add map_to_curve_g1 implementation for miracl
This commit is contained in:
parent
3f79588a74
commit
90415d537f
|
@ -9,7 +9,7 @@ PrecompileTests
|
|||
+ blsG2Add.json OK
|
||||
+ blsG2Mul.json OK
|
||||
+ blsG2MultiExp.json OK
|
||||
- blsMapG1.json Fail
|
||||
+ blsMapG1.json OK
|
||||
+ blsMapG2.json OK
|
||||
+ blsPairing.json OK
|
||||
+ bn256Add.json OK
|
||||
|
@ -25,7 +25,7 @@ PrecompileTests
|
|||
+ ripemd160.json OK
|
||||
+ sha256.json OK
|
||||
```
|
||||
OK: 21/22 Fail: 1/22 Skip: 0/22
|
||||
OK: 22/22 Fail: 0/22 Skip: 0/22
|
||||
|
||||
---TOTAL---
|
||||
OK: 21/22 Fail: 1/22 Skip: 0/22
|
||||
OK: 22/22 Fail: 0/22 Skip: 0/22
|
||||
|
|
|
@ -2,6 +2,7 @@ import blscurve/bls_backend, stint
|
|||
|
||||
when BLS_BACKEND == Miracl:
|
||||
import blscurve/miracl/[common, milagro, hash_to_curve, bls_signature_scheme]
|
||||
import map_to_curve_g1
|
||||
export common
|
||||
export bls_signature_scheme.subgroupCheck
|
||||
|
||||
|
@ -62,14 +63,13 @@ when BLS_BACKEND == Miracl:
|
|||
FP_BLS12381_redc(y1, addr y.b)
|
||||
|
||||
func mapFPToG1*(fp: BLS_FE): BLS_G1 {.inline.} =
|
||||
# TODO
|
||||
discard
|
||||
mapToCurveG1(fp)
|
||||
|
||||
func mapFPToG2*(fp: BLS_FE2): BLS_G2 {.inline.} =
|
||||
result = mapToCurveG2(fp)
|
||||
result.clearCofactor()
|
||||
|
||||
func millerLoop*(g1: BLS_G1, g2: BLS_G2): BLS_GT =
|
||||
func millerLoop*(g1: BLS_G1, g2: BLS_G2): BLS_GT {.inline.} =
|
||||
PAIR_BLS12381_ate(result.addr, g2.unsafeAddr, g1.unsafeAddr)
|
||||
|
||||
proc mul*(a: var BLS_GT, b: BLS_GT) {.inline.} =
|
||||
|
|
|
@ -0,0 +1,221 @@
|
|||
import blscurve/miracl/[common, milagro]
|
||||
import stew/endians2
|
||||
|
||||
# IETF Standard Draft: https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10
|
||||
# The Hash-To-Curve v7 is binary compatible with Hash-To-Curve v9, v10
|
||||
|
||||
# constants for 11-isogeny map for BLS12-381 G1. Apendix E.2
|
||||
const
|
||||
xNumHex = [
|
||||
"0x11a05f2b1e833340b809101dd99815856b303e88a2d7005ff2627b56cdb4e2c85610c2d5f2e62d6eaeac1662734649b7",
|
||||
"0x17294ed3e943ab2f0588bab22147a81c7c17e75b2f6a8417f565e33c70d1e86b4838f2a6f318c356e834eef1b3cb83bb",
|
||||
"0x0d54005db97678ec1d1048c5d10a9a1bce032473295983e56878e501ec68e25c958c3e3d2a09729fe0179f9dac9edcb0",
|
||||
"0x1778e7166fcc6db74e0609d307e55412d7f5e4656a8dbf25f1b33289f1b330835336e25ce3107193c5b388641d9b6861",
|
||||
"0x0e99726a3199f4436642b4b3e4118e5499db995a1257fb3f086eeb65982fac18985a286f301e77c451154ce9ac8895d9",
|
||||
"0x1630c3250d7313ff01d1201bf7a74ab5db3cb17dd952799b9ed3ab9097e68f90a0870d2dcae73d19cd13c1c66f652983",
|
||||
"0x0d6ed6553fe44d296a3726c38ae652bfb11586264f0f8ce19008e218f9c86b2a8da25128c1052ecaddd7f225a139ed84",
|
||||
"0x17b81e7701abdbe2e8743884d1117e53356de5ab275b4db1a682c62ef0f2753339b7c8f8c8f475af9ccb5618e3f0c88e",
