* Aristo: Merge `delta_siblings` module into `deltaPersistent()`
* Aristo: Add `isEmpty()` for canonical checking whether a layer is empty
* Aristo: Merge `LayerDeltaRef` into `LayerObj`
why:
No need to maintain nested object refs anymore. Previously the
`LayerDeltaRef` object had a companion `LayerFinalRef` which held
non-delta layer information.
* Kvt: Merge `LayerDeltaRef` into `LayerRef`
why:
No need to maintain nested object refs (as with `Aristo`)
* Kvt: Re-write balancer logic similar to `Aristo`
why:
Although `Kvt` was a cheap copy of `Aristo` it sort of got out of
sync and the balancer code was wrong.
* Update iterator over forked peers
why:
Yield additional field `isLast` indicating that the last iteration
cycle was approached.
* Optimise balancer calculation.
why:
One can often avoid providing a new object containing the merge of two
layers for the balancer. This avoids copying tables. In some cases this
is replaced by `hasKey()` look ups though. One uses one of the two
to combine and merges the other into the first.
Of course, this needs some checks for making sure that none of the
components to merge is eventually shared with something else.
* Fix copyright year
* Remove `chunkedMpt` from `persistent()`/`stow()` function
why:
Proof-mode code was removed with PR #2445 and needs to be re-designed.
* Remove unused `beStateRoot` argument from `deltaMerge()`
* Update/drastically simplify `txStow()`
why:
Got rid of many boundary conditions
details:
Many pre-conditions have changed. In particular, previous versions
used the account state (hash) which was conveniently available and
checked it against the backend in order to find out whether there
was something to do, at all. Currently, only an empty set of all
tables in the delta layer has the balancer update ignored.
Notable changes are:
* no check against account state (see above)
* balancer filters have no hash signature (some legacy stuff left over
from journals)
* no (shap sync) proof data which made the generation of the a top layer
more complex
* Cosmetics, cruft removal
* Update unit test file & function name
why:
Was legacy module
The state and account MPT:s currenty share key space in the database
based on that vertex id:s are assigned essentially randomly, which means
that when two adjacent slot values from the same contract are accessed,
they might reside at large distance from each other.
Here, we prefix each vertex id by its root causing them to be sorted
together thus bringing all data belonging to a particular contract
closer together - the same effect also happens for the main state MPT
whose nodes now end up clustered together more tightly.
In the future, the prefix given to the storage keys can also be used to
perform range operations such as reading all the storage at once and/or
deleting an account with a batch operation.
Notably, parts of the API already supported this rooting concept while
parts didn't - this PR makes the API consistent by always working with a
root+vid.
* CoreDb: Merged all sub-descriptors into `base_desc` module
* Dissolve `aristo_db/common_desc.nim`
* No need to export `Aristo` methods in `CoreDb`
* Resolve/tighten methods in `aristo_db` sub-moduled
why:
So they can be straihgt implemented into the `base` module
* Moved/re-implemented `KVT` methods into `base` module
* Moved/re-implemented `MPT` methods into `base` module
* Moved/re-implemented account methods into `base` module
* Moved/re-implemented `CTX` methods into `base` module
* Moved/re-implemented `handler_{aristo,kvt}` into `aristo_db` module
* Moved/re-implemented `TX` methods into `base` module
* Moved/re-implemented base methods into `base` module
* Replaced `toAristoSavedStateBlockNumber()` by proper base method
why:
Was the last for keeping reason for keeping low level backend access
methods
* Remove dedicated low level access to `Aristo` backend
why:
Not needed anymore, for debugging the descriptors can be accessed
directly
also:
some clean up stuff
* Re-factor `CoreDb` descriptor layout and adjust base methods
* Moved/re-implemented iterators into `base_iterator*` modules
* Update docu
* Remove all journal related stuff
* Refactor function names journal*() => delta*(), filter*() => delta*()
* remove `trg` fileld from `FilterRef`
why:
Same as `kMap[$1]`
* Re-type FilterRef.src as `HashKey`
why:
So it is directly comparable to `kMap[$1]`
* Moved `vGen[]` field from `LayerFinalRef` to `LayerDeltaRef`
why:
Then a separate `FilterRef` type is not needed, anymore
* Rename `roFilter` field in `AristoDbRef` => `balancer`
why:
New name more appropriate.
