Also embed evmc_status_code to computation.error, and make
the tracer produce cleaner output. No more "Revert opcode executed"
error message. We can distinguish error code between REVERT
and FAILURE in a more cleaner way.
* Nimbus folder environment update
details:
* Integrated `CoreDbRef` for the sources in the `nimbus` sub-folder.
* The `nimbus` program does not compile yet as it needs the updates
in the parallel `stateless` sub-folder.
* Stateless environment update
details:
* Integrated `CoreDbRef` for the sources in the `stateless` sub-folder.
* The `nimbus` program compiles now.
* Premix environment update
details:
* Integrated `CoreDbRef` for the sources in the `premix` sub-folder.
* Fluffy environment update
details:
* Integrated `CoreDbRef` for the sources in the `fluffy` sub-folder.
* Tools environment update
details:
* Integrated `CoreDbRef` for the sources in the `tools` sub-folder.
* Nodocker environment update
details:
* Integrated `CoreDbRef` for the sources in the
`hive_integration/nodocker` sub-folder.
* Tests environment update
details:
* Integrated `CoreDbRef` for the sources in the `tests` sub-folder.
* The unit tests compile and run cleanly now.
* Generalise `CoreDbRef` to any `select_backend` supported database
why:
Generalisation was just missed due to overcoming some compiler oddity
which was tied to rocksdb for testing.
* Suppress compiler warning for `newChainDB()`
why:
Warning was added to this function which must be wrapped so that
any `CatchableError` is re-raised as `Defect`.
* Split off persistent `CoreDbRef` constructor into separate file
why:
This allows to compile a memory only database version without linking
the backend library.
* Use memory `CoreDbRef` database by default
detail:
Persistent DB constructor needs to import `db/core_db/persistent
why:
Most tests use memory DB anyway. This avoids linking `-lrocksdb` or
any other backend by default.
* fix `toLegacyBackend()` availability check
why:
got garbled after memory/persistent split.
* Clarify raw access to MPT for snap sync handler
why:
Logically, `kvt` is not the raw access for the hexary trie (although
this holds for the legacy database)
simplify EVM and delegete those things to accounts cache.
also no more manual state clearing, accounts cache will be
responsible for both collecting touched account and perform
state clearing.
* Gwei conversion should use u256 because u64 can overflow.
* Make withdrawals follow the EIP-158 state-clearing rules.
(i.e. Empty accounts should be deleted.)
* Allow the zero address in normalizeNumber.
(Necessary for one of the new withdrawals-related tests.)
* Another fix with a withdrawals-related test.
* Refactoring in preparation for time-based forking.
* Timestamp-based hard-fork-transition.
* Workaround SideEffect issue / compiler bug for both failing locations in Portal history code
---------
Co-authored-by: kdeme <kim.demey@gmail.com>
* Removed some Windows specific unit test annoyances
details:
+ Short put()/get() cycles on persistent database have a race condition
with vendor rocksdb. On a specific (and slow) qemu/win7 a 50ms `sleep()`
in between will mostly do the job (i.e. unless heavy CPU load.) This
issue was not observed on github/ci.
+ Removed annoyances when qemu/Win7 keeps the rocksdb database files
locked even after closing the db. The problem is solved by strictly
using fresh names for each test. No assumption made to be able to
properly clean up. This issue was not observed on github/ci.
* Silence some compiler gossip -- part 7, misc/non(sync or graphql)
details:
Adding some missing exception annotation
* Silence some compiler gossip -- part 5, common
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Silence some compiler gossip -- part 6, db, rpc, utils
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Silence some compiler gossip -- part 7, randomly collected source files
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Silence some compiler gossip -- part 8, assorted tests
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Clique update
why:
More impossible exceptions (undoes temporary fix from previous PR)
* Added basic async capabilities for vm2.
This is a whole new Git branch, not the same one as last time
(https://github.com/status-im/nimbus-eth1/pull/1250) - there wasn't
much worth salvaging. Main differences:
I didn't do the "each opcode has to specify an async handler" junk
that I put in last time. Instead, in oph_memory.nim you can see
sloadOp calling asyncChainTo and passing in an async operation.
That async operation is then run by the execCallOrCreate (or
asyncExecCallOrCreate) code in interpreter_dispatch.nim.
In the test code, the (previously existing) macro called "assembler"
now allows you to add a section called "initialStorage", specifying
fake data to be used by the EVM computation run by that test. (In
the long run we'll obviously want to write tests that for-real use
the JSON-RPC API to asynchronously fetch data; for now, this was
just an expedient way to write a basic unit test that exercises the
async-EVM code pathway.)
