Revert "Some work on speculative execution (#1552)" (#1561)

This reverts commit ddbdf34c3de2e5da94adae751b919ef06c519d1f.
This commit is contained in:
Adam Spitz 2023-04-24 16:59:38 -04:00 committed by GitHub
parent c5e895aaab
commit 7f56e90654
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
32 changed files with 362 additions and 930 deletions

View File

@ -138,10 +138,6 @@ ifneq ($(ENABLE_EVMC), 0)
T8N_PARAMS := -d:chronicles_enabled=off
endif
ifneq ($(ENABLE_SPECULATIVE_EXECUTION), 0)
NIM_PARAMS += -d:evm_speculative_execution
endif
# disabled by default, enable with ENABLE_VMLOWMEM=1
ifneq ($(if $(ENABLE_VMLOWMEM),$(ENABLE_VMLOWMEM),0),0)
NIM_PARAMS += -d:lowmem:1

View File

@ -117,7 +117,7 @@ proc procBlkPreamble(vmState: BaseVMState;
proc procBlkEpilogue(vmState: BaseVMState;
header: BlockHeader; body: BlockBody): bool
{.gcsafe, raises: [RlpError, CatchableError].} =
{.gcsafe, raises: [RlpError].} =
# Reward beneficiary
vmState.mutateStateDB:
if vmState.generateWitness:

View File

@ -59,29 +59,6 @@ proc commitOrRollbackDependingOnGasUsed(vmState: BaseVMState, accTx: SavePoint,
vmState.gasPool += tx.gasLimit - gasBurned
return ok(gasBurned)
# For stateless mode with on-demand fetching, we need to do
# this, because it's possible for deletion to result in a
# branch node with only one child, which then needs to be
# transformed into an extension node or leaf node (or
# grafted onto one), but we don't actually have that node
# yet so we have to fetch it and then retry.
proc repeatedlyTryToPersist(vmState: BaseVMState, fork: EVMFork): Future[void] {.async.} =
#info("repeatedlyTryToPersist about to get started")
var i = 0
while i < 100:
#info("repeatedlyTryToPersist making an attempt to persist", i)
try:
await vmState.stateDB.asyncPersist(
clearEmptyAccount = fork >= FkSpurious,
clearCache = false)
return
except MissingNodesError as e:
#warn("repeatedlyTryToPersist found missing paths", missingPaths=e.paths, missingNodeHashes=e.nodeHashes)
await fetchAndPopulateNodes(vmState, e.paths, e.nodeHashes)
i += 1
error("repeatedlyTryToPersist failed after 100 tries")
raise newException(CatchableError, "repeatedlyTryToPersist failed after 100 tries")
proc asyncProcessTransactionImpl(
vmState: BaseVMState; ## Parent accounts environment for transaction
tx: Transaction; ## Transaction to validate
@ -135,7 +112,9 @@ proc asyncProcessTransactionImpl(
if vmState.generateWitness:
vmState.stateDB.collectWitnessData()
await repeatedlyTryToPersist(vmState, fork)
vmState.stateDB.persist(
clearEmptyAccount = fork >= FkSpurious,
clearCache = false)
return res

View File

@ -68,7 +68,7 @@ template safeExecutor(info: string; code: untyped) =
raise newException(TxPackerError, info & "(): " & $e.name & " -- " & e.msg)
proc persist(pst: TxPackerStateRef)
{.gcsafe,raises: [RlpError, CatchableError].} =
{.gcsafe,raises: [RlpError].} =
## Smart wrapper
if not pst.cleanState:
let fork = pst.xp.chain.nextFork

View File

@ -1,11 +1,8 @@
import
std/[tables, hashes, sets],
chronos,
eth/[common, rlp], eth/trie/[hexary, db, trie_defs, nibbles],
../utils/functors/possible_futures,
eth/[common, rlp], eth/trie/[hexary, db, trie_defs],
../constants, ../utils/utils, storage_types,
../../stateless/multi_keys,
../evm/async/speculex,
./distinct_tries,
./access_list as ac_access_list
@ -24,14 +21,12 @@ type
AccountFlags = set[AccountFlag]
StorageCell* = SpeculativeExecutionCell[UInt256]
RefAccount = ref object
account: Account
flags: AccountFlags
code: seq[byte]
originalStorage: TableRef[UInt256, UInt256]
overlayStorage: Table[UInt256, StorageCell]
overlayStorage: Table[UInt256, UInt256]
WitnessData* = object
storageKeys*: HashSet[UInt256]
@ -266,15 +261,11 @@ proc originalStorageValue(acc: RefAccount, slot: UInt256, db: TrieDatabaseRef):
acc.originalStorage[slot] = result
proc storageCell(acc: RefAccount, slot: UInt256, db: TrieDatabaseRef): StorageCell =
acc.overlayStorage.withValue(slot, cell) do:
return cell[]
do:
return pureCell(acc.originalStorageValue(slot, db))
# FIXME-removeSynchronousInterface: we use this down below, but I don't think that's okay anymore.
proc storageValue(acc: RefAccount, slot: UInt256, db: TrieDatabaseRef): UInt256 =
waitForValueOf(storageCell(acc, slot, db))
acc.overlayStorage.withValue(slot, val) do:
return val[]
do:
result = acc.originalStorageValue(slot, db)
proc kill(acc: RefAccount) =
acc.flags.excl Alive
@ -305,7 +296,7 @@ proc persistCode(acc: RefAccount, db: TrieDatabaseRef) =
else:
db.put(contractHashKey(acc.account.codeHash).toOpenArray, acc.code)
proc asyncPersistStorage(acc: RefAccount, db: TrieDatabaseRef, clearCache: bool): Future[void] {.async.} =
proc persistStorage(acc: RefAccount, db: TrieDatabaseRef, clearCache: bool) =
if acc.overlayStorage.len == 0:
# TODO: remove the storage too if we figure out
# how to create 'virtual' storage room for each account
@ -316,10 +307,9 @@ proc asyncPersistStorage(acc: RefAccount, db: TrieDatabaseRef, clearCache: bool)
var storageTrie = getStorageTrie(db, acc)
for slot, valueCell in acc.overlayStorage:
for slot, value in acc.overlayStorage:
let slotAsKey = createTrieKeyFromSlot slot
let value = await valueCell.toFuture
if value > 0:
let encodedValue = rlp.encode(value)
storageTrie.putSlotBytes(slotAsKey, encodedValue)
@ -337,8 +327,7 @@ proc asyncPersistStorage(acc: RefAccount, db: TrieDatabaseRef, clearCache: bool)
if not clearCache:
# if we preserve cache, move the overlayStorage
# to originalStorage, related to EIP2200, EIP1283
for slot, valueCell in acc.overlayStorage:
let value = unsafeGetAlreadyAvailableValue(valueCell)
for slot, value in acc.overlayStorage:
if value > 0:
acc.originalStorage[slot] = value
else:
@ -401,15 +390,11 @@ proc getCommittedStorage*(ac: AccountsCache, address: EthAddress, slot: UInt256)
return
acc.originalStorageValue(slot, ac.db)
proc getStorageCell*(ac: AccountsCache, address: EthAddress, slot: UInt256): StorageCell =
proc getStorage*(ac: AccountsCache, address: EthAddress, slot: UInt256): UInt256 {.inline.} =
let acc = ac.getAccount(address, false)
if acc.isNil:
return pureCell(UInt256.zero)
return acc.storageCell(slot, ac.db)
# FIXME-removeSynchronousInterface
proc getStorage*(ac: AccountsCache, address: EthAddress, slot: UInt256): UInt256 =
waitForValueOf(getStorageCell(ac, address, slot))
return
acc.storageValue(slot, ac.db)
proc hasCodeOrNonce*(ac: AccountsCache, address: EthAddress): bool {.inline.} =
let acc = ac.getAccount(address, false)
@ -475,21 +460,15 @@ proc setCode*(ac: AccountsCache, address: EthAddress, code: seq[byte]) =
acc.code = code
acc.flags.incl CodeChanged
proc setStorageCell*(ac: AccountsCache, address: EthAddress, slot: UInt256, cell: StorageCell) =
proc setStorage*(ac: AccountsCache, address: EthAddress, slot, value: UInt256) =
let acc = ac.getAccount(address)
acc.flags.incl {Alive}
# FIXME-removeSynchronousInterface: ugh, this seems like a problem (that we need the values to be able to check whether they're equal)
let oldValue = acc.storageValue(slot, ac.db)
let value = waitForValueOf(cell)
if oldValue != value:
var acc = ac.makeDirty(address)
acc.overlayStorage[slot] = cell
acc.overlayStorage[slot] = value
acc.flags.incl StorageChanged
# FIXME-removeSynchronousInterface
proc setStorage*(ac: AccountsCache, address: EthAddress, slot: UInt256, value: UInt256) =
setStorageCell(ac, address, slot, pureCell(value))
proc clearStorage*(ac: AccountsCache, address: EthAddress) =
let acc = ac.getAccount(address)
acc.flags.incl {Alive}
@ -549,52 +528,9 @@ proc clearEmptyAccounts(ac: AccountsCache) =
ac.deleteEmptyAccount(ripemdAddr)
ac.ripemdSpecial = false
type MissingNodesError* = ref object of Defect
paths*: seq[seq[seq[byte]]]
nodeHashes*: seq[Hash256]
# FIXME-Adam: Move this elsewhere.
# Also, I imagine there's a more efficient way to do this.
proc padRight[V](s: seq[V], n: int, v: V): seq[V] =
for sv in s:
result.add(sv)
while result.len < n:
result.add(v)
proc padRightWithZeroes(s: NibblesSeq, n: int): NibblesSeq =
initNibbleRange(padRight(s.getBytes, (n + 1) div 2, byte(0)))
# FIXME-Adam: Why can I never find the conversion function I need?
func toHash*(value: seq[byte]): Hash256 =
doAssert(value.len == 32)
var byteArray: array[32, byte]
for i, b in value:
byteArray[i] = b
result.data = byteArray
func encodePath(path: NibblesSeq): seq[byte] =
if path.len == 64:
path.getBytes
else:
hexPrefixEncode(path)
proc createMissingNodesErrorForAccount(missingAccountPath: NibblesSeq, nodeHash: Hash256): MissingNodesError =
MissingNodesError(
paths: @[@[encodePath(padRightWithZeroes(missingAccountPath, 64))]],
nodeHashes: @[nodeHash]
)
proc createMissingNodesErrorForSlot(address: EthAddress, missingSlotPath: NibblesSeq, nodeHash: Hash256): MissingNodesError =
MissingNodesError(
paths: @[@[@(address.keccakHash.data), encodePath(padRightWithZeroes(missingSlotPath, 64))]],
nodeHashes: @[nodeHash]
)
proc asyncPersist*(ac: AccountsCache,
proc persist*(ac: AccountsCache,
clearEmptyAccount: bool = false,
clearCache: bool = true): Future[void] {.async.} =
clearCache: bool = true) =
# make sure all savepoint already committed
doAssert(ac.savePoint.parentSavepoint.isNil)
var cleanAccounts = initHashSet[EthAddress]()
@ -613,19 +549,10 @@ proc asyncPersist*(ac: AccountsCache,
if StorageChanged in acc.flags:
# storageRoot must be updated first
# before persisting account into merkle trie
#
# Also, see the comment on repeatedlyTryToPersist in
# process_transaction.nim.
try:
await acc.asyncPersistStorage(ac.db, clearCache)
except MissingNodeError as e:
raise createMissingNodesErrorForSlot(address, e.path, toHash(e.nodeHashBytes))
acc.persistStorage(ac.db, clearCache)
ac.trie.putAccountBytes address, rlp.encode(acc.account)
of Remove:
try:
ac.trie.delAccountBytes address
except MissingNodeError as e:
raise createMissingNodesErrorForAccount(e.path, toHash(e.nodeHashBytes))
if not clearCache:
cleanAccounts.incl address
of DoNothing:
@ -649,12 +576,6 @@ proc asyncPersist*(ac: AccountsCache,
ac.isDirty = false
# FIXME-removeSynchronousInterface
proc persist*(ac: AccountsCache,
clearEmptyAccount: bool = false,
clearCache: bool = true) =
waitFor(asyncPersist(ac, clearEmptyAccount, clearCache))
iterator addresses*(ac: AccountsCache): EthAddress =
# make sure all savepoint already committed
doAssert(ac.savePoint.parentSavepoint.isNil)
@ -709,8 +630,7 @@ func update(wd: var WitnessData, acc: RefAccount) =
if v.isZero: continue
wd.storageKeys.incl k
for k, cell in acc.overlayStorage:
let v = unsafeGetAlreadyAvailableValue(cell) # FIXME-Adam: should be resolved by now, I think? wait, maybe not?
for k, v in acc.overlayStorage:
if v.isZero and k notin wd.storageKeys:
continue
if v.isZero and k in wd.storageKeys:

