nimbus-eth1/nimbus/db/aristo/aristo_delete.nim

268 lines
8.3 KiB
Nim
Raw Normal View History

2023-06-02 19:21:46 +00:00
# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
2023-06-02 19:21:46 +00:00
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
## Aristo DB -- Patricia Trie delete funcionality
## ==============================================
##
{.push raises: [].}
import
std/typetraits,
eth/common,
results,
./aristo_delete/[delete_helpers, delete_subtree],
Update storage tree admin (#2419) * Tighten `CoreDb` API for accounts why: Apart from cruft, the way to fetch the accounts state root via a `CoreDbColRef` record was unnecessarily complicated. * Extend `CoreDb` API for accounts to cover storage tries why: In future, this will make the notion of column objects obsolete. Storage trees will then be indexed by the account address rather than the vertex ID equivalent like a `CoreDbColRef`. * Apply new/extended accounts API to ledger and tests details: This makes the `distinct_ledger` module obsolete * Remove column object constructors why: They were needed as an abstraction of MPT sub-trees including storage trees. Now, storage trees are handled by the account (e.g. via address) they belong to and all other trees can be identified by a constant well known vertex ID. So there is no need for column objects anymore. Still there are some left-over column object methods wnich will be removed next. * Remove `serialise()` and `PayloadRef` from default Aristo API why: Not needed. `PayloadRef` was used for unstructured/unknown payload formats (account or blob) and `serialise()` was used for decodng `PayloadRef`. Now it is known in advance what the payload looks like. * Added query function `hasStorageData()` whether a storage area exists why: Useful for supporting `slotStateEmpty()` of the `CoreDb` API * In the `Ledger` replace `storage.stateEmpty()` by `slotStateEmpty()` * On Aristo, hide the storage root/vertex ID in the `PayloadRef` why: The storage vertex ID is fully controlled by Aristo while the `AristoAccount` object is controlled by the application. With the storage root part of the `AristoAccount` object, there was a useless administrative burden to keep that storage root field up to date. * Remove cruft, update comments etc. * Update changed MPT access paradigms why: Fixes verified proxy tests * Fluffy cosmetics
2024-06-27 09:01:26 +00:00
"."/[aristo_desc, aristo_fetch, aristo_get, aristo_hike, aristo_layers,
aristo_utils]
2023-06-02 19:21:46 +00:00
# ------------------------------------------------------------------------------
# Private heplers
2023-06-02 19:21:46 +00:00
# ------------------------------------------------------------------------------
proc branchStillNeeded(vtx: VertexRef): Result[int,void] =
## Returns the nibble if there is only one reference left.
var nibble = -1
2023-06-02 19:21:46 +00:00
for n in 0 .. 15:
if vtx.bVid[n].isValid:
if 0 <= nibble:
return ok(-1)
nibble = n
if 0 <= nibble:
return ok(nibble)
# Oops, degenerated branch node
err()
