nimbus-eth1/tests/test_sync_snap/test_node_range.nim

204 lines
7.0 KiB
Nim
Raw Normal View History

# Nimbus - Types, data structures and shared utilities used in network sync
#
# Copyright (c) 2018-2021 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or
# distributed except according to those terms.
## Snap sync components tester and TDD environment
import
std/[sequtils, strformat, strutils],
eth/[common, p2p, trie/nibbles],
stew/[byteutils, interval_set, results],
unittest2,
../../nimbus/sync/snap/range_desc,
../../nimbus/sync/snap/worker/db/[
hexary_desc, hexary_envelope, hexary_nearby, hexary_paths]
const
cmaNlSp0 = ",\n" & repeat(" ",12)
cmaNlSpc = ",\n" & repeat(" ",13)
# ------------------------------------------------------------------------------
# Private functions
# ------------------------------------------------------------------------------
proc print_data(
pfx: Blob;
pfxLen: int;
ivMin: NibblesSeq;
firstTag: NodeTag;
lastTag: NodeTag;
ivMax: NibblesSeq;
gaps: NodeTagRangeSet;
gapPaths: seq[NodeTagRange];
info: string;
) =
echo ">>>", info, " pfxMax=", pfxLen,
"\n pfx=", pfx, "/", ivMin.slice(0,pfxLen).hexPrefixEncode,
"\n ivMin=", ivMin,
"\n firstTag=", firstTag,
"\n lastTag=", lastTag,
"\n ivMax=", ivMax,
"\n gaps=@[", toSeq(gaps.increasing)
.mapIt(&"[{it.minPt}{cmaNlSpc}{it.maxPt}]")
.join(cmaNlSp0), "]",
"\n gapPaths=@[", gapPaths
.mapIt(&"[{it.minPt}{cmaNlSpc}{it.maxPt}]")
.join(cmaNlSp0), "]"
proc print_data(
pfx: Blob;
qfx: seq[NodeSpecs];
iv: NodeTagRange;
firstTag: NodeTag;
lastTag: NodeTag;
rootKey: NodeKey;
db: HexaryTreeDbRef|HexaryGetFn;
dbg: HexaryTreeDbRef;
) =
echo "***",
"\n qfx=@[", qfx
.mapIt(&"({it.partialPath.toHex},{it.nodeKey.pp(dbg)})")
.join(cmaNlSpc), "]",
"\n ivMin=", iv.minPt,
"\n ", iv.minPt.hexaryPath(rootKey,db).pp(dbg), "\n",
"\n firstTag=", firstTag,
"\n ", firstTag.hexaryPath(rootKey,db).pp(dbg), "\n",
"\n lastTag=", lastTag,
"\n ", lastTag.hexaryPath(rootKey,db).pp(dbg), "\n",
"\n ivMax=", iv.maxPt,
"\n ", iv.maxPt.hexaryPath(rootKey,db).pp(dbg), "\n",
"\n pfxMax=", pfx.hexaryEnvelope.maxPt,
"\n ", pfx.hexaryEnvelope.maxPt.hexaryPath(rootKey,db).pp(dbg)