View File

@ -30,13 +30,13 @@ proc ifNodesExistGetStorageBytesWithinAccount*(storageTrie: StorageTrie, slotAsK
proc populateDbWithNodes*(db: TrieDatabaseRef, nodes: seq[seq[byte]]) =
error("AARDVARK: populateDbWithNodes received nodes, about to populate", nodes) # AARDVARK not an error, I just want it to stand out
error("GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG AARDVARK: populateDbWithNodes received nodes, about to populate", nodes) # AARDVARK not an error, I just want it to stand out
for nodeBytes in nodes:
let nodeHash = keccakHash(nodeBytes)
info("AARDVARK: populateDbWithNodes about to add node", nodeHash, nodeBytes)
db.put(nodeHash.data, nodeBytes)
# FIXME-Adam: just make the callers call populateDbWithNodes directly?
# AARDVARK: just make the callers call populateDbWithNodes directly?
proc populateDbWithBranch*(db: TrieDatabaseRef, branch: seq[seq[byte]]) =
for nodeBytes in branch:
let nodeHash = keccakHash(nodeBytes)

View File

@ -4,7 +4,6 @@ import
stint,
eth/common,
eth/trie/db,
../../sync/protocol,
../../db/db_chain
type
@ -13,7 +12,8 @@ type
ifNecessaryGetCode*: proc(db: TrieDatabaseRef, blockNumber: BlockNumber, stateRoot: Hash256, address: EthAddress, newStateRootForSanityChecking: Hash256): Future[void] {.gcsafe.}
ifNecessaryGetAccount*: proc(db: TrieDatabaseRef, blockNumber: BlockNumber, stateRoot: Hash256, address: EthAddress, newStateRootForSanityChecking: Hash256): Future[void] {.gcsafe.}
ifNecessaryGetBlockHeaderByNumber*: proc(chainDB: ChainDBRef, blockNumber: BlockNumber): Future[void] {.gcsafe.}
fetchNodes*: proc(stateRoot: Hash256, paths: seq[SnapTriePaths], nodeHashes: seq[Hash256]): Future[seq[seq[byte]]] {.gcsafe.}
# FIXME-Adam: Later.
#fetchNodes*: proc(stateRoot: Hash256, paths: seq[seq[seq[byte]]], nodeHashes: seq[Hash256]): Future[seq[seq[byte]]] {.gcsafe.}
fetchBlockHeaderWithHash*: proc(h: Hash256): Future[BlockHeader] {.gcsafe.}
fetchBlockHeaderWithNumber*: proc(n: BlockNumber): Future[BlockHeader] {.gcsafe.}
fetchBlockHeaderAndBodyWithHash*: proc(h: Hash256): Future[(BlockHeader, BlockBody)] {.gcsafe.}

View File

@ -501,9 +501,10 @@ proc realAsyncDataSource*(peerPool: PeerPool, client: RpcClient, justChecking: b
await ifNecessaryGetBlockHeaderByNumber(client, chainDB, blockNumber, justChecking)
),
fetchNodes: (proc(stateRoot: Hash256, paths: seq[SnapTriePaths], nodeHashes: seq[Hash256]): Future[seq[seq[byte]]] {.async.} =
return await fetchNodes(peerPool, stateRoot, paths, nodeHashes)
),
# FIXME-Adam: This will be needed later, but for now let's just get the basic methods in place.
#fetchNodes: (proc(stateRoot: Hash256, paths: seq[seq[seq[byte]]], nodeHashes: seq[Hash256]): Future[seq[seq[byte]]] {.async.} =
# return await fetchNodes(peerPool, stateRoot, paths, nodeHashes)
#),
fetchBlockHeaderWithHash: (proc(h: Hash256): Future[BlockHeader] {.async.} =
return await fetchBlockHeaderWithHash(client, h)

View File

@ -1,14 +1,12 @@
import
chronicles,
chronos,
sequtils,
stint,
eth/common/eth_types,
../../common,
../../db/distinct_tries,
../../db/accounts_cache,
../../db/incomplete_db,
../../sync/protocol,
#../../db/incomplete_db,
../types,
./data_sources
@ -29,19 +27,15 @@ proc ifNecessaryGetSlot*(vmState: BaseVMState, address: EthAddress, slot: UInt25
proc ifNecessaryGetBlockHeaderByNumber*(vmState: BaseVMState, blockNumber: BlockNumber): Future[void] {.async.} =
await vmState.asyncFactory.ifNecessaryGetBlockHeaderByNumber(vmState.com.db, blockNumber)
proc snapTriePathFromByteSeqs(byteSeqs: seq[seq[byte]]): SnapTriePaths =
SnapTriePaths(
accPath: byteSeqs[0],
slotPaths: byteSeqs[1 ..< byteSeqs.len]
)
proc fetchAndPopulateNodes*(vmState: BaseVMState, pathByteSeqs: seq[seq[seq[byte]]], nodeHashes: seq[Hash256]): Future[void] {.async.} =
#[
FIXME-Adam: This is for later.
proc fetchAndPopulateNodes*(vmState: BaseVMState, paths: seq[seq[seq[byte]]], nodeHashes: seq[Hash256]): Future[void] {.async.} =
if vmState.asyncFactory.maybeDataSource.isSome:
# let stateRoot = vmState.stateDB.rawTrie.rootHash # FIXME-Adam: this might not be right, huh? the peer might expect the parent block's final stateRoot, not this weirdo intermediate one
let stateRoot = vmState.parent.stateRoot
let paths = pathByteSeqs.map(snapTriePathFromByteSeqs)
let nodes = await vmState.asyncFactory.maybeDataSource.get.fetchNodes(stateRoot, paths, nodeHashes)
populateDbWithNodes(vmState.stateDB.rawDb, nodes)
]#
# Sometimes it's convenient to be able to do multiple at once.

View File

@ -1,29 +0,0 @@
import
chronos,
../../utils/functors/[identity, possible_futures]
# FIXME-Adam: I have no idea whether speculative execution even makes sense in the context of EVMC.
const shouldUseSpeculativeExecution* = defined(evm_speculative_execution) and not defined(evmc_enabled)
# For now let's keep it possible to switch back at compile-time to
# having stack/memory/storage cells that are always a concrete value.
when shouldUseSpeculativeExecution:
type SpeculativeExecutionCell*[V] = Future[V]
else:
type SpeculativeExecutionCell*[V] = Identity[V]
# I'm disappointed that I can't do this and have the callers resolve
# properly based on the return type.
#[
proc pureCell*[V](v: V): Identity[V] {.inline.} =
pureIdentity(v)
proc pureCell*[V](v: V): Future[V] {.inline.} =
pureFuture(v)
]#
proc pureCell*[V](v: V): SpeculativeExecutionCell[V] {.inline.} =
createPure(v, result)