* Replace `FilterRef` by `LayerDeltaRef` type
why:
This allows to avoid copying into the `balancer` (see next patch set)
most of the time. Typically, only one instance is running on the backend
and the `balancer` is only used as a stage before saving data.
* Refactor way how to store data persistently
why:
Avoid useless copy when staging `top` layer for persistently saving to
backend.
* Fix copyright header?
* Aristo: Generalise alien/guest interface for piggiback on database
* Aristo: Code cosmetics
* CoreDb+Kvt: Update transaction API
why:
Use single addressable function `forkTx(backLevel: int)` as used
in `Aristo`. So `Kvt` can be synced simultaneously to `Aristo`.
also:
Refactored `kvt_tx.nim` in a similar fashion to `Aristo`.
* Kvt: Replace `LayerDelta` object by reference
why:
Will be needed when introducing filters
* Kvt: Remodel backend filter facility similar to `Aristo`
why:
This allows to operate on several KVT instances simultaneously.
* CoreDb+Kvt: Fix on-disk storage
why:
Overlooked name change: `stow()` => `persist()` for permanent storage
* Fix copyright headers
* Aristo: Rename journal related sources and functions
why:
Previously, the naming was hinged on the phrases `fifo`, `filter` etc.
which reflect the inner workings of cascaded filters. This was
unfortunate for reading/understanding the source code for actions where
the focus is the journal as a whole.
* Aristo: Fix buffer overflow (path length truncating error)
* Aristo: Tighten `hikeUp()` stop check, update error code
why:
Detect dangling vertex links. These are legit with `snap` sync
processing but not with regular processing.
* Aristo: Raise assert in regular mode `merge()` at a dangling link/edge
why:
With `snap` sync processing, partial trees are ok and can be amended.
Not so in regular mode.
Previously there was only a debug message when a non-legit dangling edge
was encountered.
* Aristo: Make sure that vertices are copied before modification
why:
Otherwise vertices from lower layers might also be modified
* Aristo: Fix relaxed mode for validity checker `check()`
* Remove cruft
* Aristo: Update API for transaction handling
details:
+ Split `aristo_tx.nim` into sub-modules
+ Split `forkWith()` into `findTx()` + `forkTx()`
+ Removed `forkTop()`, `forkBase()` (now superseded by new `forkTx()`)
* CoreDb+Aristo: Fix initialiser (missing methods)
* Aristo: Allow to define/set `FilterID` for journal filter records
why:
After some changes, the `FilterID` is isomorphic to the `BlockNumber`
scalar (well, the first 2^64 entries of a `BlockNumber`.)
The needed change for `FilterID` is that the `FilterID(0)` value is
valid part of the `FilterID` scalar. A non-valid `FilterID` entry is
represented by `none(FilterID)`.
* Aristo: Split off function `persist()` as persistent version of `stow()`
why:
In production, `stow(persistent=false,..)` is currently unused. So,
using `persist()` rather than `stow(persistent=true,..)` improves
readability and is better to maintain.
* CoreDb+Aristo: Store block numbers in journal records
why:
This makes journal records searchable by block numbers
* Aristo: Rename some journal related functions
why:
The name *journal* is more appropriate to api functions than something
with *fifo* or *filter*.
* CoreDb+Aristo: Update last/oldest journal state retrieval
* CoreDb+Aristo: Register block number with state root in journal
why:
No need anymore for extra lookup table `stRootToBlockNum` which maps
a storage root -> block number.
* Aristo: Remove unused function `getFilUbe()` from api
* CoreDb: Remove now unused virtual table `stRootToBlockNum`
why:
Was used to map a state root to a block number. This functionality
is now embedded into the recovery journal backend.
* Turn of API tracking (will fail on `fluffy`)
* Aristo: Code cosmetics, e.g. update some CamelCase names
* CoreDb+Aristo: Provide oldest known state root implied
details:
The Aristo journal allows to recover earlier but not all state roots.
* Aristo: Fix journal backward index operator, e.g. `[^1]`
* Aristo: Fix journal updater
why:
The `fifosStore()` store function slightly misinterpreted the update
instructions when translation is to database `put()` functions. The
effect was that the journal was ever growing due to stale entries which
were never deleted.
