructor needs to import `aristo/aristo_init/persistent`
why:
Most applications use memory DB anyway. This avoids linking `-lrocksdb`
or any other back end libraries by default.
* Re-factor transaction module
why:
Got the paradigm wrong. The transaction descriptor did replace the
database one but should be handled separately.
* Nimbus folder environment update
details:
* Integrated `CoreDbRef` for the sources in the `nimbus` sub-folder.
* The `nimbus` program does not compile yet as it needs the updates
in the parallel `stateless` sub-folder.
* Stateless environment update
details:
* Integrated `CoreDbRef` for the sources in the `stateless` sub-folder.
* The `nimbus` program compiles now.
* Premix environment update
details:
* Integrated `CoreDbRef` for the sources in the `premix` sub-folder.
* Fluffy environment update
details:
* Integrated `CoreDbRef` for the sources in the `fluffy` sub-folder.
* Tools environment update
details:
* Integrated `CoreDbRef` for the sources in the `tools` sub-folder.
* Nodocker environment update
details:
* Integrated `CoreDbRef` for the sources in the
`hive_integration/nodocker` sub-folder.
* Tests environment update
details:
* Integrated `CoreDbRef` for the sources in the `tests` sub-folder.
* The unit tests compile and run cleanly now.
* Generalise `CoreDbRef` to any `select_backend` supported database
why:
Generalisation was just missed due to overcoming some compiler oddity
which was tied to rocksdb for testing.
* Suppress compiler warning for `newChainDB()`
why:
Warning was added to this function which must be wrapped so that
any `CatchableError` is re-raised as `Defect`.
* Split off persistent `CoreDbRef` constructor into separate file
why:
This allows to compile a memory only database version without linking
the backend library.
* Use memory `CoreDbRef` database by default
detail:
Persistent DB constructor needs to import `db/core_db/persistent
why:
Most tests use memory DB anyway. This avoids linking `-lrocksdb` or
any other backend by default.
* fix `toLegacyBackend()` availability check
why:
got garbled after memory/persistent split.
* Clarify raw access to MPT for snap sync handler
why:
Logically, `kvt` is not the raw access for the hexary trie (although
this holds for the legacy database)
why:
* Resolves some compiler coughing when it bails out on persitent
db constructor inside `test()` caluses (works perfectly outside.)
* API looks cleaner and better to maintain for the price of slightly
more work at the backend
* Remove 32bit os support from `custom_network` unit test
also:
* Fix compilation annoyance #1648
* Fix unit test on Kiln (changed `merge` logic?)
* Hide unused sources do not compile
why:
* Get them out of the way before major update
* Import and function prototype mismatch -- maybe some changes got out
of scope.
* Re-implemented `db_chain` as `core_db`
why:
Hiding `TrieDatabaseRef` and `HexaryTrie` by default allows to replace
the current db wrapper by some other one, e.g. Aristo
* Support compiler exception warnings for CoreDbRef base methods.
* Allow `pairs()` iterator on all memory based key-value tables
why:
Previously only available for capture recorder.
* Backport `chain_db.nim` changes into its re-implementation `core_apps.nim`
* Fix exception annotation
on windows, using "localhost" for rpc test is very slow.
both pyspec_sim and engine_sim will need more than one hour.
while on linux and macos only few minutes.
* Misc fixes
detail:
* Fix de-serialisation for account leafs
* Update node recovery from unit tests
* Remove `LegacyAccount` from `PayloadRef` object
why:
Legacy accounts use a hash key as storage root which is detrimental
to the working of the Aristo database which uses a vertex ID.
* Dissolve `hashify_helper` into `aristo_utils` and `aristo_transcode`
why:
Functions are of general interest so they should live in first level
code files.
* Added left/right iterators over leaf nodes
* Some helper/wrapper functions that might be useful
why:
For the main tree with root vertex ID 1, the leaf nodes hold the
account data. These accounts may link to sub trees the storage root
node ID of which must be registered here. There is no reverse key
lookup on the backend.
note:
These definitions are experimental. Also, there are some tests missing
for validating Payload data conversions.
* Provide transaction based interface for standard operations
* Provide unit tests for new Aristo interface using transactions
details:
These new tests combine and replace several single-purpose tests.
The now unused test sources will be kept for a while to be eventually
removed.