|
||||
"0x080d3cf1f9a78fc47b90b33563be990dc43b756ce79f5574a2c596c928c5d1de4fa295f296b74e956d71986a8497e317",
|
||||
"0x169b1f8e1bcfa7c42e0c37515d138f22dd2ecb803a0c5c99676314baf4bb1b7fa3190b2edc0327797f241067be390c9e",
|
||||
"0x10321da079ce07e272d8ec09d2565b0dfa7dccdde6787f96d50af36003b14866f69b771f8c285decca67df3f1605fb7b",
|
||||
"0x06e08c248e260e70bd1e962381edee3d31d79d7e22c837bc23c0bf1bc24c6b68c24b1b80b64d391fa9c8ba2e8ba2d229"
|
||||
]
|
||||
|
||||
xDenHex = [
|
||||
"0x08ca8d548cff19ae18b2e62f4bd3fa6f01d5ef4ba35b48ba9c9588617fc8ac62b558d681be343df8993cf9fa40d21b1c",
|
||||
"0x12561a5deb559c4348b4711298e536367041e8ca0cf0800c0126c2588c48bf5713daa8846cb026e9e5c8276ec82b3bff",
|
||||
"0x0b2962fe57a3225e8137e629bff2991f6f89416f5a718cd1fca64e00b11aceacd6a3d0967c94fedcfcc239ba5cb83e19",
|
||||
"0x03425581a58ae2fec83aafef7c40eb545b08243f16b1655154cca8abc28d6fd04976d5243eecf5c4130de8938dc62cd8",
|
||||
"0x13a8e162022914a80a6f1d5f43e7a07dffdfc759a12062bb8d6b44e833b306da9bd29ba81f35781d539d395b3532a21e",
|
||||
"0x0e7355f8e4e667b955390f7f0506c6e9395735e9ce9cad4d0a43bcef24b8982f7400d24bc4228f11c02df9a29f6304a5",
|
||||
"0x0772caacf16936190f3e0c63e0596721570f5799af53a1894e2e073062aede9cea73b3538f0de06cec2574496ee84a3a",
|
||||
"0x14a7ac2a9d64a8b230b3f5b074cf01996e7f63c21bca68a81996e1cdf9822c580fa5b9489d11e2d311f7d99bbdcc5a5e",
|
||||
"0x0a10ecf6ada54f825e920b3dafc7a3cce07f8d1d7161366b74100da67f39883503826692abba43704776ec3a79a1d641",
|
||||
"0x095fc13ab9e92ad4476d6e3eb3a56680f682b4ee96f7d03776df533978f31c1593174e4b4b7865002d6384d168ecdd0a",
|
||||
"0x01"
|
||||
]
|
||||
|
||||
yNumHex = [
|
||||
"0x090d97c81ba24ee0259d1f094980dcfa11ad138e48a869522b52af6c956543d3cd0c7aee9b3ba3c2be9845719707bb33",
|
||||
"0x134996a104ee5811d51036d776fb46831223e96c254f383d0f906343eb67ad34d6c56711962fa8bfe097e75a2e41c696",
|
||||
"0x00cc786baa966e66f4a384c86a3b49942552e2d658a31ce2c344be4b91400da7d26d521628b00523b8dfe240c72de1f6",
|
||||
"0x01f86376e8981c217898751ad8746757d42aa7b90eeb791c09e4a3ec03251cf9de405aba9ec61deca6355c77b0e5f4cb",
|
||||
"0x08cc03fdefe0ff135caf4fe2a21529c4195536fbe3ce50b879833fd221351adc2ee7f8dc099040a841b6daecf2e8fedb",
|
||||
"0x16603fca40634b6a2211e11db8f0a6a074a7d0d4afadb7bd76505c3d3ad5544e203f6326c95a807299b23ab13633a5f0",
|
||||
"0x04ab0b9bcfac1bbcb2c977d027796b3ce75bb8ca2be184cb5231413c4d634f3747a87ac2460f415ec961f8855fe9d6f2",
|
||||
"0x0987c8d5333ab86fde9926bd2ca6c674170a05bfe3bdd81ffd038da6c26c842642f64550fedfe935a15e4ca31870fb29",
|
||||
"0x09fc4018bd96684be88c9e221e4da1bb8f3abd16679dc26c1e8b6e6a1f20cabe69d65201c78607a360370e577bdba587",
|
||||
"0x0e1bba7a1186bdb5223abde7ada14a23c42a0ca7915af6fe06985e7ed1e4d43b9b3f7055dd4eba6f2bafaaebca731c30",
|
||||