2023-06-02 19:21:46 +00:00
# ------------------------------------------------------------------------------
# Private functions
# ------------------------------------------------------------------------------
2023-06-02 19:21:46 +00:00
proc deleteImpl(
db: AristoDbRef; # Database, top layer
2023-06-02 19:21:46 +00:00
hike: Hike; # Fully expanded path
): Result[void,AristoError] =
2023-06-02 19:21:46 +00:00
## Implementation of *delete* functionality.
Core db aristo hasher profiling and timing improvement (#1938) * Explicitly use shared `Kvt` table on `Ledger` and `Clique` lookup. why: Speeds up lookup time with `Aristo` backend. For writing `Clique` data, the `Companion` model allows to write `Clique` data past the database locked by evm transactions. * Implement `CoreDb` profiling with API tracking why: Chasing time spent per APT procs ... * Implement `Ledger` profiling with API tracking why: Chasing time spent per APT procs ... * Always hashify when commiting or storing why: A dirty cache makes no sense when committing * Make sure that a zero key is created when adding/updating vertices why: This is an error fix mainly for edge cases. A typical error was that the root key got deleted when there were only a few vertices left on the DB. * Need all created and changed vertices zero-keyed on the cache why: A zero key (i.e. empty Merkle hash) indicates that a vertex key needs to be updated. This would not be needed immediately after a merge as there is an actual leaf path on the cache layer. But after subsequent merge and delete operations this information might get blurred. * Re-org hashing algorithm why: Apart from errors, the previous implementation was too slow for two reasons: + some control hashes were calculated for debugging (now all verification is done in `aristo_check` module) + the leaf paths stored on the cache are used to build the labelling (aka hashing) schedule; there paths were accumulated over successive hash sessions although it is clear that all keys were generated, already
2023-12-12 17:47:41 +00:00
# Remove leaf entry
let lf = hike.legs[^1].wp
if lf.vtx.vType != Leaf:
return err(DelLeafExpexted)
db.disposeOfVtx((hike.root, lf.vid))
if 1 < hike.legs.len:
# Get current `Branch` vertex `br`
Aristo db update for short nodes key edge cases (#1887) * Aristo: Provide key-value list signature calculator detail: Simple wrappers around `Aristo` core functionality * Update new API for `CoreDb` details: + Renamed new API functions `contains()` => `hasKey()` or `hasPath()` which disables the `in` operator on non-boolean `contains()` functions + The functions `get()` and `fetch()` always return a not-found error if there is no item, available. The new functions `getOrEmpty()` and `mergeOrEmpty()` return an an empty `Blob` if there is no such key found. * Rewrite `core_apps.nim` using new API from `CoreDb` * Use `Aristo` functionality for calculating Merkle signatures details: For debugging, the `VerifyAristoForMerkleRootCalc` can be set so that `Aristo` results will be verified against the legacy versions. * Provide general interface for Merkle signing key-value tables details: Export `Aristo` wrappers * Activate `CoreDb` tests why: Now, API seems to be stable enough for general tests. * Update `toHex()` usage why: Byteutils' `toHex()` is superior to `toSeq.mapIt(it.toHex(2)).join` * Split `aristo_transcode` => `aristo_serialise` + `aristo_blobify` why: + Different modules for different purposes + `aristo_serialise`: RLP encoding/decoding + `aristo_blobify`: Aristo database encoding/decoding * Compacted representation of small nodes' links instead of Keccak hashes why: Ethereum MPTs use Keccak hashes as node links if the size of an RLP encoded node is at least 32 bytes. Otherwise, the RLP encoded node value is used as a pseudo node link (rather than a hash.) Such a node is nor stored on key-value database. Rather the RLP encoded node value is stored instead of a lode link in a parent node instead. Only for the root hash, the top level node is always referred to by the hash. This feature needed an abstraction of the `HashKey` object which is now either a hash or a blob of length at most 31 bytes. This leaves two ways of representing an empty/void `HashKey` type, either as an empty blob of zero length, or the hash of an empty blob. * Update `CoreDb` interface (mainly reducing logger noise) * Fix copyright years (to make `Lint` happy)
2023-11-08 12:18:32 +00:00
let br = block:
var wp = hike.legs[^2].wp
wp.vtx = wp.vtx.dup # make sure that layers are not impliciteley modified
wp
if br.vtx.vType != Branch:
return err(DelBranchExpexted)
# Unlink child vertex from structural table
br.vtx.bVid[hike.legs[^2].nibble] = VertexID(0)
db.layersPutVtx((hike.root, br.vid), br.vtx)
# Clear all Merkle hash keys up to the root key
for n in 0 .. hike.legs.len - 2:
let vid = hike.legs[n].wp.vid
db.layersResKey((hike.root, vid))
