previously, every time the VMState was created, it will also create
new stateDB, and this action will nullify the advantages of cached accounts.
the new changes will conserve the accounts cache if the executed blocks
are contiguous. if not the stateDB need to be reinited.
this changes also allow rpcCallEvm and rpcEstimateGas executed properly
using current stateDB instead of creating new one each time they are called.
* Provide API
details:
API is bundled via clique.nim.
* Set extraValidation as default for PoA chains
why:
This triggers consensus verification and an update of the list
of authorised signers. These signers are integral part of the
PoA block chain.
todo:
Option argument to control validation for the nimbus binary.
* Fix snapshot state block number
why:
Using sub-sequence here, so the len() function was wrong.
* Optional start where block verification begins
why:
Can speed up time building loading initial parts of block chain. For
PoA, this allows to prove & test that authorised signers can be
(correctly) calculated starting at any point on the block chain.
todo:
On Goerli around blocks #193537..#197568, processing time increases
disproportionally -- needs to be understand
* For Clique test, get old grouping back (7 transactions per log entry)
why:
Forgot to change back after troubleshooting
* Fix field/function/module-name misunderstanding
why:
Make compilation work
* Use eth_types.blockHash() rather than utils.hash() in Clique modules
why:
Prefer lib module
* Dissolve snapshot_misc.nim
details:
.. into clique_verify.nim (the other source file clique_unused.nim
is inactive)
* Hide unused AsyncLock in Clique descriptor
details:
Unused here but was part of the Go reference implementation
* Remove fakeDiff flag from Clique descriptor
details:
This flag was a kludge in the Go reference implementation used for the
canonical tests. The tests have been adapted so there is no need for
the fakeDiff flag and its implementation.
* Not observing minimum distance from epoch sync point
why:
For compiling PoA state, the go implementation will walk back to the
epoch header with at least 90000 blocks apart from the current header
in the absence of other synchronisation points.
Here just the nearest epoch header is used. The assumption is that all
the checkpoints before have been vetted already regardless of the
current branch.
details:
The behaviour of using the nearest vs the minimum distance epoch is
controlled by a flag and can be changed at run time.
* Analysing processing time (patch adds some debugging/visualisation support)
why:
At the first half million blocks of the Goerli replay, blocks on the
interval #194854..#196224 take exceptionally long to process, but not
due to PoA processing.
details:
It turns out that much time is spent in p2p/excecutor.processBlock()
where the elapsed transaction execution time is significantly greater
for many of these blocks.
Between the 1371 blocks #194854..#196224 there are 223 blocks with more
than 1/2 seconds execution time whereas there are only 4 such blocks
before and 13 such after this range up to #504192.
* fix debugging symbol in clique_desc (causes CI failing)
* Fixing canonical reference tests
why:
Two errors were introduced earlier but ovelooked:
1. "Remove fakeDiff flag .." patch was incomplete
2. "Not observing minimum distance .." introduced problem w/tests 23/24
details:
Fixing 2. needed to revert the behaviour by setting the
applySnapsMinBacklog flag for the Clique descriptor. Also a new
test was added to lock the new behaviour.
* Remove cruft
why:
Clique/PoA processing was intended to take place somewhere in
executor/process_block.processBlock() but was decided later to run
from chain/persist_block.persistBlock() instead.
* Update API comment
* ditto
* extract unused clique/mining support into separate file
why:
mining is currently unsupported by nimbus
* Replay first 51840 transactions from Goerli block chain
why:
Currently Goerli is loaded but the block headers are not verified.
Replaying allows real data PoA development.
details:
Simple stupid gzipped dump/undump layer for debugging based on
the zlib module (no nim-faststream support.)
This is a replay running against p2p/chain.persistBlocks() where
the data were captured from.
* prepare stubs for PoA engine
* split executor source into sup-modules
why:
make room for updates, clique integration should go into
executor/update_poastate.nim
* Simplify p2p/executor.processBlock() function prototype
why:
vmState argument always wraps basicChainDB
* split processBlock() into sub-functions
why:
isolate the part where it will support clique/poa
* provided additional processTransaction() function prototype without _fork_ argument
why:
with the exception of some tests, the _fork_ argument is always derived
from the other prototype argument _vmState_
details:
similar situation with makeReceipt()
* provide new processBlock() version explicitly supporting PoA
details:
The new processBlock() version supporting PoA is the general one also
supporting non-PoA networks, it needs an additional _Clique_ descriptor
function argument for PoA state (if any.)
The old processBlock() function without the _Clique_ descriptor argument
retorns an error on PoA networgs (e.g. Goerli.)
* re-implemented Clique descriptor as _ref object_
why:
gives more flexibility when moving around the descriptor object
details:
also cleaned up a bit the clique sources
* comments for clarifying handling of Clique/PoA state descriptor
usually, there is always a sender around `getRecipient` call.
no need to recalculate sender. and more important, in some of
JSON-RPC/GraphQL call, the sender is come from `rpcCallData`,
not from `tx.getSender`. or in ohter situation when the tx is
an unsigned tx, without `r,s,v` fields to calculate sender.
instead of using header as input param, now getReceipts using
receiptRoot hash, the intention is clearer and less data passed around
when we only using receiptRoot instead of whole block header.