"0x19713e47937cd1be0dfd0b8f1d43fb93cd2fcbcb6caf493fd1183e416389e61031bf3a5cce3fbafce813711ad011c132",
|
||||
"0x18b46a908f36f6deb918c143fed2edcc523559b8aaf0c2462e6bfe7f911f643249d9cdf41b44d606ce07c8a4d0074d8e",
|
||||
"0x0b182cac101b9399d155096004f53f447aa7b12a3426b08ec02710e807b4633f06c851c1919211f20d4c04f00b971ef8",
|
||||
"0x0245a394ad1eca9b72fc00ae7be315dc757b3b080d4c158013e6632d3c40659cc6cf90ad1c232a6442d9d3f5db980133",
|
||||
"0x05c129645e44cf1102a159f748c4a3fc5e673d81d7e86568d9ab0f5d396a7ce46ba1049b6579afb7866b1e715475224b",
|
||||
"0x15e6be4e990f03ce4ea50b3b42df2eb5cb181d8f84965a3957add4fa95af01b2b665027efec01c7704b456be69c8b604"
|
||||
]
|
||||
|
||||
yDenHex = [
|
||||
"0x16112c4c3a9c98b252181140fad0eae9601a6de578980be6eec3232b5be72e7a07f3688ef60c206d01479253b03663c1",
|
||||
"0x1962d75c2381201e1a0cbd6c43c348b885c84ff731c4d59ca4a10356f453e01f78a4260763529e3532f6102c2e49a03d",
|
||||
"0x058df3306640da276faaae7d6e8eb15778c4855551ae7f310c35a5dd279cd2eca6757cd636f96f891e2538b53dbf67f2",
|
||||
"0x16b7d288798e5395f20d23bf89edb4d1d115c5dbddbcd30e123da489e726af41727364f2c28297ada8d26d98445f5416",
|
||||
"0x0be0e079545f43e4b00cc912f8228ddcc6d19c9f0f69bbb0542eda0fc9dec916a20b15dc0fd2ededda39142311a5001d",
|
||||
"0x08d9e5297186db2d9fb266eaac783182b70152c65550d881c5ecd87b6f0f5a6449f38db9dfa9cce202c6477faaf9b7ac",
|
||||
"0x166007c08a99db2fc3ba8734ace9824b5eecfdfa8d0cf8ef5dd365bc400a0051d5fa9c01a58b1fb93d1a1399126a775c",
|
||||
"0x16a3ef08be3ea7ea03bcddfabba6ff6ee5a4375efa1f4fd7feb34fd206357132b920f5b00801dee460ee415a15812ed9",
|
||||
"0x1866c8ed336c61231a1be54fd1d74cc4f9fb0ce4c6af5920abc5750c4bf39b4852cfe2f7bb9248836b233d9d55535d4a",
|
||||
"0x167a55cda70a6e1cea820597d94a84903216f763e13d87bb5308592e7ea7d4fbc7385ea3d529b35e346ef48bb8913f55",
|
||||
"0x04d2f259eea405bd48f010a01ad2911d9c6dd039bb61a6290e591b36e636a5c871a5c29f4f83060400f8b49cba8f6aa8",
|
||||
"0x0accbb67481d033ff5852c1e48c50c477f94ff8aefce42d28c0f9a88cea7913516f968986f7ebbea9684b529e2561092",
|
||||
"0x0ad6b9514c767fe3c3613144b45f1496543346d98adf02267d5ceef9a00d9b8693000763e3b90ac11e99b138573345cc",
|
||||
"0x02660400eb2e4f3b628bdd0d53cd76f2bf565b94e72927c1cb748df27942480e420517bd8714cc80d1fadc1326ed06f7",
|
||||
"0x0e0fa1d816ddc03e6b24255e0d7819c171c40f65e273b853324efcd6356caa205ca2f570f13497804415473a1d634b8f",
|
||||
"0x01"
|
||||
]
|
||||
|
||||
func hexToFP(hex: string): FP_BLS12381 =
|
||||
var big: BIG_384
|
||||
discard big.fromHex(hex)
|
||||
big.nres()
|
||||
|
||||
func hexToBig(hex: string): BIG_384 {.inline.} =
|
||||
discard result.fromHex(hex)
|
||||
|
||||
{.pragma: milagro_func, importc, cdecl.}
|
||||
|
||||
proc FP_BLS12381_mul*(x, y, z: ptr FP_BLS12381) {.milagro_func.}
|
||||
proc FP_BLS12381_add*(x, y, z: ptr FP_BLS12381) {.milagro_func.}
