Sort subkey lookups by VertexID when computing keys (#2918)

Since data is ordered by VertexID on disk, with this simple trick we can
make much better use of the various rocksdb caches.

Computing the state root of the full mainnet state is down to 4 hours
(from 9) on my laptop.
This commit is contained in:
Jacek Sieka 2024-12-09 08:16:02 +01:00 committed by GitHub
parent 66ad5497d9
commit a056a722eb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 71 additions and 23 deletions

View File

@ -128,18 +128,30 @@ proc getKey(
else:
?db.getKeyRc(rvid, {})
template childVid(v: VertexRef): VertexID =
# If we have to recurse into a child, where would that recusion start?
case v.vType
of Leaf:
if v.lData.pType == AccountData and v.lData.stoID.isValid:
v.lData.stoID.vid
else:
default(VertexID)
of Branch:
v.startVid
proc computeKeyImpl(
db: AristoDbRef,
rvid: RootedVertexID,
batch: var WriteBatch,
vtxl: (VertexRef, int),
vtx: VertexRef,
level: int,
skipLayers: static bool,
): Result[(HashKey, int), AristoError] =
# The bloom filter available used only when creating the key cache from an
# empty state
# Top-most level of all the verticies this hash computation depends on
var (vtx, level) = vtxl
var level = level
# TODO this is the same code as when serializing NodeRef, without the NodeRef
var writer = initRlpWriter()
@ -160,9 +172,12 @@ proc computeKeyImpl(
if keyvtxl[0][0].isValid:
(keyvtxl[0][0], keyvtxl[1])
else:
let vtxl = (keyvtxl[0][1], keyvtxl[1])
?db.computeKeyImpl(
(stoID.vid, stoID.vid), batch, vtxl, skipLayers = skipLayers
(stoID.vid, stoID.vid),
batch,
keyvtxl[0][1],
keyvtxl[1],
skipLayers = skipLayers,
)
level = maxLevel(level, sl)
skey
@ -179,30 +194,67 @@ proc computeKeyImpl(
# TODO avoid memory allocation when encoding storage data
rlp.encode(vtx.lData.stoData)
of Branch:
# For branches, we need to load the verticies before recursing into them
# For branches, we need to load the vertices before recursing into them
# to exploit their on-disk order
var keyvtxs: array[16, ((HashKey, VertexRef), int)]
for n, subvid in vtx.pairs:
keyvtxs[n] = ?db.getKey((rvid.root, subvid), skipLayers)
template writeBranch(w: var RlpWriter): HashKey =
w.encodeBranch(vtx):
if subvid.isValid:
batch.enter(n)
let (bkey, bl) =
if keyvtxs[n][0][0].isValid:
(keyvtxs[n][0][0], keyvtxs[n][1])
else:
# Make sure we have keys computed for each hash
block keysComputed:
while true:
# Compute missing keys in the order of the child vid that we have to
# recurse into, again exploiting on-disk order - this more than
# doubles computeKey speed on a fresh database!
var
minVid = default(VertexID)
minIdx = keyvtxs.len + 1 # index where the minvid can be found
n = 0'u8 # number of already-processed keys, for the progress bar
# The O(n^2) sort/search here is fine given the small size of the list
for nibble, keyvtx in keyvtxs.mpairs:
let subvid = vtx.bVid(uint8 nibble)
if (not subvid.isValid) or keyvtx[0][0].isValid:
n += 1 # no need to compute key
continue
let childVid = keyvtx[0][1].childVid
if not childVid.isValid:
# leaf vertex without storage ID - we can compute the key trivially
(keyvtx[0][0], keyvtx[1]) =
?db.computeKeyImpl(
(rvid.root, subvid),
batch,
(keyvtxs[n][0][1], keyvtxs[n][1]),
keyvtx[0][1],
keyvtx[1],
skipLayers = skipLayers,
)
n += 1
continue
if minIdx == keyvtxs.len + 1 or childVid < minVid:
minIdx = nibble
minVid = childVid
if minIdx == keyvtxs.len + 1: # no uncomputed key found!
break keysComputed
batch.enter(n)
(keyvtxs[minIdx][0][0], keyvtxs[minIdx][1]) =
?db.computeKeyImpl(
(rvid.root, vtx.bVid(uint8 minIdx)),
batch,
keyvtxs[minIdx][0][1],
keyvtxs[minIdx][1],
skipLayers = skipLayers,
)
batch.leave(n)
level = maxLevel(level, bl)
bkey
template writeBranch(w: var RlpWriter): HashKey =
w.encodeBranch(vtx):
if subvid.isValid:
level = maxLevel(level, keyvtxs[n][1])
keyvtxs[n][0][0]
else:
VOID_HASH_KEY
@ -237,7 +289,7 @@ proc computeKeyImpl(
return ok(keyvtx[0])
var batch: WriteBatch
let res = computeKeyImpl(db, rvid, batch, (keyvtx[1], level), skipLayers = skipLayers)
let res = computeKeyImpl(db, rvid, batch, keyvtx[1], level, skipLayers = skipLayers)
if res.isOk:
?batch.flush(db)
@ -263,6 +315,7 @@ proc computeKey*(
proc computeKeys*(db: AristoDbRef, root: VertexID): Result[void, AristoError] =
## Ensure that key cache is topped up with the latest state root
discard db.computeKeyImpl((root, root), skipLayers = true)
ok()
# ------------------------------------------------------------------------------

View File

@ -69,11 +69,6 @@ func layersGetVtx*(db: AristoDbRef; rvid: RootedVertexID): Opt[(VertexRef, int)]
Opt.none((VertexRef, int))
func layersGetVtxOrVoid*(db: AristoDbRef; rvid: RootedVertexID): VertexRef =
## Simplified version of `layersGetVtx()`
db.layersGetVtx(rvid).valueOr((VertexRef(nil), 0))[0]
func layersGetKey*(db: AristoDbRef; rvid: RootedVertexID): Opt[(HashKey, int)] =
## Find a hash key on the cache layers. An `ok()` result might contain a void
## hash key if it is stored on the cache that way.