* Remove concept of empty/blind filters
why:
Not needed. A non-existent filter is is coded as a nil reference.
* Slightly generalised backend iterators
why:
* VertexID as key for the ID generator state makes no sense
* there will be more tables addressed by non-VertexID keys
* Store serialised/blobified vertices on memory backend
why:
This is more in line with the RocksDB backend so more appropriate
for testing when comparing behaviour. For a speedy memory database,
a backend-less variant should be used.
* Drop the `Aristo` prefix from names `AristoLayerRef`, etc.
* Suppress compiler warning
why:
duplicate imports
* Add filter serialisation transcoder
why:
Will be used as storage format
* Fix hashing algorithm
why:
Particular case where a sub-tree is on the backend, linked by an
Extension vertex to the top level.
* Update backend verification to report `dirty` top layer
* Implement distributed merge of backend filters
* Implement distributed backend access management
details:
Implemented and tested as described in chapter 5 of the `README.md`
file.
* Renamed type `NoneBackendRef` => `VoidBackendRef`
* Clarify names: `BE=filter+backend` and `UBE=backend (unfiltered)`
why:
Most functions used full names as `getVtxUnfilteredBackend()` or
`getKeyBackend()`. After defining abbreviations (and its meaning) it
seems easier to use `getVtxUBE()` and `getKeyBE()`.
* Integrate `hashify()` process into transaction logic
why:
Is now transparent unless explicitly controlled.
details:
Cache changes imply setting a `dirty` flag which in turn triggers
`hashify()` processing in transaction and `pack()` directives.
* Removed `aristo_tx.exec()` directive
why:
Inconsistent implementation, functionality will be provided with a
different paradigm.
* Provide deep copy for each transaction layer
why:
Localising changes. Selective deep copy was just overlooked.
* Generalise vertex ID generator state reorg function `vidReorg()`
why:
makes it somewhat easier to handle when saving layers.
* Provide dummy back end descriptor `NoneBackendRef`
* Optional read-only filter between backend and transaction cache
why:
Some staging area for accumulating changes to the backend DB. This
will eventually be an access layer for emulating a backend with
multiple/historic state roots.
* Re-factor `persistent()` with filter between backend/tx-cache => `stow()`
why:
The filter provides an abstraction from the physically stored data on
disk. So, there can be several MPT instances using the same disk data
with different state roots. Of course, all the MPT instances should
not differ too much for practical reasons :).
TODO:
Filter administration tools need to be provided.
* Better error handling
why:
Bail out on some error as early as possible before any changes.
* Implement `fetch()` as opposite of `merge()`
rationale:
In the `Aristo` realm, the action named `fetch()` and `merge()` indicate
leaf value related actions on the MPT, while actions `get()` and `put()`
handle vertex or hash key related operations that constitute the MPT.
* Re-factor `merge()` prototypes
why:
The most used variant of `merge()` should have the simplest prototype.
* Persistent DB constructor needs to import `aristo/aristo_init/persistent`
why:
Most applications use memory DB anyway. This avoids linking `-lrocksdb`
or any other back end libraries by default.
* Re-factor transaction module
why:
Got the paradigm wrong. The transaction descriptor did replace the
database one but should be handled separately.
* Nimbus folder environment update
details:
* Integrated `CoreDbRef` for the sources in the `nimbus` sub-folder.
* The `nimbus` program does not compile yet as it needs the updates
in the parallel `stateless` sub-folder.
* Stateless environment update
details:
* Integrated `CoreDbRef` for the sources in the `stateless` sub-folder.
* The `nimbus` program compiles now.
* Premix environment update
details:
* Integrated `CoreDbRef` for the sources in the `premix` sub-folder.
* Fluffy environment update
details:
* Integrated `CoreDbRef` for the sources in the `fluffy` sub-folder.
* Tools environment update
details:
* Integrated `CoreDbRef` for the sources in the `tools` sub-folder.
* Nodocker environment update
details:
* Integrated `CoreDbRef` for the sources in the
`hive_integration/nodocker` sub-folder.
* Tests environment update
details:
* Integrated `CoreDbRef` for the sources in the `tests` sub-folder.