There's also a new macro called "concurrentAssemblers" that allows
you to write a test that runs multiple assemblers concurrently (and
then waits for them all to finish). There's one example test using
this, in test_op_memory_lazy.nim, though you can't actually see it
doing so unless you uncomment some echo statements in
async_operations.nim (in which case you can see the two concurrently
running EVM computations each printing out what they're doing, and
you'll see that they interleave).
A question: is it possible to make EVMC work asynchronously? (For
now, this code compiles and "make test" passes even if ENABLE_EVMC
is turned on, but it doesn't actually work asynchronously, it just
falls back on doing the usual synchronous EVMC thing. See
FIXME-asyncAndEvmc.)
* Moved the AsyncOperationFactory to the BaseVMState object.
* Made the AsyncOperationFactory into a table of fn pointers.
Also ditched the plain-data Vm2AsyncOperation type; it wasn't
really serving much purpose. Instead, the pendingAsyncOperation
field directly contains the Future.
* Removed the hasStorage idea.
It's not the right solution to the "how do we know whether we
still need to fetch the storage value or not?" problem. I
haven't implemented the right solution yet, but at least
we're better off not putting in a wrong one.
* Added/modified/removed some comments.
(Based on feedback on the PR.)
* Removed the waitFor from execCallOrCreate.
There was some back-and-forth in the PR regarding whether nested
waitFor calls are acceptable:
https://github.com/status-im/nimbus-eth1/pull/1260#discussion_r998587449
The eventual decision was to just change the waitFor to a doAssert
(since we probably won't want this extra functionality when running
synchronously anyway) to make sure that the Future is already
finished.
* Squashed snap-sync-preview patch
why:
Providing end results makes it easier to have an overview.
Collected patch set comments are available as nimbus/sync/ChangeLog.md
in chronological order, oldest first.
* Removed some cruft and obsolete imports, normalised logging
* Redesign of BaseVMState descriptor
why:
BaseVMState provides an environment for executing transactions. The
current descriptor also provides data that cannot generally be known
within the execution environment, e.g. the total gasUsed which is
available not before after all transactions have finished.
Also, the BaseVMState constructor has been replaced by a constructor
that does not need pre-initialised input of the account database.
also:
Previous constructor and some fields are provided with a deprecated
annotation (producing a lot of noise.)
* Replace legacy directives in production sources
* Replace legacy directives in unit test sources
* fix CI (missing premix update)
* Remove legacy directives
* chase CI problem
* rebased
* Re-introduce 'AccountsCache' constructor optimisation for 'BaseVmState' re-initialisation
why:
Constructing a new 'AccountsCache' descriptor can be avoided sometimes
when the current state root is properly positioned already. Such a
feature existed already as the update function 'initStateDB()' for the
'BaseChanDB' where the accounts cache was linked into this desctiptor.
The function 'initStateDB()' was removed and re-implemented into the
'BaseVmState' constructor without optimisation. The old version was of
restricted use as a wrong accounts cache state would unconditionally
throw an exception rather than conceptually ask for a remedy.
The optimised 'BaseVmState' re-initialisation has been implemented for
the 'persistBlocks()' function.
also:
moved some test helpers to 'test/replay' folder
* Remove unused & undocumented fields from Chain descriptor
why:
Reduces attack surface in general & improves reading the code.
- Remove the `--evm` option on non-EVMC builds.
`when` around an option doesn't work with confutils; it fails to compile.
Workaround that by setting the `ignore` pragma on EVMC-specific options.
(Thanks @jangko for that new pragma). I prefer this to a solution which
moves the whole option's pragma elsewhere, especially if we add more options.
- Improve the help text, so that it shows the standard library extension on
each target platform (or none if on another platform).
- Undo b3f21bf4 "add missing evmc_enabled conditional compilation in
evmc_dynamic_loader". Move the conditional to `nimbus.nim`, and take more
care there to only use the loader function in EVMC builds.
It's ok to just not include this EVMC-only module (like some other EVMC
modules), rather than making the module itself a bit broken: Without this
change, it references a function that's not imported or linked to, and it
only links because there is no call sequence reaching that function.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
This patch adds:
- Load and use a third-party EVM in a shared library, instead of Nimbus EVM.
- New option `--evm` to specify which library to load.