* CoreDb+Aristo: Provide utils for purging stale data from the KVT
details:
See earlier patch, not all state roots are available. This patch
provides a mapping from some state root to a block number and allows to
remove all KVT data related to a particular block number
* Aristo+Kvt: Implement a clean up schedule for expired data in KVT
why:
For a single state ledger like `Aristo`, there is only a limited
backlog of states. So KVT data (i.e. headers etc.) are cleaned up
regularly
* Fix copyright year
* Code cosmetics
* Aristo+Kvt: Fix api wrappers
why:
Api setup killed the backend descriptor when backend mapping was
disabled.
* Aristo: Implement masked profiling entries
why:
Database backend should be listed but not counted in tally
* CoreDb: Simplify backend() methods
why:
DBMS backend access Was provided very early and over engineered. Now
there are only two backend machines, one for `Kvt` and the other one
for an `Mpt` available only via new API.
* CoreDb: Code cleanup regarding descriptor types
* CoreDb: Refactor/redefine `persistent()` methods
why:
There were `persistent()` methods for any type of caching storage
facilities `Kvt`, `Mpt`, `Phk`, and `Acc`. Now there is only a single
`persistent()` method storing all facilities in tandem (similar to
how transactions work.)
For non shared `Kvt` tables, there is now an extra storage method
`saveOffSite()`.
* CoreDb lingo update: `trie` becomes `column`
why:
Notion of a `trie` is pretty much hidden by the new `CoreDb` api.
Revealed are sort of database columns for accounts an storage data,
any of which have an internal state represented by a Keccack hash.
So a `trie` or `MPT` becomes a `column` and a `rootHash` becomes a
column state.
* Aristo: rename backend filed `filters` => `journal`
* Update full sync logging
details:
+ Disable eth handler noise while syncing
+ Log journal depth (if available)
* Fix copyright year
* Fix cruft and unwanted imports
* Kvt: Update API hooks
* Aristo: Generalised merging snap proofs, now for multiple state roots
why:
This accommodates pre-loading partial tries for unit tests
* Aristo: Update some unit tests
* CoreDb+Aristo: Re-factor tracer
why:
Was bonkers anyway. The main change is that the trace journal is now
kept in a way similar to a transaction layer so that it can predictably
interact with DB transactions.
* Ledger: Debugging helper
* Update tracer unit test applicable for `Aristo`
* Fix copyright year
* Disable `dump()` function as compile time default
why:
This needs to pull in the `rocks_db` library at compile time.
* Remove cruft
* Docu/code cosmetics
* Aristo: Update `forkBase()`
why:
Was not up to the job
* Update/correct tracer for running against `Aristo`
details:
This patch makes sure that before creating a new `BaseVMState` the
`CoreDb` context is adjusted to accommodate for the state root that
is passed to the `BaseVMState` constructor.
* CpreDb+legacy: Always return current context with `ctxFromTx()`
why:
There was an experimental setting trying to find the node with the
proper setting in the KVT (not the hexary tie layer) which currently
does not work reliable, probably due to `Ledger` caching effects.
* Aristo: Provide descriptor fork based on search in transaction stack
details:
Try to find the tx that has a particular pair `(vertex-id,hash-key)`,
and by extension try filter and backend if the former fails.
* Cleanup & docu
* CoreDb+Aristo: Implement context re-position to earlier in-memory state
why:
It is a easy way to explore how there can be concurrent access to the
same backend storage DB with different view states. This one can access
an earlier state from the transaction stack.
* CoreDb+Aristo: Populate tracer stubs with real functionality
* Update `tracer.nim` to new API
why:
Legacy API does not sufficiently support `Aristo`
* Fix logging problems in tracer
details:
Debug logging turned off by default
* Fix function prototypes
* Add Copyright header
* Add tables import
why:
For older compiler versions on CI
* CoreDb+Aristo: Fix handler code
* Aristo+Kvt: Remove cruft
* Aristo+Kvt: The function `forkTop()` always provides a single transaction
why:
Previously it provided a single squashed tx only if there were any. Now
it will provide a blind one if there were none.
* Fix Copyright header
* Aristo+Kvt: Fix backend `dup()` function in api setup
why:
Backend object is subject to an inheritance cascade which was not
taken care of, before. Only the base object was duplicated.
* Kvt: Simplify DB clone/peers management
* Aristo: Simplify DB clone/peers management
* Aristo: Adjust unit test for working with memory DB only
why:
This currently causes some memory corruption persumably in the
`libc` background layer.
* CoredDb+Kvt: Simplify API for KVT
why:
Simplified storage models (was over engineered) for better performance
and code maintenance.