* The unit tests compile and run cleanly now.
* Generalise `CoreDbRef` to any `select_backend` supported database
why:
Generalisation was just missed due to overcoming some compiler oddity
which was tied to rocksdb for testing.
* Suppress compiler warning for `newChainDB()`
why:
Warning was added to this function which must be wrapped so that
any `CatchableError` is re-raised as `Defect`.
* Split off persistent `CoreDbRef` constructor into separate file
why:
This allows to compile a memory only database version without linking
the backend library.
* Use memory `CoreDbRef` database by default
detail:
Persistent DB constructor needs to import `db/core_db/persistent
why:
Most tests use memory DB anyway. This avoids linking `-lrocksdb` or
any other backend by default.
* fix `toLegacyBackend()` availability check
why:
got garbled after memory/persistent split.
* Clarify raw access to MPT for snap sync handler
why:
Logically, `kvt` is not the raw access for the hexary trie (although
this holds for the legacy database)
why:
* Resolves some compiler coughing when it bails out on persitent
db constructor inside `test()` caluses (works perfectly outside.)
* API looks cleaner and better to maintain for the price of slightly
more work at the backend
* Remove 32bit os support from `custom_network` unit test
also:
* Fix compilation annoyance #1648
* Fix unit test on Kiln (changed `merge` logic?)
* Hide unused sources do not compile
why:
* Get them out of the way before major update
* Import and function prototype mismatch -- maybe some changes got out
of scope.
* Re-implemented `db_chain` as `core_db`
why:
Hiding `TrieDatabaseRef` and `HexaryTrie` by default allows to replace
the current db wrapper by some other one, e.g. Aristo
* Support compiler exception warnings for CoreDbRef base methods.
* Allow `pairs()` iterator on all memory based key-value tables
why:
Previously only available for capture recorder.
* Backport `chain_db.nim` changes into its re-implementation `core_apps.nim`
* Fix exception annotation
* Misc fixes
detail:
* Fix de-serialisation for account leafs
* Update node recovery from unit tests
* Remove `LegacyAccount` from `PayloadRef` object
why:
Legacy accounts use a hash key as storage root which is detrimental
to the working of the Aristo database which uses a vertex ID.
* Dissolve `hashify_helper` into `aristo_utils` and `aristo_transcode`
why:
Functions are of general interest so they should live in first level
code files.
* Added left/right iterators over leaf nodes
* Some helper/wrapper functions that might be useful
why:
For the main tree with root vertex ID 1, the leaf nodes hold the
account data. These accounts may link to sub trees the storage root
node ID of which must be registered here. There is no reverse key
lookup on the backend.
note:
These definitions are experimental. Also, there are some tests missing
for validating Payload data conversions.
* Provide transaction based interface for standard operations
* Provide unit tests for new Aristo interface using transactions
details:
These new tests combine and replace several single-purpose tests.
The now unused test sources will be kept for a while to be eventually
removed.
* Slightly tighten some self-check conditions
* Redefined the database descriptor object as reference (to the object)
why:
The upcoming transaction wrapper will work with a database reference
rather than the object itself
* Append state before `save()` to the Aristo descriptor
why:
This stae was previously returned by the function. Appending it to
a field of the Aristo descriptor seems easier to handle.
* Fix missing branch checks in transcoder
why:
Symmetry problem. `Blobify()` allowed for encoding degenerate branch
vertices while `Deblobify()` rejected decoding wrongly encoded data.
* Update memory backend so that it rejects storing bogus vertices.
why:
Error behaviour made similar to the rocks DB backend.