View File

@ -9,9 +9,7 @@
# according to those terms.
import
std/sequtils,
".."/[db/accounts_cache, constants],
".."/utils/functors/[identity, futures, possible_futures],
"."/[code_stream, memory, message, stack, state],
"."/[transaction_tracer, types],
./interpreter/[gas_meter, gas_costs, op_codes],
@ -22,8 +20,7 @@ import
sets
export
common,
chronos
common
{.push raises: [].}
@ -318,111 +315,10 @@ template chainTo*(c: Computation, toChild: typeof(c.child), after: untyped) =
# Register an async operation to be performed before the continuation is called.
template asyncChainTo*(c: Computation, asyncOperation: Future[void], after: untyped) =
c.pendingAsyncOperation = asyncOperation
c.continuation = proc() {.raises: [CatchableError].} =
c.continuation = proc() =
c.continuation = nil
after
# FIXME-Adam: can I do some type magic to handle tuples of any length? In practice,
# I think we only ever need 4, though. So this is livable for now.
# Oh, actually 7. Fine, I really need to make a macro or something for this.
proc popStackValue*(cpt: Computation, body: (proc(v: UInt256): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let elem = cpt.stack.popElement()
cpt.asyncChainTo(discardFutureValue(futureStackValue(elem))):
let v = unsafeGetAlreadyAvailableValue(elem)
body(v)
proc popStackValues*(cpt: Computation, body: (proc(vA, vB: UInt256): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let (elemA, elemB) = cpt.stack.popElements(2)
cpt.asyncChainTo(discardFutureValue(combine(futureStackValue(elemA), futureStackValue(elemB)))):
let vA = unsafeGetAlreadyAvailableValue(elemA)
let vB = unsafeGetAlreadyAvailableValue(elemB)
body(vA, vB)
proc popStackValues*(cpt: Computation, body: (proc(vA, vB, vC: UInt256): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let (elemA, elemB, elemC) = cpt.stack.popElements(3)
cpt.asyncChainTo(discardFutureValue(combine(futureStackValue(elemA), futureStackValue(elemB), futureStackValue(elemC)))):
let vA = unsafeGetAlreadyAvailableValue(elemA)
let vB = unsafeGetAlreadyAvailableValue(elemB)
let vC = unsafeGetAlreadyAvailableValue(elemC)
body(vA, vB, vC)
proc popStackValues*(cpt: Computation, body: (proc(vA, vB, vC, vD: UInt256): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let (elemA, elemB, elemC, elemD) = cpt.stack.popElements(4)
cpt.asyncChainTo(discardFutureValue(combine(futureStackValue(elemA), futureStackValue(elemB), futureStackValue(elemC), futureStackValue(elemD)))):
let vA = unsafeGetAlreadyAvailableValue(elemA)
let vB = unsafeGetAlreadyAvailableValue(elemB)
let vC = unsafeGetAlreadyAvailableValue(elemC)
let vD = unsafeGetAlreadyAvailableValue(elemD)
body(vA, vB, vC, vD)
proc popStackValues*(cpt: Computation, body: (proc(vA, vB, vC, vD, vE: UInt256): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let (elemA, elemB, elemC, elemD, elemE) = cpt.stack.popElements(5)
cpt.asyncChainTo(discardFutureValue(combine(futureStackValue(elemA), futureStackValue(elemB), futureStackValue(elemC), futureStackValue(elemD), futureStackValue(elemE)))):
let vA = unsafeGetAlreadyAvailableValue(elemA)
let vB = unsafeGetAlreadyAvailableValue(elemB)
let vC = unsafeGetAlreadyAvailableValue(elemC)
let vD = unsafeGetAlreadyAvailableValue(elemD)
let vE = unsafeGetAlreadyAvailableValue(elemE)
body(vA, vB, vC, vD, vE)
proc popStackValues*(cpt: Computation, body: (proc(vA, vB, vC, vD, vE, vF: UInt256): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let (elemA, elemB, elemC, elemD, elemE, elemF) = cpt.stack.popElements(6)
cpt.asyncChainTo(discardFutureValue(combine(futureStackValue(elemA), futureStackValue(elemB), futureStackValue(elemC), futureStackValue(elemD), futureStackValue(elemE), futureStackValue(elemF)))):
let vA = unsafeGetAlreadyAvailableValue(elemA)
let vB = unsafeGetAlreadyAvailableValue(elemB)
let vC = unsafeGetAlreadyAvailableValue(elemC)
let vD = unsafeGetAlreadyAvailableValue(elemD)
let vE = unsafeGetAlreadyAvailableValue(elemE)
let vF = unsafeGetAlreadyAvailableValue(elemF)
body(vA, vB, vC, vD, vE, vF)
proc popStackValues*(cpt: Computation, body: (proc(vA, vB, vC, vD, vE, vF, vG: UInt256): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let (elemA, elemB, elemC, elemD, elemE, elemF, elemG) = cpt.stack.popElements(7)
cpt.asyncChainTo(discardFutureValue(combine(futureStackValue(elemA), futureStackValue(elemB), futureStackValue(elemC), futureStackValue(elemD), futureStackValue(elemE), futureStackValue(elemF), futureStackValue(elemG)))):
let vA = unsafeGetAlreadyAvailableValue(elemA)
let vB = unsafeGetAlreadyAvailableValue(elemB)
let vC = unsafeGetAlreadyAvailableValue(elemC)
let vD = unsafeGetAlreadyAvailableValue(elemD)
let vE = unsafeGetAlreadyAvailableValue(elemE)
let vF = unsafeGetAlreadyAvailableValue(elemF)
let vG = unsafeGetAlreadyAvailableValue(elemG)
body(vA, vB, vC, vD, vE, vF, vG)
# Here's my attempt at doing the type magic. It seems to almost compile, except for the
# vals argument being a genTupleType.
#proc popStackValues*(cpt: Computation, tupleLen: static[int], body: (proc(vals: genTupleType(tupleLen, UInt256)): void {.gcsafe.})) =
# let elems = cpt.stack.popElements(tupleLen)
# var futs: genTupleType(2, Future[UInt256])
# for e, f in fields(elems, futs):
# f = futureStackValue(e)
# cpt.asyncChainTo(discardFutureValue(combine(futs))):
# var vals: genTupleType(2, UInt256)
# for e, v in fields(elems, vals):
# v = unsafeGetAlreadyAvailableValue(e)
# body(vals)
proc popStackValues*(cpt: Computation, numItems: int, body: (proc(vals: seq[UInt256]): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let elems = cpt.stack.popSeqOfElements(numItems)
cpt.asyncChainTo(discardFutureValue(traverse(elems.map(futureStackValue)))):
let vals = elems.map(unsafeGetAlreadyAvailableValue)
body(vals)
proc popStackAddress*(cpt: Computation, body: (proc(a: EthAddress): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let elem = cpt.stack.popElement()
cpt.asyncChainTo(discardFutureValue(futureStackValue(elem))):
let a = addressFromStackValue(unsafeGetAlreadyAvailableValue(elem))
body(a)
proc readMemory*(cpt: Computation, startPos: Natural, size: Natural, body: (proc(bytes: seq[byte]): void {.gcsafe, raises: [CatchableError].})) {.raises: [CatchableError]} =
let futBytes = cpt.memory.futureBytes(startPos, size)
cpt.asyncChainTo(discardFutureValue(futBytes)):
let bytes: seq[byte] = unsafeGetAlreadyAvailableValue(futBytes)
body(bytes)
#FIXME-Adam: unused?
#proc writeMemory*(cpt: Computation, first: int, last: int, newBytesFut: Future[seq[byte]], body: (proc(): void {.gcsafe.})) =
# cpt.memory.writeFutureBytes(first, last - first + 1, newBytesFut)
proc merge*(c, child: Computation) =
c.gasMeter.refundGas(child.gasMeter.gasRefunded)

View File

@ -39,8 +39,8 @@ template handleStopDirective(k: var Vm2Ctx) =
#trace "op: Stop"
if not k.cpt.code.atEnd() and k.cpt.tracingEnabled:
# we only trace `REAL STOP` and ignore `FAKE STOP`
k.cpt.opIndex = k.cpt.traceOpCodeStarted(Op.Stop)
k.cpt.traceOpCodeEnded(Op.Stop, k.cpt.opIndex)
k.cpt.opIndex = k.cpt.traceOpCodeStarted(Stop)
k.cpt.traceOpCodeEnded(Stop, k.cpt.opIndex)
template handleFixedGasCostsDirective(fork: EVMFork; op: Op; k: var Vm2Ctx) =
@ -85,7 +85,7 @@ proc toCaseStmt(forkArg, opArg, k: NimNode): NimNode =
let asFork = quote do: EVMFork(`fork`)
let branchStmt = block:
if op == Op.Stop:
if op == Stop:
quote do:
handleStopDirective(`k`)
elif BaseGasCosts[op].kind == GckFixed:
@ -100,7 +100,7 @@ proc toCaseStmt(forkArg, opArg, k: NimNode): NimNode =
# Wrap innner case/switch into outer case/switch
let branchStmt = block:
case op
of Op.Stop, Return, Revert, SelfDestruct:
of Stop, Return, Revert, SelfDestruct:
quote do:
`forkCaseSubExpr`
break
@ -137,7 +137,7 @@ macro genOptimisedDispatcher*(fork: EVMFork; op: Op; k: Vm2Ctx): untyped =
template genLowMemDispatcher*(fork: EVMFork; op: Op; k: Vm2Ctx) =
if op == Op.Stop:
if op == Stop:
handleStopDirective(k)
break

View File

@ -157,13 +157,13 @@ when evmc_enabled:
let actualOutputSize = min(p.memOutLen, c.returnData.len)
if actualOutputSize > 0:
c.memory.writeConcreteBytes(p.memOutPos,
c.memory.write(p.memOutPos,
c.returnData.toOpenArray(0, actualOutputSize - 1))
c.gasMeter.returnGas(c.res.gas_left)
if c.res.status_code == EVMC_SUCCESS:
c.stack.replaceTopElement(pureStackElement(stackValueFrom(1)))
c.stack.top(1)
if not c.res.release.isNil:
c.res.release(c.res)
@ -183,12 +183,12 @@ else:
if child.isSuccess:
c.merge(child)
c.stack.replaceTopElement(pureStackElement(stackValueFrom(1)))
c.stack.top(1)
c.returnData = child.output
let actualOutputSize = min(memLen, child.output.len)
if actualOutputSize > 0:
c.memory.writeConcreteBytes(memPos, child.output.toOpenArray(0, actualOutputSize - 1))
c.memory.write(memPos, child.output.toOpenArray(0, actualOutputSize - 1))
# ------------------------------------------------------------------------------
# Private, op handlers implementation
@ -267,7 +267,6 @@ const
)
c.execSubCall(msg, p)
else:
cpt.readMemory(p.memInPos, p.memInLen) do (memBytes: seq[byte]):
cpt.execSubCall(
memPos = p.memOutPos,
memLen = p.memOutLen,
@ -279,7 +278,7 @@ const
contractAddress: p.contractAddress,
codeAddress: p.codeAddress,
value: p.value,
data: memBytes,
data: cpt.memory.read(p.memInPos, p.memInLen),
flags: p.flags))
# ---------------------
@ -355,7 +354,6 @@ const
)
c.execSubCall(msg, p)
else:
cpt.readMemory(p.memInPos, p.memInLen) do (memBytes: seq[byte]):
cpt.execSubCall(
memPos = p.memOutPos,
memLen = p.memOutLen,
@ -367,7 +365,7 @@ const
contractAddress: p.contractAddress,
codeAddress: p.codeAddress,
value: p.value,
data: memBytes,
data: cpt.memory.read(p.memInPos, p.memInLen),
flags: p.flags))
# ---------------------
@ -432,7 +430,6 @@ const
)
c.execSubCall(msg, p)
else:
cpt.readMemory(p.memInPos, p.memInLen) do (memBytes: seq[byte]):
cpt.execSubCall(
memPos = p.memOutPos,
memLen = p.memOutLen,
@ -444,7 +441,7 @@ const
contractAddress: p.contractAddress,
codeAddress: p.codeAddress,
value: p.value,
data: memBytes,
data: cpt.memory.read(p.memInPos, p.memInLen),
flags: p.flags))
# ---------------------
@ -514,7 +511,6 @@ const
)
c.execSubCall(msg, p)
else:
cpt.readMemory(p.memInPos, p.memInLen) do (memBytes: seq[byte]):
cpt.execSubCall(
memPos = p.memOutPos,
memLen = p.memOutLen,
@ -526,7 +522,7 @@ const
contractAddress: p.contractAddress,
codeAddress: p.codeAddress,
value: p.value,
data: memBytes,
data: cpt.memory.read(p.memInPos, p.memInLen),
flags: p.flags))
# ------------------------------------------------------------------------------

