* Redesign snap1 message GetTrieNodes argument prototypes
why:
A list of sub-objects `seq[SnapTriePath]` is more intuitive to work with
than an opaque definition `seq[seq[Blob]]` because the inner object
`SnapTriePath` object has a dedicated inner structure (for how to
interprete `seq[Blob]`.)
* Collect some public constants into `constants.nim` file
* Reorg `hexary_paths.nim`
why:
+ Collecting nodes following a partial path properly ending at an
extension node failed to collect this last node.
+ Merged the nodes collecting algorithm for persistent and in-memory
into a single generic function `hexary_paths.rootPathExtend()`
info:
Extracted common tasks to `hexary_nodes_helper.nim`
* Implement `StorageRanges` message handler for snap/1 protocol
* Add state root to node steps path register `RPath` or `XPath`
why:
Typically, the first node in the path register is the state root. There
are occasions, when the path register is empty (i.e. there are no node
references) which typically applies to a zero node key.
In order to find the next node key greater than zero, the state root is
is needed which is now part of the `RPath` or `XPath` data types.
* Extracted hexary tree debugging functions into separate files
* Update empty path fringe case for left/right node neighbour
why:
When starting at zero, the node steps path register would be empty. So
will any path that is before the fist non-zero link of a state root (if
it is a `Branch` node.)
The `hexaryNearbyRight()` or `hexaryNearbyLeft()` function required a
non-zero node steps path register. Now the first node is to be advanced
starting at the first state root link if necessary.
* Simplify/reorg neighbour node finder
why:
There was too mach code repetition for the cases
* persistent or in-memory database
* left or right move
details:
Most algorithms apply for persistent and in-memory alike. Using
templates/generic functions most of these algorithms can be stated
in a unified way
* Update storage slots snap/1 handler
details:
Minor changes to be more debugging friendly.
* Fix detection of full database for snap sync
* Docu: Snap sync test & debugging scenario
* Cosmetics
details:
+ Update doc generator
+ Fix key type representation in `hexary_desc` for debugging
+ Redefine `isImportOk()` as template for better `check()` line reporting
* Fix fringe condition when interpolating Merkle-Patricia tries
details:
Small change with profound effect fixing some pathological condition
that haunted the unit test set on large data sers. There is still one
condition left which might well be due to an incomplete data set.
* Unit test proof nodes for node range extractor
* Unit tests to run on full extraction set
why:
Left over from troubleshooting, range length was only 5
* Silence some compiler gossip -- part 1, tx_pool
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Silence some compiler gossip -- part 2, clique
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Silence some compiler gossip -- part 3, misc core
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Silence some compiler gossip -- part 4, sync
details:
Mostly removing redundant imports and `Defect` tracer after switch
to nim 1.6
* Clique update
why:
Missing exception annotation
* Update comments and test noise
* Fix boundary proofs
why:
Where neither used in production, nor unit tested. For production, other
methods apply to test leaf range integrity directly based of the proof
nodes.
* Added `hexary_range()`: interval range + proof extractor
details:
+ Will be used for `snap/1` protocol handler
+ Unit tests added (also for testing left boundary proof)
todo:
Need to verify completeness of proof nodes
* Reduce some nim 1.6 compiler noise
* Stop unit test gossip for ci tests
* Relocated mothballing (i.e. swap-in preparation) logic
details:
Mothballing was previously tested & started after downloading
account ranges in `range_fetch_accounts`.
Whenever current download or healing stops because of a pivot change,
swap-in preparation is needed (otherwise some storage slots may get
lost when swap-in takes place.)
Also, `execSnapSyncAction()` has been moved back to `pivot_helper`.
* Reorganised source file directories
details:
Grouped pivot focused modules into `pivot` directory
* Renamed `checkNodes`, `sickSubTries` as `nodes.check`, `nodes.missing`
why:
Both lists are typically used together as pair. Renaming `sickSubTries`
reflects moving away from a healing centric view towards a swap-in
attitude.
* Multi times coverage recording
details:
Per pivot account ranges are accumulated into coverage range set. This
set fill eventually contain a singe range of account hashes [0..2^256]
which amounts to 100% capacity.
A counter has been added that is incremented whenever max capacity is
reached. The accumulated range is then reset to empty.
The effect of this setting is that the coverage can be evenly duplicated.
So 200% would not accumulate on a particular region.
* Update range length comparisons (mod 2^256)
why:
A range interval can have sizes 1..2^256 as it cannot be empty by
definition. The number of points in a range intervals set can have
0..2^256 points. As the scalar range is a residue class modulo 2^256,
the residue class 0 means length 2^256 for a range interval, but can
be 0 or 2^256 for the number of points in a range intervals set.
* Generalised `hexaryEnvelopeDecompose()`
details:
Compile the complement of the union of some (processed) intervals and
express this complement as a list of envelopes of sub-tries.
This facility is directly applicable to swap-in book-keeping.
* Re-factor `swapIn()`
why:
Good idea but baloney implementation. The main algorithm is based on
the generalised version of `hexaryEnvelopeDecompose()` which has been
derived from this implementation.
* Refactor `healAccounts()` using `hexaryEnvelopeDecompose()` as main driver
why:
Previously, the hexary trie was searched recursively for dangling nodes
which has a poor worst case performance already when the trie is
reasonably populated.
The function `hexaryEnvelopeDecompose()` is a magnitude faster because
it does not peruse existing sub-tries in order to find missing nodes
although result is not fully compatible with the previous function.
So recursive search is used in a limited mode only when the decomposer
will not deliver a useful result.
* Logging & maintenance fixes
details:
Preparation for abandoning buddy-global healing variables `node`,
`resumeCtx`, and `lockTriePerusal`. These variable are trie-perusal
centric which will be run on the back burner in favour of
`hexaryEnvelopeDecompose()` which is used for accounts healing already.
* Miscellaneous tweaks & fixes
details:
+ Catch `TransportError` exception in `legacy.nim` module
+ Fix self-calling wrapper `hexaryEnvelopeTouchedBy()`
* Update documentation, logging etc.
* Changed `checkNode` batch list `seq[Blob]` => `seq[NodeSpecs]`
why:
The `NodeSpecs` type as used here is a tuple `(partial-path,node-key)`.
When `checkNode` partial paths are collected, also the node key is
available so it should be registered and not repeatedly recovered from
the database.
* Add optional begin/end trace statement in snap scheduler
why:
Allows to trace invoked entity and scheduler state variables
* Rename and update dismantle => hexaryEnvelopeDecompose()
why:
+ As for naming, a positive connotation is prefered
+ The unit tests were really insufficient
+ The function result was wrong on a few boundry conditions
detail:
+ Extracted the function from `hexary_paths.nim` and re-implemented
it together with other envelope functions => `hexary_envelope.nim`
+ Re-wrote docu for `hexaryEnvelopeDecompose()`
* Relaxed right condition for `hexaryEnvelopeDecompose()` range argument
why;
Previously, the right point of the argument interval had to be a path
to an allocated leaf node. While this is typically a given for accounts,
it is easier to require an arbitrary range of paths (or keys) with
the requirement of a `boundary proof` for left and right (i.e. enough
nodes in the database to find the end points.)
also:
Bug fixes for related functions (typos, missing conditions etc.)
* Add missing unit tests include file