* Make sure that leaf vertex IDs are not repurposed
why:
This makes it easier to record leaf node changes
* Update error return code for next()/right() traversal
why:
Returning offending vertex ID (besides error code) helps debugging
* Update Merkle hasher for deleted nodes
why:
Not implemented, yet
also:
Provide cache & backend consistency check functions. This was
partly re-implemented from `hashifyCheck()`
* Simplify some unit tests
* Fix delete function
why:
Was conceptually wrong
* Added missing deferred cleanup directive to sub-test functions
why:
Rocksdb keeps the files locked for a short while leading to errors. This
was previously solved my using different db sub-directories
* Provide vertex deep-copy function globally.
why:
is just handy
* Avoid unnecessary vertex caching when merging proof nodes
also:
Run all merge tests on the rocksdb backend
Previously, proof node tests were run without backend
* Fix vertex ID generator state handling for rocksdb backend
why:
* Key error in walk iterator
* Needs to be loaded when opening the database
* Use non-zero sub-table prefixes for rocksdb
why:
Handy for debugging
* Fix error code for missing key on rocksdb backend
why:
Previously returned `VOID_HASH_KEY` rather than `GetKeyNotFound`
* Explicitly copy vertex data between internal table and function/result argument
why:
Function argument or return reference may still refer to the same data
object.
* Updated error symbols
why:
Error symbol names for the hike module now start with the prefix `Hike`.
* Write back modified branch node into local top layer cache
why:
With the backend available, the source of the branch node references
might not be the top layer cache. So any change must be explicitely
recorded.
* Generalised Aristo DB constructor for any type of backend
details:
* Records to be deleted are represented as key-void (rather than
key-value) pairs by the put-function arguments
* Allow direct driver access, iterators as example implementation and
for testing.
* Provide backend storage interface
details:
Stores the top layer onto backend tables
* Implemented Rocks DB backend
details:
Transaction based `put()` functionality
Iterators (based on direct RocksDB access)
* Fix include
why:
Eth67 not default yet so that got missed
* Rename `LeafKey` => `LeafTie`
why:
Name is a pen picture of what this object is for. Also, it avoids the
ubiquitous term `key`.
* Provided `getOrVoid()` wrapper for `getOrDefault()`
also:
Provide `isValid()` syntactic sugar for `.isNil.not`, `!= 0` etc.
Reorg descriptor source, split into sub-sources
* Bundled `NodeKey` objects with root ID and called it `HashLabel`
why:
`NodeKey` (aka repurposed Hash265) objects are unique only within a
particular sub-trie (e.g. storage slots) which are kept separated
(i.e non-interleaved) by design. This is not applied to the backend
as the map VertexID->NodeKey labelling the nodes needs not be injective.
For the in-memory database (transaction) layers, the injective map
VertexID->(VertexID,NodeKey) is used where the first field of the image
tuple is the root ID of the sub-trie the `NodeKey` object is valid. So
identical storage tries for different accounts can be represented.
* Exclude some storage tests
why:
These test running on external dumps slipped through. The particular
dumps were reported earlier as somehow dodgy.
This was changed in `#1457` but having a second look, the change on
hexary_interpolate.nim(350) might be incorrect.
* Redesign `Aristo DB` descriptor for transaction based layers
why:
Previous descriptor layout made it cumbersome to push/pop
database delta layers.
The new architecture keeps each layer with the full delta set
relative to the database backend.
* Keep root ID as part of the `Patricia Trie` leaf path
why;
That way, forests are supported
* Fix missing Merkle key removal in `merge()`
* Accept optional root hash argument in `hashify()`
why:
For importing a full database, there will be no proof data except the
root key. So this can be used to check and set the root key in the
database descriptor.
also:
Associate vertex ID to `hashify()` error return code
* Added Aristo Trie traversal function
why:
* step along leaf vertices in sorted order
* tree/trie consistency checks when debugging
* Enabled storage slots test data for Aristo DB
* Keep vertex ID generator state with each db-layer
why:
The vertex ID generator state is part of the difference to the below
layer
* Move otherwise unused source to test directory
* Add Merkle hash generator
also:
* Verification facility for debugging
* Empty Merkle key hashes encoded as `EMPTY_ROOT_HASH`
details:
1. Merging a leaf vertex merges a `Patricia Trie` path (while
adding/modiying vertices) and adds a leaf node with payload
2. Merging a Merkel node merges a single vertex to the `Patricia Trie`
and registers merkel hashes
3. Action 2 can be used before action 1 in order to construct a
Merkel proof as required for handling `snap/1` data.
4. Unit tests show that action 3 is benign for now :)
* Cosmetics, renamed fields (eVtx, bVtx) -> (eVid, bVid)
* Multilayered delta architecture for Aristo DB
details:
Any VertexID or data retrieval needs to go down the rabbit hole and
fetch/get/manipulate the bottom layer -- even without explicit
backend.