View File

@ -49,7 +49,7 @@ when evmc_enabled:
c.chainTo(msg):
c.gasMeter.returnGas(c.res.gas_left)
if c.res.status_code == EVMC_SUCCESS:
c.stack.replaceTopElement(pureStackElement(stackValueFrom(c.res.create_address)))
c.stack.top(c.res.create_address)
elif c.res.status_code == EVMC_REVERT:
# From create, only use `outputData` if child returned with `REVERT`.
c.returnData = @(makeOpenArray(c.res.outputData, c.res.outputSize.int))
@ -71,7 +71,7 @@ else:
if child.isSuccess:
c.merge(child)
c.stack.replaceTopElement(pureStackElement(stackValueFrom(child.msg.contractAddress)))
c.stack.top child.msg.contractAddress
elif not child.error.burnsGas: # Means return was `REVERT`.
# From create, only use `outputData` if child returned with `REVERT`.
c.returnData = child.output
@ -84,43 +84,42 @@ else:
const
createOp: Vm2OpFn = proc(k: var Vm2Ctx) =
## 0xf0, Create a new account with associated code
let cpt = k.cpt
checkInStaticContext(k.cpt)
cpt.popStackValues do (endowment, memPosUnsafe, memLenUnsafe: UInt256):
let
memPos = memPosUnsafe.safeInt
memLen = memLenUnsafe.safeInt
endowment = k.cpt.stack.popInt()
memPos = k.cpt.stack.popInt().safeInt
memLen = k.cpt.stack.peekInt().safeInt
cpt.stack.push(0)
k.cpt.stack.top(0)
# EIP-3860
if cpt.fork >= FkShanghai and memLen > EIP3860_MAX_INITCODE_SIZE:
if k.cpt.fork >= FkShanghai and memLen > EIP3860_MAX_INITCODE_SIZE:
trace "Initcode size exceeds maximum", initcodeSize = memLen
raise newException(InitcodeError,
&"CREATE: have {memLen}, max {EIP3860_MAX_INITCODE_SIZE}")
let gasParams = GasParams(
kind: Create,
cr_currentMemSize: cpt.memory.len,
cr_currentMemSize: k.cpt.memory.len,
cr_memOffset: memPos,
cr_memLength: memLen)
var gasCost = cpt.gasCosts[Create].c_handler(1.u256, gasParams).gasCost
cpt.gasMeter.consumeGas(
var gasCost = k.cpt.gasCosts[Create].c_handler(1.u256, gasParams).gasCost
k.cpt.gasMeter.consumeGas(
gasCost, reason = &"CREATE: GasCreate + {memLen} * memory expansion")
cpt.memory.extend(memPos, memLen)
cpt.returnData.setLen(0)
k.cpt.memory.extend(memPos, memLen)
k.cpt.returnData.setLen(0)
if cpt.msg.depth >= MaxCallDepth:
if k.cpt.msg.depth >= MaxCallDepth:
debug "Computation Failure",
reason = "Stack too deep",
maxDepth = MaxCallDepth,
depth = cpt.msg.depth
depth = k.cpt.msg.depth
return
if endowment != 0:
let senderBalance = cpt.getBalance(cpt.msg.contractAddress)
let senderBalance = k.cpt.getBalance(k.cpt.msg.contractAddress)
if senderBalance < endowment:
debug "Computation Failure",
reason = "Insufficient funds available to transfer",
@ -128,81 +127,79 @@ const
balance = senderBalance
return
var createMsgGas = cpt.gasMeter.gasRemaining
if cpt.fork >= FkTangerine:
var createMsgGas = k.cpt.gasMeter.gasRemaining
if k.cpt.fork >= FkTangerine:
createMsgGas -= createMsgGas div 64
cpt.gasMeter.consumeGas(createMsgGas, reason = "CREATE")
k.cpt.gasMeter.consumeGas(createMsgGas, reason = "CREATE")
when evmc_enabled:
let
msg = new(nimbus_message)
c = cpt
c = k.cpt
msg[] = nimbus_message(
kind: evmcCreate.ord.evmc_call_kind,
depth: (cpt.msg.depth + 1).int32,
depth: (k.cpt.msg.depth + 1).int32,
gas: createMsgGas,
sender: cpt.msg.contractAddress,
input_data: cpt.memory.readPtr(memPos),
sender: k.cpt.msg.contractAddress,
input_data: k.cpt.memory.readPtr(memPos),
input_size: memLen.uint,
value: toEvmc(endowment),
create2_salt: toEvmc(ZERO_CONTRACTSALT),
)
c.execSubCreate(msg)
else:
cpt.readMemory(memPos, memLen) do (memBytes: seq[byte]):
cpt.execSubCreate(
k.cpt.execSubCreate(
childMsg = Message(
kind: evmcCreate,
depth: cpt.msg.depth + 1,
depth: k.cpt.msg.depth + 1,
gas: createMsgGas,
sender: cpt.msg.contractAddress,
sender: k.cpt.msg.contractAddress,
value: endowment,
data: memBytes))
data: k.cpt.memory.read(memPos, memLen)))
# ---------------------
create2Op: Vm2OpFn = proc(k: var Vm2Ctx) =
## 0xf5, Behaves identically to CREATE, except using keccak256
let cpt = k.cpt
checkInStaticContext(cpt)
checkInStaticContext(k.cpt)
cpt.popStackValues do (endowment, memPosUnsafe, memLenUnsafe, saltInt: UInt256):
let
memPos = memPosUnsafe.safeInt
memLen = memLenUnsafe.safeInt
salt = ContractSalt(bytes: saltInt.toBytesBE)
endowment = k.cpt.stack.popInt()
memPos = k.cpt.stack.popInt().safeInt
memLen = k.cpt.stack.popInt().safeInt
salt = ContractSalt(bytes: k.cpt.stack.peekInt().toBytesBE)
cpt.stack.push(0)
k.cpt.stack.top(0)
# EIP-3860
if cpt.fork >= FkShanghai and memLen > EIP3860_MAX_INITCODE_SIZE:
if k.cpt.fork >= FkShanghai and memLen > EIP3860_MAX_INITCODE_SIZE:
trace "Initcode size exceeds maximum", initcodeSize = memLen
raise newException(InitcodeError,
&"CREATE2: have {memLen}, max {EIP3860_MAX_INITCODE_SIZE}")
let gasParams = GasParams(
kind: Create,
cr_currentMemSize: cpt.memory.len,
cr_currentMemSize: k.cpt.memory.len,
cr_memOffset: memPos,
cr_memLength: memLen)
var gasCost = cpt.gasCosts[Create].c_handler(1.u256, gasParams).gasCost
gasCost = gasCost + cpt.gasCosts[Create2].m_handler(0, 0, memLen)
var gasCost = k.cpt.gasCosts[Create].c_handler(1.u256, gasParams).gasCost
gasCost = gasCost + k.cpt.gasCosts[Create2].m_handler(0, 0, memLen)
cpt.gasMeter.consumeGas(
k.cpt.gasMeter.consumeGas(
gasCost, reason = &"CREATE2: GasCreate + {memLen} * memory expansion")
cpt.memory.extend(memPos, memLen)
cpt.returnData.setLen(0)
k.cpt.memory.extend(memPos, memLen)
k.cpt.returnData.setLen(0)
if cpt.msg.depth >= MaxCallDepth:
if k.cpt.msg.depth >= MaxCallDepth:
debug "Computation Failure",
reason = "Stack too deep",
maxDepth = MaxCallDepth,
depth = cpt.msg.depth
depth = k.cpt.msg.depth
return
if endowment != 0:
let senderBalance = cpt.getBalance(cpt.msg.contractAddress)
let senderBalance = k.cpt.getBalance(k.cpt.msg.contractAddress)
if senderBalance < endowment:
debug "Computation Failure",
reason = "Insufficient funds available to transfer",
@ -210,37 +207,36 @@ const
balance = senderBalance
return
var createMsgGas = cpt.gasMeter.gasRemaining
if cpt.fork >= FkTangerine:
var createMsgGas = k.cpt.gasMeter.gasRemaining
if k.cpt.fork >= FkTangerine:
createMsgGas -= createMsgGas div 64
cpt.gasMeter.consumeGas(createMsgGas, reason = "CREATE2")
k.cpt.gasMeter.consumeGas(createMsgGas, reason = "CREATE2")
when evmc_enabled:
let
msg = new(nimbus_message)
c = cpt
c = k.cpt
msg[] = nimbus_message(
kind: evmcCreate2.ord.evmc_call_kind,
depth: (cpt.msg.depth + 1).int32,
depth: (k.cpt.msg.depth + 1).int32,
gas: createMsgGas,
sender: cpt.msg.contractAddress,
input_data: cpt.memory.readPtr(memPos),
sender: k.cpt.msg.contractAddress,
input_data: k.cpt.memory.readPtr(memPos),
input_size: memLen.uint,
value: toEvmc(endowment),
create2_salt: toEvmc(salt),
)
c.execSubCreate(msg)
else:
cpt.readMemory(memPos, memLen) do (memBytes: seq[byte]):
cpt.execSubCreate(
k.cpt.execSubCreate(
salt = salt,
childMsg = Message(
kind: evmcCreate2,
depth: cpt.msg.depth + 1,
depth: k.cpt.msg.depth + 1,
gas: createMsgGas,
sender: cpt.msg.contractAddress,
sender: k.cpt.msg.contractAddress,
value: endowment,
data: memBytes))
data: k.cpt.memory.read(memPos, memLen)))
# ------------------------------------------------------------------------------
# Public, op exec table entries