|
||||
proc FP_BLS12381_inv*(x, y, z: ptr FP_BLS12381) {.milagro_func.}
|
||||
proc FP_BLS12381_cmove*(x, y: ptr FP_BLS12381, s: cint) {.milagro_func.}
|
||||
|
||||
# syntactic sugars
|
||||
proc `*=`(a: var FP_BLS12381, b: FP_BLS12381) {.inline.} =
|
||||
FP_BLS12381_mul(a.addr, a.addr, b.unsafeAddr)
|
||||
|
||||
proc `*`(a: FP_BLS12381, b: FP_BLS12381): FP_BLS12381 {.inline.} =
|
||||
FP_BLS12381_mul(result.addr, a.unsafeAddr, b.unsafeAddr)
|
||||
|
||||
proc `+`(a: FP_BLS12381, b: FP_BLS12381): FP_BLS12381 {.inline.} =
|
||||
FP_BLS12381_add(result.addr, a.unsafeAddr, b.unsafeAddr)
|
||||
|
||||
proc `+=`(a: var FP_BLS12381, b: FP_BLS12381) {.inline.} =
|
||||
FP_BLS12381_add(a.addr, a.addr, b.unsafeAddr)
|
||||
|
||||
proc inv(a: FP_BLS12381): FP_BLS12381 {.inline.} =
|
||||
FP_BLS12381_inv(result.addr, a.unsafeAddr, nil)
|
||||
|
||||
proc `/`(a, b: FP_BLS12381): FP_BLS12381 {.inline.} =
|
||||
result = a * inv(b)
|
||||
|
||||
proc inc(a: var FP_BLS12381) {.inline.} =
|
||||
var one: FP_BLS12381
|
||||
FP_BLS12381_one(addr one)
|
||||
FP_BLS12381_add(addr a, addr a, addr one)
|
||||
|
||||
proc cmov(a: var FP_BLS12381, b: FP_BLS12381, c: bool) {.inline.} =
|
||||
# branchless conditional move
|
||||
FP_BLS12381_cmove(addr a, unsafeAddr b, cint(c))
|
||||
|
||||
proc cmov(a: FP_BLS12381, b: FP_BLS12381, c: bool): FP_BLS12381 {.inline.} =
|
||||
# branchless conditional move
|
||||
result = a
|
||||
FP_BLS12381_cmove(addr result, unsafeAddr b, cint(c))
|
||||
|
||||
func isSquare(a: FP_BLS12381): bool {.inline.} =
|
||||
# returns true if `a` is a quadratic residue
|
||||
FP_BLS12381_qr(unsafeAddr a, nil) == 1
|
||||
|
||||
proc sqrt(a: FP_BLS12381): FP_BLS12381 {.inline.} =
|
||||
FP_BLS12381_sqrt(addr result, unsafeAddr a, nil)
|
||||
|
||||
func sign0(x: FP_BLS12381): bool =
|
||||
# The sgn0 function. Section 4.1
|
||||
const
|
||||
sign_0 = 0
|
||||
zero_0 = 1
|
||||
let sign_1 = x.parity()
|
||||
# hope the compiler can optimize this
|
||||
bool(sign_0 or (zero_0 and sign_1))
|
||||
|
||||
func initArray[N: static[int]](hex: array[N, string]): array[N, FP_BLS12381] =
|
||||
for i in 0..<N:
|
||||
result[i] = hex[i].hexToFP
|
||||
|
||||
func evalPoly(x: FP_BLS12381, c: openArray[FP_BLS12381]): FP_BLS12381 =
|
||||
# Note: 32-bit use 29 bits limbs so you can do at most 3 additions before normalizing
|
||||
# but during test there is no problem
|
||||
result = c[^1]
|
||||
let NN = c.len - 1
|
||||
for i in 1..<c.len:
|
||||
result *= x
|
||||
result += c[NN - i]
|
||||
result.norm
|
||||
|
||||
func init(z: var ECP_BLS12381, x, y: FP_BLS12381) =
|
||||
var xx, yy: BIG_384
|
||||
xx.FP_BLS12381_redc(unsafeAddr x)
|
||||
yy.FP_BLS12381_redc(unsafeAddr y)
|
||||
discard ECP_BLS12381_set(addr z, xx, yy)