* Direct reference to backend from top-level layer
why:
Some services as the vid management needs to be synchronised among all
layers. So access is optimised.
* Experimental MP-trie
why:
Deleting records is a infeasible with the current structure
* Added vertex ID recycling management
Todo:
Provide some unit tests
* DB layout update
why:
Main news is the separation of `Merkel` hashes into an extra table.
details:
The code fragments cover conversion between compact MPT records and
Aristo DB records as well as some rudimentary cache handling for
the `Merkel` hashes (i.e. the extra table entries.)
todo:
Add some simple unit test for the descriptor record (currently used
for vertex ID management, only.)
* Updated vertex ID recycling management
details:
added simple unit tests (mainly testing ABI)
* docu update
* Recreating some of the speculative-execution code.
Not really using it yet. Also there's some new inefficiency in
memory.nim, but it's fixable - just haven't gotten around to it yet.
The big thing introduced here is the idea of "cells" for stack,
memory, and storage values. A cell is basically just a Future (though
there's also the option of making it an Identity - just a simple
distinct wrapper around a value - if you want to turn off the
asynchrony).
* Bumped nim-eth.
* Cleaned up a few comments.
* Bumped nim-secp256k1.
* Oops.
* Fixing a few compiler errors that show up with EVMC enabled.
* Update sync scheduler pool mode
why:
The pool mode allows to loop over active peers one after another. This
is ideal for soft re-starting peers. As this is a two tier experience
(start/stop, setup/release) the loop must be run twice. This is
controlled by a more rigid re-definition of how to use the `poolMode`
flag.
* Mitigate RLP serialiser deficiency
why:
Currently, serialising the `BlockBody` in not conevrtible and need
to be checked in the `eth` module. Currently a local fix for the
wire protocol applies. Unit tests will stay (after this local solution
will have been removed.)
* Code cosmetics and massage
details:
Main part is `types.toStr()` as a unified function for logging block
numbers.
* Allow to use a logical genesis replacement (start of history)
why:
Snap sync will set up an arbitrary pivot at a block number different
from zero. In fact, the higher the block number the better.
details:
A non-genesis start of history will currently only affect the score
values which were derived from the difficulty.
* Provide function to store the snap pivot block header in chain db
why:
Together with the start of history facility, this allows to proceed
with full syncing once snap has finished.
details:
Snap db storage was switched from a sub-tables to the flat chain db.
* Provide database completeness and sanity checker
details:
For debugging on smaller databases, only
* Implement snap -> full sync switch
t8n: a silly bug contract address generator, should use original
tx nonce instead of read the nonce from sender address in state db.
Although in EVM contract address generated by reading nonce from state db
is correct, outside EVM that nonce value might have been modified,
thus generating incorrect contract address.
accounts cache: when clearing account storage, the originalValue
cache is not cleared, only the storageRoot set to empty storage root,
this will cause getStorage and getCommitedStorage return wrong value
if the originalValue cache contains old value.
simplify EVM and delegete those things to accounts cache.
also no more manual state clearing, accounts cache will be
responsible for both collecting touched account and perform
state clearing.
* Gwei conversion should use u256 because u64 can overflow.
* Make withdrawals follow the EIP-158 state-clearing rules.
(i.e. Empty accounts should be deleted.)
* Allow the zero address in normalizeNumber.
(Necessary for one of the new withdrawals-related tests.)
* Silence some compiler gossip -- part 5, common
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Silence some compiler gossip -- part 6, db, rpc, utils
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Silence some compiler gossip -- part 7, randomly collected source files
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Silence some compiler gossip -- part 8, assorted tests
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Clique update
why:
More impossible exceptions (undoes temporary fix from previous PR)
* Updated to the latest nim-eth, nim-rocksdb, nim-web3
* Bump nimbus-eth2 module and fix related issues
Temporarily disabling Portal beacon light client network as it is
a lot of copy pasted code that did not yet take into account
forks. This will require a bigger rework and was not yet tested
in an actual network anyhow.
