* ForkedChain implementation
- revamp test_blockchain_json using ForkedChain
- re-enable previously failing test cases.
* Remove excess error handling
* Avoid reloading parent header
* Do not force base update
* Write baggage to database
* Add findActiveChain to finalizedSegment
* Create new stagingTx in addBlock
* Check last stateRoot existence in test_blockchain_json
* Resolve rebase conflict
* More precise nomenclature for block import cursor
* Ensure bad block nor imported and good block not rejected
* finalizeSegment become forkChoice and align with engine API forkChoice spec
* Display reason when good block rejected
* Fix comments
* Put BaseDistance into CalculateNewBase equation
* Separate finalizedHash from baseHash
* Add more doAssert constraint
* Add push raises: []
When processing long ranges of blocks, the account cache grows unbounded
which cause huge memory spikes.
Here, we move the cache to a second-level cache after each block - the
second-level cache is cleared on the next block after that which creates
a simple LRU effect.
There's a small performance cost of course, though overall the freed-up
memory can now be reassigned to the rocksdb row cache which not only
makes up for the loss but overall leads to a performance increase.
The bump to 2gb of rocksdb row cache here needs more testing but is
slightly less and loosely basedy on the savings from this PR and the
circular ref fix in #2408 - another way to phrase this is that it's
better to give rocksdb more breathing room than let the memory sit
unused until circular ref collection happens ;)
Broadly, when importing blocks we don't need a transaction / frame per
block because we can simply abort the whole update and try again with a
smaller range if we find a faulty block.
Of course, this applies mainly to semi-trusted blocks where we're not
expected to fail in applying them - this could be blocks either from
files or header-verified blocks as given by consensus.
When performing block import, we can batch state root verifications and
header checks, doing them only once per chunk of blocks, assuming that
the other blocks in the batch are valid by extension.
When we're not generating receipts, we can also skip per-transaction
state root computation pre-byzantium, which is what provides a ~20%
speedup in this PR, at least on those early blocks :)
We also stop storing transactions, receipts and uncles redundantly when
importing from era1 - there is no need to waste database storage on this
when we can load it from the era1 file (eventually).
* Bump nim-eth, nim-web3, nimbus-eth2
- Replace std.Option with results.Opt
- Fields name changes
* More fixes
* Fix Portal stream async raises and portal testnet Opt usage
* Bump eth + nimbus-eth2 + more fixes related to eth_types changes
* Fix in utp test app and nimbus-eth2 bump
* Fix test_blockchain_json rebase conflict
* Fix EVMC block_timestamp conversion plus commentary
---------
Co-authored-by: kdeme <kim.demey@gmail.com>
This PR consolidates the split header-body sequences into a single EthBlock
sequence and cleans up the fallout from that which significantly reduces
block processing overhead during import thanks to less garbage collection
and fewer copies of things all around.
Notably, since the number of headers must always match the number of bodies,
we also get rid of a pointless degree of freedom that in the future could
introduce unnecessary bugs.
* only read header and body from era file
* avoid several unnecessary copies along the block processing way
* simplify signatures, cleaning up unused arguemnts and returns
* use `stew/assign2` in a few strategic places where the generated
nim assignent is slow and add a few `move` to work around poor
analysis in nim 1.6 (will need to be revisited for 2.0)
```
stats-20240607_2223-a814aa0b.csv vs stats-20240608_0714-21c1d0a9.csv
bps_x bps_y tps_x tps_y bpsd tpsd timed
block_number
(498305, 713245] 1,540.52 1,809.73 2,361.58 2775.340189 17.63% 17.63% -14.92%
(713245, 928185] 730.36 865.26 1,715.90 2028.973852 18.01% 18.01% -15.21%
(928185, 1143126] 663.03 789.10 2,529.26 3032.490771 19.79% 19.79% -16.28%
(1143126, 1358066] 393.46 508.05 2,152.50 2777.578119 29.13% 29.13% -22.50%
(1358066, 1573007] 370.88 440.72 2,351.31 2791.896052 18.81% 18.81% -15.80%
(1573007, 1787947] 283.65 335.11 2,068.93 2441.373402 17.60% 17.60% -14.91%
(1787947, 2002888] 287.29 342.11 2,078.39 2474.179448 18.99% 18.99% -15.91%
(2002888, 2217828] 293.38 343.16 2,208.83 2584.77457 17.16% 17.16% -14.61%
(2217828, 2432769] 140.09 167.86 1,081.87 1296.336926 18.82% 18.82% -15.80%
blocks: 1934464, baseline: 3h13m1s, contender: 2h43m47s
bpsd (mean): 19.55%
tpsd (mean): 19.55%
Time (total): -29m13s, -15.14%
```
* Cleanup unneeded stateless and block witness code. Keeping MultiKeys which is used in the eth_getProofsByBlockNumber RPC endpoint which is needed for the Fluffy state network bridge.