View File

@ -49,14 +49,14 @@ proc writePaddedResult(mem: var Memory,
let sourceBytes =
data[min(dataPos, data.len) .. min(data.len - 1, dataEndPosition)]
mem.writeConcreteBytes(memPos, sourceBytes)
mem.write(memPos, sourceBytes)
# Don't duplicate zero-padding of mem.extend
let paddingOffset = min(memPos + sourceBytes.len, mem.len)
let numPaddingBytes = min(mem.len - paddingOffset, len - sourceBytes.len)
if numPaddingBytes > 0:
# TODO: avoid unnecessary memory allocation
mem.writeConcreteBytes(paddingOffset, repeat(paddingValue, numPaddingBytes))
mem.write(paddingOffset, repeat(paddingValue, numPaddingBytes))
# ------------------------------------------------------------------------------
# Private, op handlers implementation

View File

@ -51,7 +51,7 @@ const
k.cpt.stack.push(EMPTY_SHA3)
else:
k.cpt.stack.push:
keccakHash k.cpt.memory.waitForBytes.toOpenArray(pos, endRange)
keccakHash k.cpt.memory.bytes.toOpenArray(pos, endRange)
# ------------------------------------------------------------------------------
# Public, op exec table entries

View File

@ -70,7 +70,7 @@ proc logImpl(c: Computation, opcode: Op, topicCount: int) =
topics[i].bytes = c.stack.popTopic()
c.host.emitLog(c.msg.contractAddress,
c.memory.readConcreteBytes(memPos, len),
c.memory.read(memPos, len),
topics[0].addr, topicCount)
else:
var log: Log
@ -78,8 +78,7 @@ proc logImpl(c: Computation, opcode: Op, topicCount: int) =
for i in 0 ..< topicCount:
log.topics.add(c.stack.popTopic())
c.readMemory(memPos, len) do (memBytes: seq[byte]):
log.data = memBytes
log.data = c.memory.read(memPos, len)
log.address = c.msg.contractAddress
c.addLogEntry(log)

View File

@ -125,18 +125,16 @@ const
mloadOp: Vm2OpFn = proc (k: var Vm2Ctx) =
## 0x51, Load word from memory
let cpt = k.cpt
let (memStartPos) = cpt.stack.popInt(1)
let (memStartPos) = k.cpt.stack.popInt(1)
let memPos = memStartPos.cleanMemRef
cpt.gasMeter.consumeGas(
cpt.gasCosts[Mload].m_handler(cpt.memory.len, memPos, 32),
k.cpt.gasMeter.consumeGas(
k.cpt.gasCosts[Mload].m_handler(k.cpt.memory.len, memPos, 32),
reason = "MLOAD: GasVeryLow + memory expansion")
cpt.memory.extend(memPos, 32)
# FIXME-speculex: this could be made speculative
cpt.readMemory(memPos, 32) do (memBytes: seq[byte]):
cpt.stack.push(memBytes)
k.cpt.memory.extend(memPos, 32)
k.cpt.stack.push:
k.cpt.memory.read(memPos, 32)
mstoreOp: Vm2OpFn = proc (k: var Vm2Ctx) =
@ -149,7 +147,7 @@ const
reason = "MSTORE: GasVeryLow + memory expansion")
k.cpt.memory.extend(memPos, 32)
k.cpt.memory.writeConcreteBytes(memPos, @(value.toByteArrayBE))
k.cpt.memory.write(memPos, value.toByteArrayBE)
mstore8Op: Vm2OpFn = proc (k: var Vm2Ctx) =
@ -162,7 +160,7 @@ const
reason = "MSTORE8: GasVeryLow + memory expansion")
k.cpt.memory.extend(memPos, 1)
k.cpt.memory.writeConcreteBytes(memPos, @[value.toByteArrayBE[31]])
k.cpt.memory.write(memPos, [value.toByteArrayBE[31]])
# -------

View File

@ -42,34 +42,30 @@ when not defined(evmc_enabled):
const
returnOp: Vm2OpFn = proc(k: var Vm2Ctx) =
## 0xf3, Halt execution returning output data.
let cpt = k.cpt
let (startPos, size) = cpt.stack.popInt(2)
let (startPos, size) = k.cpt.stack.popInt(2)
let (pos, len) = (startPos.cleanMemRef, size.cleanMemRef)
cpt.gasMeter.consumeGas(
cpt.gasCosts[Return].m_handler(cpt.memory.len, pos, len),
k.cpt.gasMeter.consumeGas(
k.cpt.gasCosts[Return].m_handler(k.cpt.memory.len, pos, len),
reason = "RETURN")
cpt.memory.extend(pos, len)
cpt.readMemory(pos, len) do (memBytes: seq[byte]):
cpt.output = memBytes
k.cpt.memory.extend(pos, len)
k.cpt.output = k.cpt.memory.read(pos, len)
revertOp: Vm2OpFn = proc(k: var Vm2Ctx) =
## 0xfd, Halt execution reverting state changes but returning data
## and remaining gas.
let cpt = k.cpt
let (startPos, size) = cpt.stack.popInt(2)
let (startPos, size) = k.cpt.stack.popInt(2)
let (pos, len) = (startPos.cleanMemRef, size.cleanMemRef)
cpt.gasMeter.consumeGas(
cpt.gasCosts[Revert].m_handler(cpt.memory.len, pos, len),
k.cpt.gasMeter.consumeGas(
k.cpt.gasCosts[Revert].m_handler(k.cpt.memory.len, pos, len),
reason = "REVERT")
cpt.memory.extend(pos, len)
cpt.readMemory(pos, len) do (memBytes: seq[byte]):
cpt.output = memBytes
k.cpt.memory.extend(pos, len)
k.cpt.output = k.cpt.memory.read(pos, len)
# setError(msg, false) will signal cheap revert
cpt.setError("REVERT opcode executed", false)
k.cpt.setError("REVERT opcode executed", false)
invalidOp: Vm2OpFn = proc(k: var Vm2Ctx) =

View File

@ -7,81 +7,23 @@
import
sequtils,
std/typetraits,
chronicles, eth/common/eth_types,
../utils/functors/[identity, futures, possible_futures],
../errors, ./validation,
./interpreter/utils/utils_numeric,
./async/speculex
./interpreter/utils/utils_numeric
type
Memory* = ref object
bytes*: seq[byte]
logScope:
topics = "vm memory"
# FIXME-Adam: this is obviously horribly inefficient; I can try doing
# something more clever (some sort of binary search tree?) later.
type
ByteCell* = SpeculativeExecutionCell[byte]
BytesCell* = SpeculativeExecutionCell[seq[byte]]
proc readCells*(byteCells: var seq[ByteCell], startPos: Natural, size: Natural): seq[ByteCell] =
byteCells[startPos ..< (startPos + size)]
proc writeCells*(byteCells: var seq[ByteCell], startPos: Natural, newCells: openArray[ByteCell]) =
let size = newCells.len
if size == 0:
return
validateLte(startPos + size, byteCells.len)
if byteCells.len < startPos + size:
byteCells = byteCells.concat(repeat(pureCell(0.byte), byteCells.len - (startPos + size))) # TODO: better logarithmic scaling?
for z, c in newCells:
byteCells[z + startPos] = c
type
Memory* = ref object
byteCells*: seq[ByteCell]
proc newMemory*: Memory =
new(result)
result.byteCells = @[]
result.bytes = @[]
proc len*(memory: Memory): int =
result = memory.byteCells.len
proc readBytes*(memory: Memory, startPos: Natural, size: Natural): BytesCell {.raises: [CatchableError].} =
traverse(readCells(memory.byteCells, startPos, size))
proc writeBytes*(memory: Memory, startPos: Natural, size: Natural, newBytesF: BytesCell) =
var newCells: seq[ByteCell]
for i in 0..(size-1):
newCells.add(newBytesF.map(proc(newBytes: seq[byte]): byte = newBytes[i]))
writeCells(memory.byteCells, startPos, newCells)
proc readAllBytes*(memory: Memory): BytesCell =
readBytes(memory, 0, len(memory))
proc futureBytes*(memory: Memory, startPos: Natural, size: Natural): Future[seq[byte]] =
toFuture(readBytes(memory, startPos, size))
proc readConcreteBytes*(memory: Memory, startPos: Natural, size: Natural): seq[byte] =
waitForValueOf(readBytes(memory, startPos, size))
proc writeConcreteBytes*(memory: Memory, startPos: Natural, value: openArray[byte]) =
writeBytes(memory, startPos, value.len, pureCell(@value))
when shouldUseSpeculativeExecution:
proc writeFutureBytes*(memory: Memory, startPos: Natural, size: Natural, newBytesFut: Future[seq[byte]]) =
writeBytes(memory, startPos, size, newBytesFut)
# FIXME-removeSynchronousInterface: the callers should be fixed so that they don't need this
proc waitForBytes*(memory: Memory): seq[byte] =
waitForValueOf(readAllBytes(memory))
# FIXME-removeSynchronousInterface: the tests call it "bytes", I dunno how many call sites there are
proc bytes*(memory: Memory): seq[byte] =
waitForBytes(memory)
result = memory.bytes.len
proc extend*(memory: var Memory; startPos: Natural; size: Natural) =
if size == 0:
@ -90,13 +32,28 @@ proc extend*(memory: var Memory; startPos: Natural; size: Natural) =
if newSize <= len(memory):
return
var sizeToExtend = newSize - len(memory)
memory.byteCells = memory.byteCells.concat(repeat(pureCell(0.byte), sizeToExtend))
memory.bytes = memory.bytes.concat(repeat(0.byte, sizeToExtend))
proc newMemory*(size: Natural): Memory =
result = newMemory()
result.extend(0, size)
proc read*(memory: var Memory, startPos: Natural, size: Natural): seq[byte] =
# TODO: use an openArray[byte]
result = memory.bytes[startPos ..< (startPos + size)]
when defined(evmc_enabled):
proc readPtr*(memory: var Memory, startPos: Natural): ptr byte =
if memory.len == 0 or startPos >= memory.len: return
result = distinctBase(distinctBase(memory.byteCells[startPos])).addr
if memory.bytes.len == 0 or startPos >= memory.bytes.len: return
result = memory.bytes[startPos].addr
proc write*(memory: var Memory, startPos: Natural, value: openArray[byte]) =
let size = value.len
if size == 0:
return
validateLte(startPos + size, memory.len)
if memory.len < startPos + size:
memory.bytes = memory.bytes.concat(repeat(0.byte, memory.len - (startPos + size))) # TODO: better logarithmic scaling?
for z, b in value:
memory.bytes[z + startPos] = b