* CoredDb+Aristo: Simplify API for `Aristo`
why:
Only single database state needed here. Accessing a similar state will
be implemented from outside this module using a context layer. This
gives better performance and improves code maintenance.
* Fix Copyright headers
* CoreDb: Turn off API tracking
why:
CI would ot go through. Was accidentally turned on.
* Aristo: Reorg `hashify()` using different schedule algorithm
why:
Directly calculating the search tree top down from the roots turns
out to be faster than using the cached structures left over by `merge()`
and `delete()`.
Time gains is short of 20%
* Aristo: Remove `lTab[]` leaf entry object type
why:
Not used anymore. It was previously needed to build the schedule for
`hashify()`.
* Aristo: Avoid unnecessary re-org of the vertex ID recycling list
why:
This list can become quite large so a heuristic is employed whether
it makes sense to re-org.
Also, re-org check is only done by `delete()` functions.
* Aristo: Remove key/reverse lookup table from tx layers
why:
It is ignored except for handling proof nodes and costs unnecessary
run time resources.
This feature was originally needed to accommodate the mental transition
from the legacy MPT to the `Aristo` trie :).
* Fix copyright year
* Aristo: Update unit test suite
* Aristo/Kvt: Fix iterators
why:
Generic iterators were not properly updated after backend change
* Aristo: Add sub-trie deletion functionality
why:
For storage tries linked to an account payload vertex ID, a the
whole storage trie needs to be deleted with the account.
* Aristo: Reserve vertex ID numbers for static custom state roots
why:
Static custom state roots may be controlled by an application,
e.g. for a receipt or a transaction root. The `Aristo` functions
are agnostic of what the static state roots are when different
from the internal tree vertex ID 1.
details;
The `merge()` function applied to a non-static state root (assumed
to be a storage root) will check the payload of an accounts leaf
and mark its Merkle keys to be re-checked.
* Aristo: Correct error code symbol
* Aristo: Update error code symbols
* Aristo: Code cosmetics/comments
* Aristo: Fix hashify schedule calculator
why:
Had a tendency to stop early leaving an incomplete job
* Aristo: Re-phrase `LayerDelta` and `LayerFinal` as object references
why:
Avoids copying in some cases
* Fix copyright header
* Aristo: Verify `leafTie.root` function argument for `merge()` proc
why:
Zero root will lead to inconsistent DB entry
* Aristo: Update failure condition for hash labels compiler `hashify()`
why:
Node need not be rejected as long as links are on the schedule. In
that case, `redo[]` is to become `wff.base[]` at a later stage.
This amends an earlier fix, part of #1952 by also testing against
the target nodes of the `wff.base[]` sets.
* Aristo: Add storage root glue record to `hashify()` schedule
why:
An account leaf node might refer to a non-resolvable storage root ID.
Storage root node chains will end up at the storage root. So the link
`storage-root->account-leaf` needs an extra item in the schedule.
* Aristo: fix error code returned by `fetchPayload()`
details:
Final error code is implied by the error code form the `hikeUp()`
function.
* CoreDb: Discard `createOk` argument in API `getRoot()` function
why:
Not needed for the legacy DB. For the `Arsto` DB, a lazy approach is
implemented where a stprage root node is created on-the-fly.
* CoreDb: Prevent `$$` logging in some cases
why:
Logging the function `$$` is not useful when it is used for internal
use, i.e. retrieving an an error text for logging.
* CoreDb: Add `tryHashFn()` to API for pretty printing
why:
Pretty printing must not change the hashification status for the
`Aristo` DB. So there is an independent API wrapper for getting the
node hash which never updated the hashes.
* CoreDb: Discard `update` argument in API `hash()` function
why:
When calling the API function `hash()`, the latest state is always
wanted. For a version that uses the current state as-is without checking,
the function `tryHash()` was added to the backend.
* CoreDb: Update opaque vertex ID objects for the `Aristo` backend
why:
For `Aristo`, vID objects encapsulate a numeric `VertexID`
referencing a vertex (rather than a node hash as used on the
legacy backend.) For storage sub-tries, there might be no initial
vertex known when the descriptor is created. So opaque vertex ID
objects are supported without a valid `VertexID` which will be
initalised on-the-fly when the first item is merged.
* CoreDb: Add pretty printer for opaque vertex ID objects
* Cosmetics, printing profiling data
* CoreDb: Fix segfault in `Aristo` backend when creating MPT descriptor
why:
Missing initialisation error
* CoreDb: Allow MPT to inherit shared context on `Aristo` backend
why:
Creates descriptors with different storage roots for the same
shared `Aristo` DB descriptor.