- The library and this loader conforms to the [EVMC]
(https://evmc.ethereum.org/) 9.x specification.
Any third-party EVM which is compatible with EVMC version 9.x and supports EVM1
contract code will be accepted. The operating system's shared library format
applies. These are `.so*` files on Linux, `.dll` files on Windows and `.dylib`
files on Mac.
The alternative EVM can be selected in two ways:
- Nimbus command line option `--evm:<path>`.
- Environment variable `NIMBUS_EVM=<path>`.
The reason for an environment variable is this allows all the test programs to
run with a third-party EVM as well. Some don't parse command line options.
There are some limitations to be aware of:
- The third-party EVM must use EVMC version 9.x, no other major version.
EVMC 9.x supports EIP-1559 / London fork and older transactions.
- Nested `*CALL` and `CREATE*` operations don't use the third-party EVM yet.
These call the built-in Nimbus EVM. This mixing of different EVMs between
levels is explicitly allowed in specs, so there is no problem doing it.
- The third-party EVM doesn't need to support precompiles, because those are
nested calls, which use the built-in Nimbus EVM.
- Third-party EVMs execute contracts correctly, but fail the final `rootHash`
match. The reason is that some account state changes, which are correct, are
currently inside the Nimbus EVM and need to be moved to EVMC host logic.
*This is a known work in progress*. The EVM execution itself is fine.
Test results using "evmone" third-party EVM:
- [evmone](https://github.com/ethereum/evmone) has been tested. Only on
Linux but it "should" work on Windows and Mac equally well.
- [Version 0.8.1](https://github.com/ethereum/evmone/releases/tag/v0.8.1) was
used because it is compatible with EVMC 9.x, which is required for the
EIP-1559 / London fork, which Nimbus supports. Version 0.8.0 could be used
but it looks like an important bug was fixed in 0.8.1.
- evmone runs fine and the trace output looks good. The calls and arguments
are the same as the built-in Nimbus EVM for tests that have been checked
manually, except evmone skips some calls that can be safely skipped.
- The final `rootHash` is incorrect, due to the *work in progress* mentioned
above which is not part of the evmone execution. Due to this, it's possible
to try evmone and verify expected behaviours, which also validates our own
EVMC implementation, but it can't be used as a full substitute yet.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
This missing part of EVMC processing allows third-party EVMs to work.
It fixes EVMC result processing (at the top-level of calls, not nested calls)
to use the EVMC result object, instead of reading so much internal state of the
Nimbus `Computation` object.
It has been tested by calling [`evmone`](https://github.com/ethereum/evmone)
and getting useful results with tracing enabled (`showTxCalls = true`). It's
even able to run parts of the fixtures test suite.
There are other issues with account balances, etc that need to be worked on to
get the correct _final_ results, but the EVM execution is correct with this.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Perform byte-endian conversion for 256-bit numeric values, but not 256-bit
hashes. These conversions are necessary for EVMC binary compatibility.
In new EVMC, all host-side conversions are explicit, calling `flip256`.
These conversions are performed in the EVMC "glue" code, which deals with the
binary interface, so the host services aren't aware of conversions.
We intend to skip these conversions when Nimbus host calls Nimbus EVM, even
when it's a shared library, using a negotiated EVMC extension. But for now
we're focused on correctness and cross-validation with third party EVMs.
The overhead of endian conversion is not too high because most EVMC host calls
access the database anyway. `getTxContext` does not, so the conversions from
that are cached here. Also, well-optimised EVMs don't call it often.
It is arguable whether endian conversion should occur for storage slots (`key`).
In favour of no conversion: Slot keys are 32-byte blobs, and this is clear in
the EVMC definition where slot keys are `evmc_bytes32` (not `evmc_uint256be`),
meaning treating as a number is _not_ expected by EVMC. Although they are
often small numbers, sometimes they are a hash from the contract code plus a
number. Slot keys are hashed on the host side with Keccak256 before any
database calls, so the host side does not look at them numerically.
In favour of conversion: They are often small numbers and it is helpful to log
them as such, rather than a long string of zero digits with 1-2 non-zero. The
representation in JSON has leading zeros removed, like a number rather than a
32-byte blob. There is also an interesting space optimisation when the keys
are used unhashed in storage.
Nimbus currently treats slot keys on the host side as numbers, and the tests
pass when endian conversion is done. So to remain consistent with other parts
of Nimbus we convert slot keys.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
previously, every time the VMState was created, it will also create
new stateDB, and this action will nullify the advantages of cached accounts.
the new changes will conserve the accounts cache if the executed blocks
are contiguous. if not the stateDB need to be reinited.
this changes also allow rpcCallEvm and rpcEstimateGas executed properly
using current stateDB instead of creating new one each time they are called.