View File

@ -7,73 +7,44 @@
import
std/[strformat, strutils, sequtils, macros],
chronicles, chronos, eth/common,
../utils/functors/[identity, futures, possible_futures],
../errors, ./validation,
./async/speculex
chronicles, eth/common,
../errors, ./validation
logScope:
topics = "vm stack"
# Now that we need a stack that contains values that may not be available yet,
# the terminology below makes a clearer distinction between:
# "stack value" (the actual UInt256)
# "stack element" (the possibly-not-resolved-yet box that will eventually hold the value).
type StackElement = SpeculativeExecutionCell[UInt256]
proc pureStackElement*(v: UInt256): StackElement {.inline.} = pureCell(v)
type
Stack* = ref object of RootObj
elements*: seq[StackElement]
values*: seq[StackElement]
proc values*(stack: Stack): seq[UInt256] =
stack.elements.map(proc(elem: StackElement): UInt256 =
unsafeGetAlreadyAvailableValue(elem))
proc len*(stack: Stack): int {.inline.} =
len(stack.elements)
StackElement = UInt256
template ensureStackLimit: untyped =
if len(stack.elements) > 1023:
if len(stack.values) > 1023:
raise newException(FullStack, "Stack limit reached")
proc len*(stack: Stack): int {.inline.} =
len(stack.values)
proc stackValueFrom*(v: UInt256): UInt256 {.inline.} = v
proc stackValueFrom*(v: uint | int | GasInt): UInt256 {.inline.} = v.u256
proc stackValueFrom*(v: EthAddress): UInt256 {.inline.} = result.initFromBytesBE(v)
proc stackValueFrom*(v: MDigest): UInt256 {.inline.} = result.initFromBytesBE(v.data, allowPadding = false)
proc toStackElement(v: UInt256, elem: var StackElement) {.inline.} = elem = v
proc toStackElement(v: uint | int | GasInt, elem: var StackElement) {.inline.} = elem = v.u256
proc toStackElement(v: EthAddress, elem: var StackElement) {.inline.} = elem.initFromBytesBE(v)
proc toStackElement(v: MDigest, elem: var StackElement) {.inline.} = elem.initFromBytesBE(v.data, allowPadding = false)
proc stackValueFrom*(v: openArray[byte]): UInt256 {.inline.} =
proc fromStackElement(elem: StackElement, v: var UInt256) {.inline.} = v = elem
proc fromStackElement(elem: StackElement, v: var EthAddress) {.inline.} = v[0 .. ^1] = elem.toByteArrayBE().toOpenArray(12, 31)
proc fromStackElement(elem: StackElement, v: var Hash256) {.inline.} = v.data = elem.toByteArrayBE()
proc fromStackElement(elem: StackElement, v: var Topic) {.inline.} = v = elem.toByteArrayBE()
proc toStackElement(v: openArray[byte], elem: var StackElement) {.inline.} =
# TODO: This needs to go
validateStackItem(v) # This is necessary to pass stack tests
result.initFromBytesBE(v)
elem.initFromBytesBE(v)
proc fromStackValue(i: UInt256, v: var UInt256) {.inline.} = v = i
proc fromStackValue(i: UInt256, v: var EthAddress) {.inline.} = v[0 .. ^1] = i.toByteArrayBE().toOpenArray(12, 31)
proc fromStackValue(i: UInt256, v: var Hash256) {.inline.} = v.data = i.toByteArrayBE()
proc fromStackValue(i: UInt256, v: var Topic) {.inline.} = v = i.toByteArrayBE()
proc intFromStackValue*(i: UInt256): UInt256 {.inline.} = i
proc addressFromStackValue*(i: UInt256): EthAddress {.inline.} = fromStackValue(i, result)
proc hashFromStackValue*(i: UInt256): Hash256 {.inline.} = fromStackValue(i, result)
proc topicFromStackValue*(i: UInt256): Topic {.inline.} = fromStackValue(i, result)
proc futureStackValue*(elem: StackElement): Future[UInt256] =
toFuture(elem)
proc futureInt* (elem: StackElement): Future[UInt256] {.async.} = return intFromStackValue(await futureStackValue(elem))
proc futureAddress*(elem: StackElement): Future[EthAddress] {.async.} = return addressFromStackValue(await futureStackValue(elem))
proc futureHash* (elem: StackElement): Future[Hash256] {.async.} = return hashFromStackValue(await futureStackValue(elem))
proc futureTopic* (elem: StackElement): Future[Topic] {.async.} = return topicFromStackValue(await futureStackValue(elem))
# FIXME-Adam: we may not need anything other than the StackElement one, after we're done refactoring
proc pushAux[T](stack: var Stack, value: T) =
ensureStackLimit()
stack.elements.setLen(stack.elements.len + 1)
stack.elements[^1] = pureStackElement(stackValueFrom(value))
stack.values.setLen(stack.values.len + 1)
toStackElement(value, stack.values[^1])
proc push*(stack: var Stack, value: uint | int | GasInt | UInt256 | EthAddress | Hash256) {.inline.} =
pushAux(stack, value)
@ -82,71 +53,54 @@ proc push*(stack: var Stack, value: openArray[byte]) {.inline.} =
# TODO: This needs to go...
pushAux(stack, value)
proc pushElement*(stack: var Stack, elem: StackElement) =
ensureStackLimit()
stack.elements.setLen(stack.elements.len + 1)
stack.elements[^1] = elem
proc push*(stack: var Stack, elem: StackElement) =
stack.pushElement(elem)
proc ensurePop(stack: Stack, expected: int) =
let num = stack.len
proc ensurePop(elements: Stack, a: int) =
let num = elements.len
let expected = a
if num < expected:
raise newException(InsufficientStack,
&"Stack underflow: expected {expected} elements, got {num} instead.")
proc internalPopElementsTuple(stack: var Stack, v: var tuple, tupleLen: static[int]) =
proc popAux[T](stack: var Stack, value: var T) =
ensurePop(stack, 1)
fromStackElement(stack.values[^1], value)
stack.values.setLen(stack.values.len - 1)
proc internalPopTuple(stack: var Stack, v: var tuple, tupleLen: static[int]) =
ensurePop(stack, tupleLen)
var i = 0
let sz = stack.elements.high
let sz = stack.values.high
for f in fields(v):
f = stack.elements[sz - i]
fromStackElement(stack.values[sz - i], f)
inc i
stack.elements.setLen(sz - tupleLen + 1)
stack.values.setLen(sz - tupleLen + 1)
macro genTupleType*(len: static[int], elemType: untyped): untyped =
proc popInt*(stack: var Stack): UInt256 {.inline.} =
popAux(stack, result)
macro genTupleType(len: static[int], elemType: untyped): untyped =
result = nnkTupleConstr.newNimNode()
for i in 0 ..< len: result.add(elemType)
proc popElement*(stack: var Stack): StackElement {.inline.} =
ensurePop(stack, 1)
result = stack.elements[^1]
stack.elements.setLen(stack.elements.len - 1)
proc popElements*(stack: var Stack, numItems: static[int]): auto {.inline.} =
var r: genTupleType(numItems, StackElement)
stack.internalPopElementsTuple(r, numItems)
proc popInt*(stack: var Stack, numItems: static[int]): auto {.inline.} =
var r: genTupleType(numItems, UInt256)
stack.internalPopTuple(r, numItems)
return r
proc popSeqOfElements*(stack: var Stack, numItems: int): seq[StackElement] {.inline.} =
ensurePop(stack, numItems)
let sz = stack.elements.high
for i in 0 ..< numItems:
result.add(stack.elements[sz - i])
stack.elements.setLen(sz - numItems + 1)
proc popAddress*(stack: var Stack): EthAddress {.inline.} =
popAux(stack, result)
template popAndMap*(stack: var Stack, lvalueA: untyped, body: untyped): StackElement =
map(stack.popElement) do (lvalueA: UInt256) -> UInt256:
body
template popAndCombine*(stack: var Stack, lvalueA: untyped, lvalueB: untyped, body: untyped): StackElement =
combineAndApply(stack.popElements(2)) do (lvalueA, lvalueB: UInt256) -> UInt256:
body
template popAndCombine*(stack: var Stack, lvalueA: untyped, lvalueB: untyped, lvalueC: untyped, body: untyped): StackElement =
combineAndApply(stack.popElements(3)) do (lvalueA, lvalueB, lvalueC: UInt256) -> UInt256:
body
proc popTopic*(stack: var Stack): Topic {.inline.} =
popAux(stack, result)
proc newStack*(): Stack =
new(result)
result.elements = @[]
result.values = @[]
proc swap*(stack: var Stack, position: int) =
## Perform a SWAP operation on the stack
var idx = position + 1
if idx < len(stack) + 1:
(stack.elements[^1], stack.elements[^idx]) = (stack.elements[^idx], stack.elements[^1])
(stack.values[^1], stack.values[^idx]) = (stack.values[^idx], stack.values[^1])
else:
raise newException(InsufficientStack,
&"Insufficient stack items for SWAP{position}")
@ -157,71 +111,26 @@ proc dup*(stack: var Stack, position: int | UInt256) =
## Perform a DUP operation on the stack
let position = position.getInt
if position in 1 .. stack.len:
stack.pushElement(stack.elements[^position])
stack.push(stack.values[^position])
else:
raise newException(InsufficientStack,
&"Insufficient stack items for DUP{position}")
proc peekElement*(stack: Stack): StackElement =
stack.elements[^1]
proc peek*(stack: Stack): UInt256 =
# This should be used only for testing purposes!
unsafeGetAlreadyAvailableValue(peekElement(stack))
proc `$`*(elem: StackElement): string =
let m = maybeAlreadyAvailableValueOf(elem)
if m.isSome:
$(m.get)
else:
"not yet available"
fromStackElement(stack.values[^1], result)
proc `$`*(stack: Stack): string =
let elements = stack.elements.mapIt(&" {$it}").join("\n")
&"Stack:\n{elements}"
let values = stack.values.mapIt(&" {$it}").join("\n")
&"Stack:\n{values}"
# FIXME-Adam: is it okay for this to be unsafe?
proc `[]`*(stack: Stack, i: BackwardsIndex, T: typedesc): T =
ensurePop(stack, int(i))
fromStackValue(unsafeGetAlreadyAvailableValue(stack.elements[i]), result)
fromStackElement(stack.values[i], result)
proc replaceTopElement*(stack: Stack, newTopElem: StackElement) {.inline.} =
stack.elements[^1] = newTopElem
proc peekInt*(stack: Stack): UInt256 =
ensurePop(stack, 1)
fromStackElement(stack.values[^1], result)
# FIXME-Adam: These need to be removed, because calling waitFor is obviously
# not what we want. I'm only leaving them here for now to keep the compiler
# happy until we switch over to the new way.
proc popInt*(stack: var Stack): UInt256 =
let elem = stack.popElement
waitFor(elem.futureInt())
proc popAddress*(stack: var Stack): EthAddress =
let elem = stack.popElement
waitFor(elem.futureAddress())
proc popTopic*(stack: var Stack): Topic =
let elem = stack.popElement
waitFor(elem.futureTopic())
proc internalPopTuple(stack: var Stack, v: var tuple, tupleLen: static[int]) =
ensurePop(stack, tupleLen)
var i = 0
let sz = stack.elements.high
for f in fields(v):
let elem = stack.elements[sz - i]
# FIXME-Adam: terrible idea, waits after each one instead of waiting once for
# all of them, but this is temporary code that will be deleted after we've
# switched over to the new way.
waitFor(discardFutureValue(futureStackValue(elem)))
let v = unsafeGetAlreadyAvailableValue(elem)
fromStackValue(v, f)
inc i
stack.elements.setLen(sz - tupleLen + 1)
proc popInt*(stack: var Stack, numItems: static[int]): auto {.inline.} =
var r: genTupleType(numItems, UInt256)
stack.internalPopTuple(r, numItems)
return r
proc top*(stack: Stack, value: uint | int | GasInt | UInt256 | EthAddress | Hash256) {.inline.} =
toStackElement(value, stack.values[^1])