* Cosmetics, update diagnostic message items for `Aristo` backend
* Fix Copyright year
* Update KVT layers abstraction
details:
modelled after Aristo layers
* Simplified KVT database iterators (removed item counters)
why:
Not needed for production functions
* Simplify KVT merge function `layersCc()`
* Simplified Aristo database iterators (removed item counters)
why:
Not needed for production functions
* Update failure condition for hash labels compiler `hashify()`
why:
Node need not be rejected as long as links are on the schedule. In
that case, `redo[]` is to become `wff.base[]` at a later stage.
* Update merging layers and label update functions
why:
+ Merging a stack of layers with `layersCc()` could be simplified
+ Merging layers will optimise the reverse `kMap[]` table maps
`pAmk: label->{vid, ..}` by deleting empty mappings `label->{}` where
they are redundant.
+ Updated `layersPutLabel()` for optimising `pAmk[]` tables
* Fix kvt headers
* Provide differential layers for KVT transaction stack
why:
Significant performance improvement
* Provide abstraction layer for database top cache layer
why:
This will eventually implemented as a differential database layers
or transaction layers. The latter is needed to improve performance.
behavioural changes:
Zero vertex and keys (i.e. delete requests) are not optimised out
until the last layer is written to the database.
* Provide differential layers for Aristo transaction stack
why:
Significant performance improvement
* Explicitly use shared `Kvt` table on `Ledger` and `Clique` lookup.
why:
Speeds up lookup time with `Aristo` backend. For writing `Clique` data,
the `Companion` model allows to write `Clique` data past the database
locked by evm transactions.
* Implement `CoreDb` profiling with API tracking
why:
Chasing time spent per APT procs ...
* Implement `Ledger` profiling with API tracking
why:
Chasing time spent per APT procs ...
* Always hashify when commiting or storing
why:
A dirty cache makes no sense when committing
* Make sure that a zero key is created when adding/updating vertices
why:
This is an error fix mainly for edge cases. A typical error was
that the root key got deleted when there were only a few vertices
left on the DB.
* Need all created and changed vertices zero-keyed on the cache
why:
A zero key (i.e. empty Merkle hash) indicates that a vertex key
needs to be updated. This would not be needed immediately after
a merge as there is an actual leaf path on the cache layer. But
after subsequent merge and delete operations this information
might get blurred.
* Re-org hashing algorithm
why:
Apart from errors, the previous implementation was too slow for
two reasons:
+ some control hashes were calculated for debugging (now all
verification is done in `aristo_check` module)
+ the leaf paths stored on the cache are used to build the
labelling (aka hashing) schedule; there paths were accumulated
over successive hash sessions although it is clear that all
keys were generated, already
* Disable `TransactionID` related functions from `state_db.nim`
why:
Functions `getCommittedStorage()` and `updateOriginalRoot()` from
the `state_db` module are nowhere used. The emulation of a legacy
`TransactionID` type functionality is administratively expensive to
provide by `Aristo` (the legacy DB version is only partially
implemented, anyway).
As there is no other place where `TransactionID`s are used, they will
not be provided by the `Aristo` variant of the `CoreDb`. For the
legacy DB API, nothing will change.
* Fix copyright headers in source code
* Get rid of compiler warning
* Update Aristo code, remove unused `merge()` variant, export `hashify()`
why:
Adapt to upcoming `CoreDb` wrapper
* Remove synced tx feature from `Aristo`
why:
+ This feature allowed to synchronise transaction methods like begin,
commit, and rollback for a group of descriptors.
+ The feature is over engineered and not needed for `CoreDb`, neither
is it complete (some convergence features missing.)
* Add debugging helpers to `Kvt`
also:
Update database iterator, add count variable yield argument similar
to `Aristo`.
* Provide optional destructors for `CoreDb` API
why;
For the upcoming Aristo wrapper, this allows to control when certain
smart destruction and update can take place. The auto destructor works
fine in general when the storage/cache strategy is known and acceptable
when creating descriptors.
* Add update option for `CoreDb` API function `hash()`
why;
The hash function is typically used to get the state root of the MPT.
Due to lazy hashing, this might be not available on the `Aristo` DB.
So the `update` function asks for re-hashing the gurrent state changes
if needed.