* More nimbus fixes after module bumps
---------
Co-authored-by: Adam Spitz <adamspitz@status.im>
Co-authored-by: jangko <jangko128@gmail.com>
Two unresolved items currently:
- Three tests that are temporarily disabled as they fail in the
macro_assembler code, which seems to be due to an ambigious
identifier Stop (Ops and chronos ServerCommand enum).
- i386 CI disabled as it fails at Nim compilation already. Failed
tests where already ignored for this target.
* Piecemeal trie inspection
details:
Trie inspection will stop after maximum number of nodes visited.
The inspection can be resumed using the returned state from the
last session.
why:
This feature allows for task switch between `piecemeal` sessions.
* Extract pivot helper code from `worker.nim` => `pivot_helper.nim`
* Accounts import will now return dangling paths from `proof` nodes
why:
With proper bookkeeping, this can be used to start healing without
analysing the the probably full trie.
* Update `unprocessed` account range handling
why:
More generally, the API of a pairs of unprocessed intervals favours
the first set and not before that is exhausted the second set comes
into play.
This was unfortunately implemented which caused the ranges to be
unnecessarily fractioned. Now the number of range interval typically
remains in the lower single digit numbers.
* Save sync state after end of downloading some accounts
details:
restore/resume to be implemented later
* Update log ticker, using time interval rather than ticker count
why:
Counting and logging ticker occurrences is inherently imprecise. So
time intervals are used.
* Use separate storage tables for snap sync data
* Left boundary proof update
why:
Was not properly implemented, yet.
* Capture pivot in peer worker (aka buddy) tasks
why:
The pivot environment is linked to the `buddy` descriptor. While
there is a task switch, the pivot may change. So it is passed on as
function argument `env` rather than retrieved from the buddy at
the start of a sub-function.
* Split queues `fetchStorage` into `fetchStorageFull` and `fetchStoragePart`
* Remove obsolete account range returned from `GetAccountRange` message
why:
Handler returned the wrong right value of the range. This range was
for convenience, only.
* Prioritise storage slots if the queue becomes large
why:
Currently, accounts processing is prioritised up until all accounts
are downloaded. The new prioritisation has two thresholds for
+ start processing storage slots with a new worker
+ stop account processing and switch to storage processing
also:
Provide api for `SnapTodoRanges` pair of range sets in `worker_desc.nim`
* Generalise left boundary proof for accounts or storage slots.
why:
Detailed explanation how this works is documented with
`snapdb_accounts.importAccounts()`.
Instead of enforcing a left boundary proof (which is still the default),
the importer functions return a list of `holes` (aka node paths) found in
the argument ranges of leaf nodes. This in turn is used by the book
keeping software for data download.
* Forgot to pass on variable in function wrapper
also:
+ Start healing not before 99% accounts covered (previously 95%)
+ Logging updated/prettified
* Provided common scheduler API, applied to `full` sync
* Use hexary trie as storage for proofs_db records
also:
+ Store metadata with account for keeping track of account state
+ add iterator over accounts
* Common scheduler API applied to `snap` sync
* Prepare for accounts bulk import
details:
+ Added some ad-hoc checks for proving accounts data received from the
snap/1 (will be replaced by proper database version when ready)
+ Added code that dumps some of the received snap/1 data into a file
(turned of by default, see `worker_desc.nim`)
* Relocated `IntervalSets` to nim-stew repo
* Accumulate accounts on temporary kv-DB
why:
Explore the data as returned from snap/1. Will be converted to a
`eth/db` next.
details:
Verify and accumulate per/state-root accounts downloaded via snap.
also:
Some unit tests
* Replace `Table` by `TrieDatabaseRef` for accounts accumulator
* update ticker statistics
details:
mean/variance based counter update
* allow persistent db for proved accounts
* rebase, and globally activate unit test
* fix statistics
Includes a simple test harness for the merge interop M1 milestone
This aims to enable connecting nimbus-eth2 to nimbus-eth1 within
the testing protocol described here:
https://github.com/status-im/nimbus-eth2/blob/amphora-merge-interop/docs/interop_merge.md
To execute the work-in-progress test, please run:
In terminal 1:
tests/amphora/launch-nimbus.sh
In terminal 2:
tests/amphora/check-merge-test-vectors.sh
* Redesign of BaseVMState descriptor
why:
BaseVMState provides an environment for executing transactions. The
current descriptor also provides data that cannot generally be known
within the execution environment, e.g. the total gasUsed which is
available not before after all transactions have finished.