* Rename generateWitness flag to collectWitnessData to better describe what the flag does. We only collect the keys of the touched accounts and storage slots but no block witness generation is supported for now.
* Move remaining stateless code into nimbus directory.
* Add vmstate parameter to ChainRef to fix test.
* Exclude *.in from check copyright year
---------
Co-authored-by: jangko <jangko128@gmail.com>
* Remove exception from evm memory
* Remove exception from gas meter
* Remove exception from stack
* Remove exception from precompiles
* Remove exception from gas_costs
* Remove exception from op handlers
* Remove exception from op dispatcher
* Remove exception from call_evm
* Remove exception from EVM
* Fix tools and tests
* Remove exception from EVMC
* fix evmc
* Fix evmc
* Remove remnants of async evm stuff
* Remove superflous error handling
* Proc to func
* Fix errors detected by CI
* Fix EVM op call stack usage
* REmove exception handling from getVmState
* Better error message instead of just doAssert
* Remove unused validation
* Remove superflous catchRaise
* Use results.expect instead of unsafeValue
* CoreDb: Remove crufty second/off-site KVT
why:
Was used to allow late `Clique` to store directly to disk
* CoreDb: Remove prune flag related functionality
why:
Is completely legacy stuff
* CoreDb: Remove dependence on legacy API (tests unsupported yet)
why:
Does not fully support Aristo
* Re-factoring `state_db` using new API
details:
Only minimum changes needed to compile `nimbus`
* Update tests and aux modules
* Turn off legacy API and remove `distinct_tries`
comment:
The legacy API has now cruft status, will be removed soon
* Fix copyright years
* Update rpc for verified proxy
---------
Co-authored-by: Jacek Sieka <jacek@status.im>
`persist` is a hotspot when processing blocks because it is run at least
once per transaction and loops over the entire account cache every time.
Here, we introduce an extra `dirty` map that keeps track of all accounts
that need checking during `persist` which fixes the immediate
inefficiency, though probably this could benefit from a more thorough
review - we also get rid of the unused clearCache flag - we start with
a fresh cache on every fresh vmState.
* avoid unnecessary code hash comparisons
* avoid unnecessary copies when iterating
* use EMPTY_CODE_HASH throughout for code hash comparison
* Attempt to roll back stateless mode implementation in a single PR
why:
+ Stateless mode is not fully working and in the way
+ Single PR should make it feasible to investigate for a possible
re-implementation
* Fix copyright year
* Fix annotation for exception (evmc mode)
* Completed draft implementation of witness JSON-RPC endpoints for portal network bridge.
* Updated Nimbus RPC configuration to support enabling experimental endpoints.
* Moved witness verification tests.
* Added json test for getProof.
* Added main procs to new tests to fix test suite.
* Added getBlockWitness test to blockchain json test suite.
* Added tests for experimental RPC endpoints and improved the API to support returning state proofs from before or after block execution.
* Correctly rollback transaction in getBlockWitness proc.
* Activate `LedgerRef` wrapper for `AccountsCache`
details:
`accounts_cache.nim` methods are indirectly processed by the wrapper
methods from `ledger.nim`.
This works for all sources except `test_state_db.nim` where the source
`accounts_cache.nim` is included (rather than imported) in order to
access objects privy to the very source.
* Provide facility to switch to a preselected `LedgerRef` type
details:
Can be set as suggestion when initialising `CommonRef`
* Update `CoreDb` test suite for better time tracking
details:
+ Allow time logging by pre-defined block intervals
+ Print `CoreDb`/`Ledger`profiling results (if enabled)
* Kvt: Implemented multi-descriptor access on the same backend
why:
This behaviour mirrors the one of Aristo and can be used for
simultaneous transactions on Aristo + Kvt
* Kvt: Update database iterators
why:
Forgot to run on the top layer first
* Kvt: Misc fixes
* Aristo, use `openArray[byte]` rather than `Blob` in prototype
* Aristo, by default hashify right after cloning descriptor
why:
Typically, a completed descriptor is expected after cloning. Hashing
can be suppressed by argument flag.