* Update API tracking log mode: `info` => `debug
* Use shared `Kvt` descriptor in new Ledger API
why:
No need to create a new descriptor all the time
* Fix debug noise in `hashify()` for perfectly normal situation
why:
Was previously considered a fixable error
* Fix test sample file names
why:
The larger test file `goerli68161.txt.gz` is already in the local
archive. So there is no need to use the smaller one from the external
repo.
* Activate `accounts_cache` module from `db/ledger`
why:
A copy of the original `accounts_cache.nim` source to be integrated
into the `Ledger` module wrapper which allows to switch between
different `accounts_cache` implementations unser tha same API.
details:
At a later state, the `db/accounts_cache.nim` wrapper will be
removed so that there is only one access to that module via
`db/ledger/accounts_cache.nim`.
* Fix copyright headers in source code
* Split `core_db/base.nim` into several sources
* Rename `core_db/legacy.nim` => `core_db/legacy_db.nim`
* Update `CoreDb` API, dual methods returning `Result[]` or plain value
detail:
Plain value methods implemet the legacy API, they defect on error results
* Redesign `CoreDB` direct backend access
why:
Made the `backend` directive integral part of the API
* Discontinue providing unused or otherwise available functions
details:
+ setTransactionID() removed, not used and not easily replicable in Aristo
+ maybeGet() removed, available via direct backend access
+ newPhk() removed, never used & was experimental anyway
* Update/reorg backend API
why:
+ Added error print function `$$()`
+ General descriptor completion (and optional validation) via `bless()`
* Update `Aristo`/`Kvt` exception handling
why:
Avoid `CatchableError` exceptions, rather pass them as error code where
appropriate.
* More `CoreDB` compliant `Aristo` and `Kvt` methods
details:
+ Providing functions like `contains()`, `getVtxRc()` (returns `Result[]`).
+ Additional error code: `NotImplemented`
* Rewrite/reorg of Aristo DB constructor
why:
Previously used global object `DefaultQidLayoutRef` as default
initialiser. This object was created at compile time which lead to
non-gc safe functions.
* Update nimbus/db/core_db/legacy_db.nim
Co-authored-by: Kim De Mey <kim.demey@gmail.com>
* Update nimbus/db/aristo/aristo_transcode.nim
Co-authored-by: Kim De Mey <kim.demey@gmail.com>
* Update nimbus/db/core_db/legacy_db.nim
Co-authored-by: Kim De Mey <kim.demey@gmail.com>
---------
Co-authored-by: Kim De Mey <kim.demey@gmail.com>
* Kvt: Implemented multi-descriptor access on the same backend
why:
This behaviour mirrors the one of Aristo and can be used for
simultaneous transactions on Aristo + Kvt
* Kvt: Update database iterators
why:
Forgot to run on the top layer first
* Kvt: Misc fixes
* Aristo, use `openArray[byte]` rather than `Blob` in prototype
* Aristo, by default hashify right after cloning descriptor
why:
Typically, a completed descriptor is expected after cloning. Hashing
can be suppressed by argument flag.
* Aristo provides `replicate()` iterator, similar to legacy `replicate()`
* Aristo API fixes and updates
* CoreDB: Rename `legacy_persistent` => `legacy_rocksdb`
why:
More systematic, will be in line with Aristo DB which might have
more than one persistent backends
* CoreDB: Prettify API sources
why:
Better to read and maintain
details:
Annotating with custom pragmas which cleans up the prototypes
* CoreDB: Update MPT/put() prototype allowing `CatchableError`
why:
Will be needed for Aristo API (legacy is OK with `RlpError`)
* Update docu
* Update Aristo/Kvt constructor prototype
why:
Previous version used an `enum` value to indicate what backend is to
be used. This was replaced by using the backend object type.
* Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]`
why:
Better code maintenance. Previously, the `Hike` object was returned. It
had an internal error field so partial success was also available on
a failure. This error field has been removed.
* Use `openArray[byte]` rather than `Blob` in functions prototypes
* Provide synchronised multi instance transactions
why:
The `CoreDB` object was geared towards the legacy DB which used a single
transaction for the key-value backend DB. Different state roots are
provided by the backend database, so all instances work directly on the
same backend.
Aristo db instances have different in-memory mappings (aka different
state roots) and the transactions are on top of there mappings. So each
instance might run different transactions.