# ------------------------------------------------------------------------------
# Public test function
# ------------------------------------------------------------------------------
proc test_NodeRangeDecompose*(
accKeys: seq[NodeKey]; ## Accounts key range
root: Hash256; ## State root
db: HexaryTreeDbRef|HexaryGetFn; ## Database abstraction
dbg: HexaryTreeDbRef; ## Debugging env
) =
## Testing body for `hexary_nearby` and `hexary_envelope` tests
# The base data from above cannot be relied upon as there might be
# stray account nodes in the proof *before* the left boundary.
doAssert 2 < accKeys.len
const
isPersistent = db.type is HexaryTreeDbRef
let
rootKey = root.to(NodeKey)
baseTag = accKeys[0].to(NodeTag) + 1.u256
firstTag = baseTag.hexaryNearbyRight(rootKey, db).get(
otherwise = low(Nodetag))
lastTag = accKeys[^2].to(NodeTag)
topTag = accKeys[^1].to(NodeTag) - 1.u256
# Verify set up
check baseTag < firstTag
check firstTag < lastTag
check lastTag < topTag
# Verify right boundary proof function (left boundary is
# correct by definition of `firstTag`.)
check lastTag == topTag.hexaryNearbyLeft(rootKey, db).get(
otherwise = high(NodeTag))
# Construct test range
let
iv = NodeTagRange.new(baseTag, topTag)
ivMin = iv.minPt.to(NodeKey).ByteArray32.toSeq.initNibbleRange
ivMax = iv.maxPt.to(NodeKey).ByteArray32.toSeq.initNibbleRange
pfxLen = ivMin.sharedPrefixLen ivMax
# Use some overlapping prefixes. Note that a prefix must refer to
# an existing node
for n in 0 .. pfxLen:
let
pfx = ivMin.slice(0, pfxLen - n).hexPrefixEncode
qfx = block:
let rc = pfx.hexaryEnvelopeDecompose(rootKey, iv, db)
check rc.isOk
if rc.isOk:
rc.value
else:
seq[NodeSpecs].default
# Assemble possible gaps in decomposed envelope `qfx`
let gaps = NodeTagRangeSet.init()
# Start with full envelope and remove decomposed enveloped from `qfx`
discard gaps.merge pfx.hexaryEnvelope
# There are no node points between `iv.minPt` (aka base) and the first
# account `firstTag` and beween `lastTag` and `iv.maxPt`. So only the
# interval `[firstTag,lastTag]` is to be fully covered by `gaps`.
block:
let iw = NodeTagRange.new(firstTag, lastTag)
check iw.len == gaps.reduce iw
for w in qfx:
# The envelope of `w` must be fully contained in `gaps`
let iw = w.partialPath.hexaryEnvelope
check iw.len == gaps.reduce iw
# Remove that space between the start of `iv` and the first account
# key (if any.).
if iv.minPt < firstTag:
discard gaps.reduce(iv.minPt, firstTag-1.u256)
# There are no node points between `lastTag` and `iv.maxPt`
if lastTag < iv.maxPt:
discard gaps.reduce(lastTag+1.u256, iv.maxPt)
# All gaps must be empty intervals
var gapPaths: seq[NodeTagRange]
for w in gaps.increasing:
let rc = w.minPt.hexaryPath(rootKey,db).hexaryNearbyRight(db)
if rc.isOk:
var firstTag = rc.value.getPartialPath.convertTo(NodeTag)
# The point `firstTag` might be zero if there is a missing node
# in between to advance to the next key.
if w.minPt <= firstTag:
# The interval `w` starts before the first interval
if firstTag <= w.maxPt:
# Make sure that there is no leaf node in the range
gapPaths.add w
continue
# Some sub-tries might not exists which leads to gaps
let
wMin = w.minPt.to(NodeKey).ByteArray32.toSeq.initNibbleRange
wMax = w.maxPt.to(NodeKey).ByteArray32.toSeq.initNibbleRange
nPfx = wMin.sharedPrefixLen wMax
for nibble in wMin[nPfx] .. wMax[nPfx]:
let wPfy = wMin.slice(0,nPfx) & @[nibble].initNibbleRange.slice(1)
if wPfy.hexaryPathNodeKey(rootKey, db, missingOk=true).isOk:
gapPaths.add wPfy.hexPrefixEncode.hexaryEnvelope
# Verify :)
check gapPaths == seq[NodeTagRange].default
when false: # or true:
print_data(
pfx, pfxLen, ivMin, firstTag, lastTag, ivMax, gaps, gapPaths, "n=" & $n)
print_data(
pfx, qfx, iv, firstTag, lastTag, rootKey, db, dbg)
if true: quit()
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------