* Aristo provides `replicate()` iterator, similar to legacy `replicate()`
* Aristo API fixes and updates
* CoreDB: Rename `legacy_persistent` => `legacy_rocksdb`
why:
More systematic, will be in line with Aristo DB which might have
more than one persistent backends
* CoreDB: Prettify API sources
why:
Better to read and maintain
details:
Annotating with custom pragmas which cleans up the prototypes
* CoreDB: Update MPT/put() prototype allowing `CatchableError`
why:
Will be needed for Aristo API (legacy is OK with `RlpError`)
* Remove concept of empty/blind filters
why:
Not needed. A non-existent filter is is coded as a nil reference.
* Slightly generalised backend iterators
why:
* VertexID as key for the ID generator state makes no sense
* there will be more tables addressed by non-VertexID keys
* Store serialised/blobified vertices on memory backend
why:
This is more in line with the RocksDB backend so more appropriate
for testing when comparing behaviour. For a speedy memory database,
a backend-less variant should be used.
* Drop the `Aristo` prefix from names `AristoLayerRef`, etc.
* Suppress compiler warning
why:
duplicate imports
* Add filter serialisation transcoder
why:
Will be used as storage format
* Nimbus folder environment update
details:
* Integrated `CoreDbRef` for the sources in the `nimbus` sub-folder.
* The `nimbus` program does not compile yet as it needs the updates
in the parallel `stateless` sub-folder.
* Stateless environment update
details:
* Integrated `CoreDbRef` for the sources in the `stateless` sub-folder.
* The `nimbus` program compiles now.
* Premix environment update
details:
* Integrated `CoreDbRef` for the sources in the `premix` sub-folder.
* Fluffy environment update
details:
* Integrated `CoreDbRef` for the sources in the `fluffy` sub-folder.
* Tools environment update
details:
* Integrated `CoreDbRef` for the sources in the `tools` sub-folder.
* Nodocker environment update
details:
* Integrated `CoreDbRef` for the sources in the
`hive_integration/nodocker` sub-folder.
* Tests environment update
details:
* Integrated `CoreDbRef` for the sources in the `tests` sub-folder.
* The unit tests compile and run cleanly now.
* Generalise `CoreDbRef` to any `select_backend` supported database
why:
Generalisation was just missed due to overcoming some compiler oddity
which was tied to rocksdb for testing.
* Suppress compiler warning for `newChainDB()`
why:
Warning was added to this function which must be wrapped so that
any `CatchableError` is re-raised as `Defect`.
* Split off persistent `CoreDbRef` constructor into separate file
why:
This allows to compile a memory only database version without linking
the backend library.
* Use memory `CoreDbRef` database by default
detail:
Persistent DB constructor needs to import `db/core_db/persistent
why:
Most tests use memory DB anyway. This avoids linking `-lrocksdb` or
any other backend by default.
* fix `toLegacyBackend()` availability check
why:
got garbled after memory/persistent split.
* Clarify raw access to MPT for snap sync handler
why:
Logically, `kvt` is not the raw access for the hexary trie (although
this holds for the legacy database)
previously, the withdrawal validation is in process_block only,
but the one in persist block, which is also used in synchronizer
is not validated properly.
* Recreating some of the speculative-execution code.
Not really using it yet. Also there's some new inefficiency in
memory.nim, but it's fixable - just haven't gotten around to it yet.
The big thing introduced here is the idea of "cells" for stack,
memory, and storage values. A cell is basically just a Future (though
there's also the option of making it an Identity - just a simple
distinct wrapper around a value - if you want to turn off the
asynchrony).
* Bumped nim-eth.
* Cleaned up a few comments.
* Bumped nim-secp256k1.
* Oops.
* Fixing a few compiler errors that show up with EVMC enabled.
simplify EVM and delegete those things to accounts cache.
also no more manual state clearing, accounts cache will be
responsible for both collecting touched account and perform
state clearing.
* Gwei conversion should use u256 because u64 can overflow.
* Make withdrawals follow the EIP-158 state-clearing rules.
(i.e. Empty accounts should be deleted.)
* Allow the zero address in normalizeNumber.
(Necessary for one of the new withdrawals-related tests.)
* Another fix with a withdrawals-related test.