Multi instance transactions are a compromise to converge towards the
legacy behaviour. The synchronised transactions span over all instances
available at the time when base transaction was opened. Instances
created later are unaffected.
* Provide key-value pair database iterator
why:
Needed in `CoreDB` for `replicate()` emulation
also:
Some update of internal code
* Extend API (i.e. prototype variants)
why:
Needed for `CoreDB` geared towards the legacy backend which has a more
basic API than Aristo.
* Rewrite remaining `AristoError` return code into `Result[void,AristoError]`
why:
Better code maintenance
* Update import sections
* Update Aristo DB paths
why:
More systematic so directory can be shared with other DB types
* More cosmetcs
* Update unit tests runners
why:
Proper handling of persistent and mem-only DB. The latter can be
consistently triggered by an empty DB path.
* Reorg of distributed backend access
details:
Now handled via API provided in `aristo_desc`.
* Rename `checkCache()` => `checkTop()`
why:
Better naming for top layer cache checker
also:
Provide cascaded fifos checker
* Provide `eq` directive for finding filter by exact filter ID (think block number)
* Some code beautification (for better code reading)
* State root reposition and reorg
details:
Repositioning is supported by forking a new descriptor. Reorg is then
accomplished by writing this forked state on the backend database.
* Remove concept of empty/blind filters
why:
Not needed. A non-existent filter is is coded as a nil reference.
* Slightly generalised backend iterators
why:
* VertexID as key for the ID generator state makes no sense
* there will be more tables addressed by non-VertexID keys
* Store serialised/blobified vertices on memory backend
why:
This is more in line with the RocksDB backend so more appropriate
for testing when comparing behaviour. For a speedy memory database,
a backend-less variant should be used.
* Drop the `Aristo` prefix from names `AristoLayerRef`, etc.
* Suppress compiler warning
why:
duplicate imports
* Add filter serialisation transcoder
why:
Will be used as storage format
* Fix hashing algorithm
why:
Particular case where a sub-tree is on the backend, linked by an
Extension vertex to the top level.
* Update backend verification to report `dirty` top layer
* Implement distributed merge of backend filters
* Implement distributed backend access management
details:
Implemented and tested as described in chapter 5 of the `README.md`
file.
* Renamed type `NoneBackendRef` => `VoidBackendRef`
* Clarify names: `BE=filter+backend` and `UBE=backend (unfiltered)`
why:
Most functions used full names as `getVtxUnfilteredBackend()` or
`getKeyBackend()`. After defining abbreviations (and its meaning) it
seems easier to use `getVtxUBE()` and `getKeyBE()`.
* Integrate `hashify()` process into transaction logic
why:
Is now transparent unless explicitly controlled.
details:
Cache changes imply setting a `dirty` flag which in turn triggers
`hashify()` processing in transaction and `pack()` directives.
* Removed `aristo_tx.exec()` directive
why:
Inconsistent implementation, functionality will be provided with a
different paradigm.
* Provide deep copy for each transaction layer
why:
Localising changes. Selective deep copy was just overlooked.
* Generalise vertex ID generator state reorg function `vidReorg()`
why:
makes it somewhat easier to handle when saving layers.
* Provide dummy back end descriptor `NoneBackendRef`
* Optional read-only filter between backend and transaction cache
why:
Some staging area for accumulating changes to the backend DB. This
will eventually be an access layer for emulating a backend with
multiple/historic state roots.
* Re-factor `persistent()` with filter between backend/tx-cache => `stow()`
why:
The filter provides an abstraction from the physically stored data on
disk. So, there can be several MPT instances using the same disk data
with different state roots. Of course, all the MPT instances should
not differ too much for practical reasons :).
TODO:
Filter administration tools need to be provided.
* Better error handling
why:
Bail out on some error as early as possible before any changes.
* Implement `fetch()` as opposite of `merge()`
rationale:
In the `Aristo` realm, the action named `fetch()` and `merge()` indicate
leaf value related actions on the MPT, while actions `get()` and `put()`
handle vertex or hash key related operations that constitute the MPT.
* Re-factor `merge()` prototypes
why:
The most used variant of `merge()` should have the simplest prototype.
* Persistent DB constructor needs to import `aristo/aristo_init/persistent`
why:
Most applications use memory DB anyway. This avoids linking `-lrocksdb`
or any other back end libraries by default.
* Re-factor transaction module
why:
Got the paradigm wrong. The transaction descriptor did replace the
database one but should be handled separately.