|
||||
|
||||
func isogenyMapG1(xp, yp: FP_BLS12381): ECP_BLS12381 =
|
||||
# 11-isogeny map for BLS12-381 G1. Apendix E.2
|
||||
# we use globals to ensure they are computed only once.
|
||||
{.noSideEffect.}:
|
||||
let
|
||||
g1xnum {.global.} = initArray(xNumHex)
|
||||
g1xden {.global.} = initArray(xDenHex)
|
||||
g1ynum {.global.} = initArray(yNumHex)
|
||||
g1yden {.global.} = initArray(yDenHex)
|
||||
|
||||
let
|
||||
xn = evalPoly(xp, g1xnum)
|
||||
xd = evalPoly(xp, g1xden)
|
||||
yn = evalPoly(xp, g1ynum)
|
||||
yd = evalPoly(xp, g1yden)
|
||||
x = xn / xd
|
||||
y = yp * yn / yd
|
||||
|
||||
result.init(x, y)
|
||||
|
||||
func mapToIsoCurveSSWU(u: FP_BLS12381): tuple[x, y: FP_BLS12381] =
|
||||
# BLS12-381 G1 Suite. Section 8.8.1
|
||||
{.noSideEffect.}:
|
||||
let
|
||||
A {.global.} = hexToFP "0x00144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aefd881ac98936f8da0e0f97f5cf428082d584c1d"
|
||||
B {.global.} = hexToFP "0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14fcef35ef55a23215a316ceaa5d1cc48e98e172be0"
|
||||
Z {.global.} = hexToFP "0x0B" # 11
|
||||
c1 {.global.} = neg B/A # -B/A
|
||||
c2 {.global.} = neg inv(Z) # -1/Z
|
||||
|
||||
# Simplified Shallue-van de Woestijne method. Apendix F.2.
|
||||
let tv1 = Z * sqr(u)
|
||||
var tv2 = sqr(tv1)
|
||||
var x1 = tv1 + tv2
|
||||
x1 = inv(x1) # TODO: Spec defines inv0(0) == 0; inv0(x) == x^(q-2)
|
||||
let e1 = x1.isZilch()
|
||||
inc x1 # // no norm needed when adding one
|
||||
x1.cmov(c2, e1) # If (tv1 + tv2) == 0, set x1 = -1 / Z
|
||||
x1 = x1 * c1 # x1 = (-B / A) * (1 + (1 / (Z² * u^4 + Z * u²)))
|
||||
var gx1 = sqr(x1)
|
||||
gx1 = gx1 + A; gx1.norm()
|
||||
gx1 = gx1 * x1
|
||||
gx1 = gx1 + B; gx1.norm() # gx1 = g(x1) = x1³ + A * x1 + B
|
||||
let x2 = tv1 * x1 # x2 = Z * u² * x1
|
||||
tv2 = tv1 * tv2
|
||||
let gx2 = gx1 * tv2 # gx2 = (Z * u²)³ * gx1
|
||||
let e2 = gx1.isSquare()
|
||||
let x = cmov(x2, x1, e2) # If is_square(gx1), x = x1, else x = x2
|
||||
let y2 = cmov(gx2, gx1, e2) # If is_square(gx1), y2 = gx1, else y2 = gx2
|
||||
var y = sqrt(y2)
|
||||
let e3 = u.sign0() == y.sign0() # Fix sign of y
|
||||
y = cmov(neg y, y, e3)
|
||||
|
||||
result.x = x
|
||||
result.y = y
|
||||
|
||||
func mapToCurveG1*(u: FP_BLS12381): ECP_BLS12381 =
|
||||
{.noSideEffect.}:
|
||||
let cofactor {.global.} = hexToBig("d201000000010001")
|
||||
let p = mapToIsoCurveSSWU(u)
|
||||
result = isogenyMapG1(p.x, p.y)
|
||||
result.mul cofactor
|
Loading…
Reference in New Issue