Also, the BaseVMState constructor has been replaced by a constructor
that does not need pre-initialised input of the account database.
also:
Previous constructor and some fields are provided with a deprecated
annotation (producing a lot of noise.)
* Replace legacy directives in production sources
* Replace legacy directives in unit test sources
* fix CI (missing premix update)
* Remove legacy directives
* chase CI problem
* rebased
* Re-introduce 'AccountsCache' constructor optimisation for 'BaseVmState' re-initialisation
why:
Constructing a new 'AccountsCache' descriptor can be avoided sometimes
when the current state root is properly positioned already. Such a
feature existed already as the update function 'initStateDB()' for the
'BaseChanDB' where the accounts cache was linked into this desctiptor.
The function 'initStateDB()' was removed and re-implemented into the
'BaseVmState' constructor without optimisation. The old version was of
restricted use as a wrong accounts cache state would unconditionally
throw an exception rather than conceptually ask for a remedy.
The optimised 'BaseVmState' re-initialisation has been implemented for
the 'persistBlocks()' function.
also:
moved some test helpers to 'test/replay' folder
* Remove unused & undocumented fields from Chain descriptor
why:
Reduces attack surface in general & improves reading the code.
previously, every time the VMState was created, it will also create
new stateDB, and this action will nullify the advantages of cached accounts.
the new changes will conserve the accounts cache if the executed blocks
are contiguous. if not the stateDB need to be reinited.
this changes also allow rpcCallEvm and rpcEstimateGas executed properly
using current stateDB instead of creating new one each time they are called.
this is a preparation for migration to confutils based config
although there is still some getConfiguration usage in tests code
it will be removed after new config arrived
instead of using stdlib/json, now we switch to json_serialization
the result is much tidier code and more robust when parsing
optional fields.
fixes#635
instead of using header as input param, now getReceipts using
receiptRoot hash, the intention is clearer and less data passed around
when we only using receiptRoot instead of whole block header.
- dynamically generated copyright year interval
- added the db backend to the header
- documented the db-backend-changing define, made it case insensitive
and ensured wrong values would trigger compilation errors
- added some useful `chronicles` defines in the top-level nim.cfg
- converted some assert() calls to error codes to avoid a reported
segfault with -d:release
- the recoverable errors are being recovered from, in persistWorkItem()
- the only case that's a show stopper raises an exception
Also implements transactional block persistence. Two issues
in the transaction processing code have been discovered that
might affect other usages such as the CALL instruction.
The main fix gets us past block 49000.
You may need to clean up your database.
By default, the database files will be written in the
platform-specific application data folder:
$HOME/AppData/Roaming/Nimbus/DB
$HOME/Library/Application Support/Nimbus/DB
$HOME/.cache/nimbus/db
* partly fix state_db getCode to get 20 new working GeneralStateTests; remove 2 functions which existed as workarounds; switch all remaining setBalance calls in GeneralStateTestRunner to subBalance (addBalance calls already changed)
* two of the 20 new tests don't work in 32-bit builds
This blindly changes logging to nim-chronicles - issues that ensue:
* keeps gas cost computation logs hidden behind flag
* unclear if logScope is practical - for example, since vm is split over
many files, topics get lost when using simple top-level per-module
topics
* when passing named object around, scope should incliude the name of
the object but this is caught neither by logScope nor by dynamicLogScope
* move forks constants, rename errors
* Move vm/utils to vm/interpreter/utils
* initial opcodes refactoring
* Add refactored Comparison & Bitwise Logic Operations
* Add sha3 and address, simplify macro, support pop 0
* balance, origin, caller, callValue
* fix gas copy opcodes gas costs, add callDataLoad/Size/Copy, CodeSize/Copy and gas price opcode
* Update with 30s, 40s, 50s opcodes + impl of balance + stack improvement
* add push, dup, swap, log, create and call operations
* finish opcode implementation
* Add the new dispatching logic
* Pass the opcode test
* Make test_vm_json compile
* halt execution without exceptions for Return, Revert, selfdestruct (fix#62)
* Properly catch and recover from EVM exceptions (stack underflow ...)