View File

@ -12,7 +12,6 @@ import
std/[json, strutils, sets, hashes],
chronicles, eth/common, stint,
nimcrypto/utils,
../utils/functors/possible_futures,
./types, ./memory, ./stack, ../db/accounts_cache,
./interpreter/op_codes
@ -107,12 +106,11 @@ proc traceOpCodeStarted*(tracer: var TransactionTracer, c: Computation, op: Op):
# log memory
if TracerFlags.DisableMemory notin tracer.flags:
let bytes = c.memory.waitForBytes # FIXME-Adam: it's either this or make the tracer async; ugh.
let mem = newJArray()
const chunkLen = 32
let numChunks = c.memory.len div chunkLen
for i in 0 ..< numChunks:
let memHex = bytes.toOpenArray(i * chunkLen, (i + 1) * chunkLen - 1).toHex()
let memHex = c.memory.bytes.toOpenArray(i * chunkLen, (i + 1) * chunkLen - 1).toHex()
if TracerFlags.GethCompatibility in tracer.flags:
mem.add(%("0x" & memHex.toLowerAscii))
else:
@ -147,7 +145,7 @@ proc traceOpCodeEnded*(tracer: var TransactionTracer, c: Computation, op: Op, la
if c.msg.depth < tracer.storageKeys.len:
var stateDB = c.vmState.stateDB
for key in tracer.storage(c.msg.depth):
let value = waitForValueOf(stateDB.getStorageCell(c.msg.contractAddress, key)) # FIXME-Adam: again, I don't like the waitFor
let value = stateDB.getStorage(c.msg.contractAddress, key)
if TracerFlags.GethCompatibility in tracer.flags:
storage["0x" & key.dumpHex.stripLeadingZeros] =
%("0x" & value.dumpHex.stripLeadingZeros)

View File

@ -78,6 +78,7 @@ proc txPriorityFee(ttx: TypedTransaction): UInt256 =
except RlpError:
doAssert(false, "found TypedTransaction that RLP failed to decode")
# AARDVARK: make sure I have the right units (wei/gwei)
proc sumOfBlockPriorityFees(payload: ExecutionPayloadV1OrV2): UInt256 =
payload.transactions.foldl(a + txPriorityFee(b), UInt256.zero)

View File

@ -93,7 +93,7 @@ proc toWithdrawal*(w: WithdrawalV1): Withdrawal =
index: uint64(w.index),
validatorIndex: uint64(w.validatorIndex),
address: distinctBase(w.address),
amount: uint64(w.amount)
amount: uint64(w.amount) # AARDVARK: is this wei or gwei or what?
)
proc toWithdrawalV1*(w: Withdrawal): WithdrawalV1 =
@ -101,7 +101,7 @@ proc toWithdrawalV1*(w: Withdrawal): WithdrawalV1 =
index: Quantity(w.index),
validatorIndex: Quantity(w.validatorIndex),
address: Address(w.address),
amount: Quantity(w.amount)
amount: Quantity(w.amount) # AARDVARK: is this wei or gwei or what?
)
proc toTypedTransaction*(tx: Transaction): TypedTransaction =

View File

@ -1,71 +0,0 @@
import
chronos
export chronos
# FIXME-Adam: These are a bunch of operations on Futures that I figure
# should exist somewhere in the chronos library, except that I couldn't
# find them. Are they in there somewhere? Can I add them?
proc pureFuture*[V](value: V): Future[V] =
var fut = newFuture[V]("pureFuture")
fut.complete(value)
fut
proc discardFutureValue*[A](fut: Future[A]): Future[void] {.async.} =
discard await fut
proc map*[A, B](futA: Future[A], callback: (proc(a: A): B {.gcsafe.})): Future[B] {.async.} =
return callback(await futA)
proc flatMap*[A, B](futA: Future[A], callback: (proc(a: A): Future[B] {.gcsafe.})): Future[B] {.async.} =
return await callback(await futA)
# FIXME-Adam: can I do some type magic to handle tuples of any length?
proc combine*[A, B](fA: Future[A], fB: Future[B]): Future[(A, B)] {.async.} =
return (await fA, await fB)
proc combine*[A, B, C](fA: Future[A], fB: Future[B], fC: Future[C]): Future[(A, B, C)] {.async.} =
return (await fA, await fB, await fC)
proc combine*[A, B, C, D](fA: Future[A], fB: Future[B], fC: Future[C], fD: Future[D]): Future[(A, B, C, D)] {.async.} =
return (await fA, await fB, await fC, await fD)
proc combine*[A, B, C, D, E](fA: Future[A], fB: Future[B], fC: Future[C], fD: Future[D], fE: Future[E]): Future[(A, B, C, D, E)] {.async.} =
return (await fA, await fB, await fC, await fD, await fE)
proc combine*[A, B, C, D, E, F](fA: Future[A], fB: Future[B], fC: Future[C], fD: Future[D], fE: Future[E], fF: Future[F]): Future[(A, B, C, D, E, F)] {.async.} =
return (await fA, await fB, await fC, await fD, await fE, await fF)
proc combine*[A, B, C, D, E, F, G](fA: Future[A], fB: Future[B], fC: Future[C], fD: Future[D], fE: Future[E], fF: Future[F], fG: Future[G]): Future[(A, B, C, D, E, F, G)] {.async.} =
return (await fA, await fB, await fC, await fD, await fE, await fF, await fG)
proc combineAndApply*[A, B, R](fA: Future[A], fB: Future[B], f: (proc(a: A, b: B): R {.gcsafe.})): Future[R] {.async.} =
return f(await fA, await fB)
proc combineAndApply*[A, B, C, R](fA: Future[A], fB: Future[B], fC: Future[C], f: (proc(a: A, b: B, c: C): R {.gcsafe.})): Future[R] {.async.} =
return f(await fA, await fB, await fC)
proc combineAndApply*[A, B, C, D, R](fA: Future[A], fB: Future[B], fC: Future[C], fD: Future[D], f: (proc(a: A, b: B, c: C, d: D): R {.gcsafe.})): Future[R] {.async.} =
return f(await fA, await fB, await fC, await fD)
# FIXME-Adam: ugh, need to just implement all of this once
proc combineAndApply*[A, B, R](futs: (Future[A], Future[B]), f: (proc(a: A, b: B): R {.gcsafe.})): Future[R] =
let (fA, fB) = futs
combineAndApply(fA, fB, f)
proc combineAndApply*[A, B, C, R](futs: (Future[A], Future[B], Future[C]), f: (proc(a: A, b: B, c: C): R {.gcsafe.})): Future[R] =
let (fA, fB, fC) = futs
combineAndApply(fA, fB, fC, f)
proc combineAndApply*[A, B, C, D, R](futs: (Future[A], Future[B], Future[C], Future[D]), f: (proc(a: A, b: B, c: C, d: D): R {.gcsafe.})): Future[R] =
let (fA, fB, fC, fD) = futs
combineAndApply(fA, fB, fC, fD, f)
proc traverse*[A](futs: seq[Future[A]]): Future[seq[A]] {.async.} =
var values: seq[A] = @[]
for fut in futs:
values.add(await fut)
return values