Prior to this patch, top-level EVM executions and nested EVM executions did
their `getStorage` and other requests using a completely different set of host
functions. It was just unfinished, to get top-level "new" EVMC working.
This finishes the job - it stops using the old methods. Effect:
- Functionality added at the EVMC host level will be used by all EVM calls.
(The target here is Beam Sync).
- The old set of functions are no longer used, so they can be removed.
- When EVMC host call tracing is enabled (`showTxCalls = true`), it traces
the calls from nested EVM executions as well as top-level.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
We've been filling a "vtable"-like at run time, but it's not necessary.
The new object is a global `let x = evmc_host_interface(...)`, we assume it's
initialised before the first use, and we take its address with `.unsafeAddr`.
(If we use `ref evmc_host_interface`, Nim decides (correctly) that the
functions which use it aren't GC-safe because it's a global.)
Signed-off-by: Jamie Lokier <jamie@shareable.org>
This combines two things, a C stack usage change with EVM nested calls
via EVMC, and changes to host call tracing.
Feature-wise, the tracing is improved:
- Storage keys and values are make more sense.
- The message/result/context objects are shown with all relevant fields.
- `call` trace is split into entry/exit, so these can be shown around the
called contract's operations, instead of only showing the `call` parameters
after the nested call is finished.
- Nested calls are indented, which helps to highlight the flow.
- C stack usage considerably reduced in nested calls when more functionality
is enabled (either tracing here, or other things to come).
This will seem like a minor patch, but C stack usage was the real motivation,
after plenty of time in the debugger.
Nobody cares about stack when `showTxCalls` (you can just use a big stack when
debugging). But these subtle changes around the `call` path were found to be
necessary for passing all tests when the EVMC nested call code is completed,
and that's a prerequisite for many things: async EVM, dynamic EVM, Beam Sync,
and to fix https://github.com/status-im/nimbus-eth1/issues/345.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
The update for London (EIP-1559) in 1cdb30df ("bump nim-emvc with evmc revision
8.0.0 to 9.0.0") really bumped EVMC ABI version from 7.5 up to 9.
In other words, it skipped Berlin, going direct from Istanbul to London.
That was accompanied by EVMC changes in 05e9b891 ("EIP-3198: add baseFee op
code in nim-evm"), which added the API changes needed for London.
But the missing Berlin functions weren't added in the move to London.
As a result, our EVMC host became incompatible with Berlin, London, and really
all revisions of the ABI, and if a third party EVM was loaded, it crashed.
This commit adds the missing Berlin host support, and makes our ABI
binary-compatible with real EVMC again.
Signed-off-by: Jamie Lokier <jamie@shareable.org>
This changes fixes a bug in `CREATE2` ops when used with EVMC.
Because it changes the salt type, it affects non-EVMC code as well.
The salt was passed through EVMC with the wrong byte order, although this went
unnoticed as the Nimbus host flipped the byte order before using it.
This was found when running Nimbus with third-party EVM,
["evmone"](https://github.com/ethereum/evmone).
There are different ways to remedy this.
If treated as a number, Nimbus EVM would byte-flip the value when calling EVMC,
then Nimbus host would flip the received value. Finally, it would be flipped a
third time when generating the address in `generateSafeAddress`. The first two
flips can be eliminated by negotiation (like other numbers), but there would
always be one flip.
As a bit pattern, Nimbus EVM would flip the same way it does when dealing with
hashes on the stack (e.g. with `getBlockHash`). Nimbus host wouldn't flip at
all - and when using third-party EVMs there would be no flips in Nimbus.
Because this value is not for arithmetic, any bit pattern is valid, and there
shouldn't be any flips when using a third-party EVM, the bit-pattern
interpretation is favoured. The only flip is done in Nimbus EVM (and might be
eliminated in an optimised version).
As suggested, we'll define a new "opaque 256 bits" type to hold this value.
(Similar to `Hash256`, but the salt isn't necessarily a hash.)
Signed-off-by: Jamie Lokier <jamie@shareable.org>
Previously max gas refunded was defined as gas_used div 2.
Here we name the constant 2 as MAX_REFUND_QUOTIENT and
change its value to 5.
The new equation will be: gas_used div MAX_REFUND_QUOTIENT