* Fix byte op
* Fix jump regressions
* Update for latest devel, don't import old dispatch code as quasiBoolean macro is broken by latest devel
* Fix sha3 regression on empty memory slice and until end of range slice
* Fix padding / range error on expXY_success (gas computation left)
* update logging procs
* Add tracing - expXY_success is not a regression, sload stub was accidentally passing the test
* Reuse the same stub as OO implementation
* Delete previous opcode implementation
* Delete object oriented fork code
* Delete exceptions that were used as control flows
* delete base.nim 🔥, yet another OO remnants
* Delete opcode table
* Enable omputed gotos and compile-time gas fees
* Revert const gasCosts -> generates SIGSEGV
* inline push, swap and dup opcodes
* loggers are now template again, why does this pass new tests?
* Trigger CI rebuild after rocksdb fix https://github.com/status-im/nim-rocksdb/pull/5
* Address review comment on "push" + VMTests in debug mode (not release)
* Address review comment: don't tag fork by default, make opcode impl grepable
* Static compilation fixes after rebasing
* fix the initialization of the VM database
* add a missing import
* Deactivate balance and sload test following #59
* Reactivate stack check (deactivated in #59, necessary to pass tests)
* Merge remaining opcodes implementation from #59
* Merge callDataLoad and codeCopy fixes, todo simplify see #67
Merge note: currently cannot compile due to `quasiBoolean` (#63). This will be solved by https://github.com/status-im/nimbus/pull/65
----
* Implemented most of the stubbed out state handling instructions
The code compiles, but still fails at the moment due to incorrect
initialization of the VM. Don't merge yet. More commits will be
pushed in the coming days.
* Fixed crash
* trie put and del are void now
* getBlockTransactionData and getReceipts
* Working code for extcodesize0.json
* fix origin.json
* fix calldatasize1
* fix calldataloadSizeTooHighPartial
* fix calldataloadSizeTooHigh
* more efficient PushX implementation
* fix and, or, xor
* `usedBytes` was not named appropriately. it indicates the last
populated position in the data (the last valid index) for slicing
purposes (i.e. the position is passed to `toOpenArray`)
* Fixed the `==` operator for DBKeys
* Use one-byte key for the 'canonical head hash'
* Move and cleanup interpreter files - prepare for redesign of VM
* fix call comment aobut recursive dependencies
* memory: use a template again and avoid (?) a cstring-> string conversion
* Fix stack test regression
* Fix recursive dependency on logging_ops, test_vm_json compiles but regression :/
* Fix signextend regression
* Fix 3 signed test and sha3 test
* Decoupling op logic and gas - introduce gasometer, rework opcode declaration
* Remove gas constants for gas opcode computation
* Remove gas constants for precompiled contracts
* make vm_types compile
* Make opcode, call and computation compile
* Distinguish between dynamic and complex gas costs, fix arithmetic
* Fix context and sha3
* update memory and storage ops
* Log opcode uses memory expansion code
* update/stub system_ops with gas costs
* Make test compile. Deactivate stub test_vm
* all tests compiles, opcode fails due to https://github.com/nim-lang/Nim/issues/8007 (const object variant in tables reset at runtime)
* Create an enum without holes - workaround: https://github.com/nim-lang/Nim/issues/8007
* Use arrays instead of tables for GasCosts, remove some unused imports - passing all basic tests!
* Make test_vm_json compile
* Fix test_vm_json - workaround https://github.com/nim-lang/Nim/issues/8015
* fix memory expansion cost bug
* Remove leftover special handling from before GckMemExpansion
* cleanup outdated comment, better align =
* Fix sha3 gas cost not taking memory expansion into account
* Improve gas error reporting of test_vm_json
* Fix gas computation regression due to mem expansion
* mass replace for memExpansion->RequestedMemSize was too eager
* fix log gas cost (no tests :/)
* missed a static FeeSchedule
* static as expression is fickle