* Slightly tighten some self-check conditions
* Redefined the database descriptor object as reference (to the object)
why:
The upcoming transaction wrapper will work with a database reference
rather than the object itself
* Append state before `save()` to the Aristo descriptor
why:
This stae was previously returned by the function. Appending it to
a field of the Aristo descriptor seems easier to handle.
* Fix missing branch checks in transcoder
why:
Symmetry problem. `Blobify()` allowed for encoding degenerate branch
vertices while `Deblobify()` rejected decoding wrongly encoded data.
* Update memory backend so that it rejects storing bogus vertices.
why:
Error behaviour made similar to the rocks DB backend.
* Make sure that leaf vertex IDs are not repurposed
why:
This makes it easier to record leaf node changes
* Update error return code for next()/right() traversal
why:
Returning offending vertex ID (besides error code) helps debugging
* Update Merkle hasher for deleted nodes
why:
Not implemented, yet
also:
Provide cache & backend consistency check functions. This was
partly re-implemented from `hashifyCheck()`
* Simplify some unit tests
* Fix delete function
why:
Was conceptually wrong
previously, the withdrawal validation is in process_block only,
but the one in persist block, which is also used in synchronizer
is not validated properly.
* Added missing deferred cleanup directive to sub-test functions
why:
Rocksdb keeps the files locked for a short while leading to errors. This
was previously solved my using different db sub-directories
* Provide vertex deep-copy function globally.
why:
is just handy
* Avoid unnecessary vertex caching when merging proof nodes
also:
Run all merge tests on the rocksdb backend
Previously, proof node tests were run without backend
* Fix vertex ID generator state handling for rocksdb backend
why:
* Key error in walk iterator
* Needs to be loaded when opening the database
* Use non-zero sub-table prefixes for rocksdb
why:
Handy for debugging
* Fix error code for missing key on rocksdb backend
why:
Previously returned `VOID_HASH_KEY` rather than `GetKeyNotFound`
* Explicitly copy vertex data between internal table and function/result argument
why:
Function argument or return reference may still refer to the same data
object.
* Updated error symbols
why:
Error symbol names for the hike module now start with the prefix `Hike`.
* Write back modified branch node into local top layer cache
why:
With the backend available, the source of the branch node references
might not be the top layer cache. So any change must be explicitely
recorded.
* Generalised Aristo DB constructor for any type of backend
details:
* Records to be deleted are represented as key-void (rather than
key-value) pairs by the put-function arguments
* Allow direct driver access, iterators as example implementation and
for testing.
* Provide backend storage interface
details:
Stores the top layer onto backend tables
* Implemented Rocks DB backend
details:
Transaction based `put()` functionality
Iterators (based on direct RocksDB access)
* Fix include
why:
Eth67 not default yet so that got missed
* Rename `LeafKey` => `LeafTie`
why:
Name is a pen picture of what this object is for. Also, it avoids the
ubiquitous term `key`.
* Provided `getOrVoid()` wrapper for `getOrDefault()`
also:
Provide `isValid()` syntactic sugar for `.isNil.not`, `!= 0` etc.
Reorg descriptor source, split into sub-sources
* Bundled `NodeKey` objects with root ID and called it `HashLabel`
why:
`NodeKey` (aka repurposed Hash265) objects are unique only within a
particular sub-trie (e.g. storage slots) which are kept separated
(i.e non-interleaved) by design. This is not applied to the backend
as the map VertexID->NodeKey labelling the nodes needs not be injective.
For the in-memory database (transaction) layers, the injective map
VertexID->(VertexID,NodeKey) is used where the first field of the image
tuple is the root ID of the sub-trie the `NodeKey` object is valid. So
identical storage tries for different accounts can be represented.
* Exclude some storage tests
why:
These test running on external dumps slipped through. The particular
dumps were reported earlier as somehow dodgy.
This was changed in `#1457` but having a second look, the change on
hexary_interpolate.nim(350) might be incorrect.
* Redesign `Aristo DB` descriptor for transaction based layers
why:
Previous descriptor layout made it cumbersome to push/pop
database delta layers.
The new architecture keeps each layer with the full delta set
relative to the database backend.
* Keep root ID as part of the `Patricia Trie` leaf path
why;
That way, forests are supported