View File

@ -1,68 +0,0 @@
import
chronos
# This is simply a wrapper around a value. It should
# hopefully be zero-cost, since it's using 'distinct'.
# But I'm not sure whether it'll actually be zero-cost
# in situations (as I'm intending to use it) where
# it's used polymorphically from sites that could be
# an Identity or could be a Future.
# (See possible_futures.nim.)
type Identity*[Value] = distinct Value
proc pureIdentity*[V](value: V): Identity[V] {.inline.} =
Identity(value)
proc valueOf*[V](i: Identity[V]): V {.inline.} =
V(i)
proc map*[A, B](iA: Identity[A], callback: (proc(a: A): B {.gcsafe.})): Identity[B] {.inline.} =
return Identity(callback(valueOf(iA)))
# FIXME-Adam: can I do some type magic to handle tuples of any length?
proc combine*[A, B](iA: Identity[A], iB: Identity[B]): Identity[(A, B)] =
pureIdentity((valueOf(iA), valueOf(iB)))
proc combine*[A, B, C](iA: Identity[A], iB: Identity[B], iC: Identity[C]): Identity[(A, B, C)] =
pureIdentity((valueOf(iA), valueOf(iB), valueOf(iC)))
proc combine*[A, B, C, D](iA: Identity[A], iB: Identity[B], iC: Identity[C], iD: Identity[D]): Identity[(A, B, C, D)] =
pureIdentity((valueOf(iA), valueOf(iB), valueOf(iC), valueOf(iD)))
proc combine*[A, B, C, D, E](iA: Identity[A], iB: Identity[B], iC: Identity[C], iD: Identity[D], iE: Identity[E]): Identity[(A, B, C, D, E)] =
pureIdentity((valueOf(iA), valueOf(iB), valueOf(iC), valueOf(iD), valueOf(iE)))
proc combine*[A, B, C, D, E, F](iA: Identity[A], iB: Identity[B], iC: Identity[C], iD: Identity[D], iE: Identity[E], iFF: Identity[F]): Identity[(A, B, C, D, E, F)] =
pureIdentity((valueOf(iA), valueOf(iB), valueOf(iC), valueOf(iD), valueOf(iE), valueOf(iFF)))
proc combine*[A, B, C, D, E, F, G](iA: Identity[A], iB: Identity[B], iC: Identity[C], iD: Identity[D], iE: Identity[E], iFF: Identity[F], iG: Identity[G]): Identity[(A, B, C, D, E, F, G)] =
pureIdentity((valueOf(iA), valueOf(iB), valueOf(iC), valueOf(iD), valueOf(iE), valueOf(iFF), valueOf(iG)))
proc combineAndApply*[A, B, R](iA: Identity[A], iB: Identity[B], f: (proc(a: A, b: B): R {.gcsafe.})): Identity[R] =
pureIdentity(f(valueOf(iA), valueOf(iB)))
proc combineAndApply*[A, B, C, R](iA: Identity[A], iB: Identity[B], iC: Identity[C], f: (proc(a: A, b: B, c: C): R {.gcsafe.})): Identity[R] =
pureIdentity(f(valueOf(iA), valueOf(iB), valueOf(iC)))
proc combineAndApply*[A, B, C, D, R](iA: Identity[A], iB: Identity[B], iC: Identity[C], iD: Identity[D], f: (proc(a: A, b: B, c: C, d: D): R {.gcsafe.})): Identity[R] =
pureIdentity(f(valueOf(iA), valueOf(iB), valueOf(iC), valueOf(iD)))
# FIXME-Adam: ugh, need to just implement all of this once
proc combineAndApply*[A, B, R](idents: (Identity[A], Identity[B]), f: (proc(a: A, b: B): R {.gcsafe.})): Identity[R] =
let (iA, iB) = idents
combineAndApply(iA, iB, f)
proc combineAndApply*[A, B, C, R](idents: (Identity[A], Identity[B], Identity[C]), f: (proc(a: A, b: B, c: C): R {.gcsafe.})): Identity[R] =
let (iA, iB, iC) = idents
combineAndApply(iA, iB, iC, f)
proc combineAndApply*[A, B, C, D, R](idents: (Identity[A], Identity[B], Identity[C], Identity[D]), f: (proc(a: A, b: B, c: C, d: D): R {.gcsafe.})): Identity[R] =
let (iA, iB, iC, iD) = idents
combineAndApply(iA, iB, iC, iD, f)
proc traverse*[A](idents: seq[Identity[A]]): Identity[seq[A]] =
var values: seq[A] = @[]
for i in idents:
values.add(valueOf(i))
return pureIdentity(values)

View File

@ -1,36 +0,0 @@
import
chronos,
options,
./identity,
./futures
# This file contains some operations that can work on either
# Identity or Future.
proc createPure*[V](v: V, c: var Identity[V]) {.inline.} = c = pureIdentity(v)
proc createPure*[V](v: V, c: var Future[V]) {.inline.} = c = pureFuture(v)
proc toFuture*[V](i: Identity[V]): Future[V] = pureFuture(valueOf(i))
proc toFuture*[V](f: Future[V]): Future[V] = f
proc waitForValueOf*[V](i: Identity[V]): V = valueOf(i)
proc waitForValueOf*[V](f: Future[V]): V = waitFor(f)
proc maybeAlreadyAvailableValueOf*[V](i: Identity[V]): Option[V] =
some(valueOf(i))
proc maybeAlreadyAvailableValueOf*[V](f: Future[V]): Option[V] =
if f.completed:
some(f.read)
else:
none[V]()
proc unsafeGetAlreadyAvailableValue*[V](c: Identity[V] | Future[V]): V =
try:
return maybeAlreadyAvailableValueOf(c).get
except:
doAssert(false, "Assertion failure: unsafeGetAlreadyAvailableValue called but the value is not yet available.")

View File

@ -18,9 +18,8 @@ export
vmm.extend,
vmm.len,
vmm.newMemory,
vmm.bytes,
vmm.readConcreteBytes,
vmm.writeConcreteBytes
vmm.read,
vmm.write
when defined(evmc_enabled):
export
@ -125,11 +124,12 @@ export
hStk.len,
hStk.newStack,
hStk.peek,
hStk.peekInt,
hStk.popAddress,
hStk.popInt,
hStk.popTopic,
hStk.push,
hStk.swap,
hStk.values
hStk.top
# End

View File

@ -23,33 +23,33 @@ proc memoryMain*() =
test "write":
var mem = memory32()
# Test that write creates 32byte string == value padded with zeros
mem.writeConcreteBytes(startPos = 0, value = @[1.byte, 0.byte, 1.byte, 0.byte])
mem.write(startPos = 0, value = @[1.byte, 0.byte, 1.byte, 0.byte])
check(mem.bytes == @[1.byte, 0.byte, 1.byte, 0.byte].concat(repeat(0.byte, 28)))
# test "write rejects invalid position":
# expect(ValidationError):
# var mem = memory32()
# mem.writeConcreteBytes(startPosition = -1.i256, size = 2.i256, value = @[1.byte, 0.byte])
# mem.write(startPosition = -1.i256, size = 2.i256, value = @[1.byte, 0.byte])
# expect(ValidationError):
# TODO: work on 256
# var mem = memory32()
# echo "pow ", pow(2.i256, 255) - 1.i256
# mem.writeConcreteBytes(startPosition = pow(2.i256, 256), size = 2.i256, value = @[1.byte, 0.byte])
# mem.write(startPosition = pow(2.i256, 256), size = 2.i256, value = @[1.byte, 0.byte])
# test "write rejects invalid size":
# # expect(ValidationError):
# # var mem = memory32()
# # mem.writeConcreteBytes(startPosition = 0.i256, size = -1.i256, value = @[1.byte, 0.byte])
# # mem.write(startPosition = 0.i256, size = -1.i256, value = @[1.byte, 0.byte])
# #TODO deactivated because of no pow support in Stint: https://github.com/status-im/nim-stint/issues/37
# expect(ValidationError):
# var mem = memory32()
# mem.writeConcreteBytes(startPosition = 0.u256, size = pow(2.u256, 256), value = @[1.byte, 0.byte])
# mem.write(startPosition = 0.u256, size = pow(2.u256, 256), value = @[1.byte, 0.byte])
test "write rejects values beyond memory size":
expect(ValidationError):
var mem = memory128()
mem.writeConcreteBytes(startPos = 128, value = @[1.byte, 0.byte, 1.byte, 0.byte])
mem.write(startPos = 128, value = @[1.byte, 0.byte, 1.byte, 0.byte])
test "extends appropriately extends memory":
var mem = newMemory()
@ -65,10 +65,10 @@ proc memoryMain*() =
test "read returns correct bytes":
var mem = memory32()
mem.writeConcreteBytes(startPos = 5, value = @[1.byte, 0.byte, 1.byte, 0.byte])
check(mem.readConcreteBytes(startPos = 5, size = 4) == @[1.byte, 0.byte, 1.byte, 0.byte])
check(mem.readConcreteBytes(startPos = 6, size = 4) == @[0.byte, 1.byte, 0.byte, 0.byte])
check(mem.readConcreteBytes(startPos = 1, size = 3) == @[0.byte, 0.byte, 0.byte])
mem.write(startPos = 5, value = @[1.byte, 0.byte, 1.byte, 0.byte])
check(mem.read(startPos = 5, size = 4) == @[1.byte, 0.byte, 1.byte, 0.byte])
check(mem.read(startPos = 6, size = 4) == @[0.byte, 1.byte, 0.byte, 0.byte])
check(mem.read(startPos = 1, size = 3) == @[0.byte, 0.byte, 0.byte])
when isMainModule:
memoryMain()

View File

@ -54,18 +54,18 @@ proc stateDBMain*() =
test "clone storage":
var x = RefAccount(
overlayStorage: initTable[UInt256, StorageCell](),
overlayStorage: initTable[UInt256, UInt256](),
originalStorage: newTable[UInt256, UInt256]()
)
x.overlayStorage[10.u256] = pureCell(11.u256)
x.overlayStorage[11.u256] = pureCell(12.u256)
x.overlayStorage[10.u256] = 11.u256
x.overlayStorage[11.u256] = 12.u256
x.originalStorage[10.u256] = 11.u256
x.originalStorage[11.u256] = 12.u256
var y = x.clone(cloneStorage = true)
y.overlayStorage[12.u256] = pureCell(13.u256)
y.overlayStorage[12.u256] = 13.u256
y.originalStorage[12.u256] = 13.u256
check 12.u256 notin x.overlayStorage

2
vendor/nim-eth vendored

@ -1 +1 @@
Subproject commit f5dd26eac05a00134ebf1af537e16235702c343b
Subproject commit 9a1d35f803d4ae2bda0ede2356cc3213977a3d60

@ -1 +1 @@
Subproject commit f05e7b0f4864b58c9c564db6368b3b1d46192150
Subproject commit 708a739d35f3fb595a83dc6e6cb9edb4c3e5361e