No ext update (#2494) * Imported/rebase from `no-ext`, PR #2485 Store extension nodes together with the branch Extension nodes must be followed by a branch - as such, it makes sense to store the two together both in the database and in memory: * fewer reads, writes and updates to traverse the tree * simpler logic for maintaining the node structure * less space used, both memory and storage, because there are fewer nodes overall There is also a downside: hashes can no longer be cached for an extension - instead, only the extension+branch hash can be cached - this seems like a fine tradeoff since computing it should be fast. TODO: fix commented code * Fix merge functions and `toNode()` * Update `merkleSignCommit()` prototype why: Result is always a 32bit hash * Update short Merkle hash key generation details: Ethereum reference MPTs use Keccak hashes as node links if the size of an RLP encoded node is at least 32 bytes. Otherwise, the RLP encoded node value is used as a pseudo node link (rather than a hash.) This is specified in the yellow paper, appendix D. Different to the `Aristo` implementation, the reference MPT would not store such a node on the key-value database. Rather the RLP encoded node value is stored instead of a node link in a parent node is stored as a node link on the parent database. Only for the root hash, the top level node is always referred to by the hash. * Fix/update `Extension` sections why: Were commented out after removal of a dedicated `Extension` type which left the system disfunctional. * Clean up unused error codes * Update unit tests * Update docu --------- Co-authored-by: Jacek Sieka <jacek@status.im>
2024-07-16 19:47:59 +00:00
let nbl = block:
let rc = br.vtx.branchStillNeeded()
if rc.isErr:
return err(DelBranchWithoutRefs)
rc.value
No ext update (#2494) * Imported/rebase from `no-ext`, PR #2485 Store extension nodes together with the branch Extension nodes must be followed by a branch - as such, it makes sense to store the two together both in the database and in memory: * fewer reads, writes and updates to traverse the tree * simpler logic for maintaining the node structure * less space used, both memory and storage, because there are fewer nodes overall There is also a downside: hashes can no longer be cached for an extension - instead, only the extension+branch hash can be cached - this seems like a fine tradeoff since computing it should be fast. TODO: fix commented code * Fix merge functions and `toNode()` * Update `merkleSignCommit()` prototype why: Result is always a 32bit hash * Update short Merkle hash key generation details: Ethereum reference MPTs use Keccak hashes as node links if the size of an RLP encoded node is at least 32 bytes. Otherwise, the RLP encoded node value is used as a pseudo node link (rather than a hash.) This is specified in the yellow paper, appendix D. Different to the `Aristo` implementation, the reference MPT would not store such a node on the key-value database. Rather the RLP encoded node value is stored instead of a node link in a parent node is stored as a node link on the parent database. Only for the root hash, the top level node is always referred to by the hash. * Fix/update `Extension` sections why: Were commented out after removal of a dedicated `Extension` type which left the system disfunctional. * Clean up unused error codes * Update unit tests * Update docu --------- Co-authored-by: Jacek Sieka <jacek@status.im>
2024-07-16 19:47:59 +00:00
if 0 <= nbl:
# Branch has only one entry - convert it to a leaf or join with parent
# Get child vertex (there must be one after a `Branch` node)
No ext update (#2494) * Imported/rebase from `no-ext`, PR #2485 Store extension nodes together with the branch Extension nodes must be followed by a branch - as such, it makes sense to store the two together both in the database and in memory: * fewer reads, writes and updates to traverse the tree * simpler logic for maintaining the node structure * less space used, both memory and storage, because there are fewer nodes overall There is also a downside: hashes can no longer be cached for an extension - instead, only the extension+branch hash can be cached - this seems like a fine tradeoff since computing it should be fast. TODO: fix commented code * Fix merge functions and `toNode()` * Update `merkleSignCommit()` prototype why: Result is always a 32bit hash * Update short Merkle hash key generation details: Ethereum reference MPTs use Keccak hashes as node links if the size of an RLP encoded node is at least 32 bytes. Otherwise, the RLP encoded node value is used as a pseudo node link (rather than a hash.) This is specified in the yellow paper, appendix D. Different to the `Aristo` implementation, the reference MPT would not store such a node on the key-value database. Rather the RLP encoded node value is stored instead of a node link in a parent node is stored as a node link on the parent database. Only for the root hash, the top level node is always referred to by the hash. * Fix/update `Extension` sections why: Were commented out after removal of a dedicated `Extension` type which left the system disfunctional. * Clean up unused error codes * Update unit tests * Update docu --------- Co-authored-by: Jacek Sieka <jacek@status.im>
2024-07-16 19:47:59 +00:00
let
vid = br.vtx.bVid[nbl]
nxt = db.getVtx (hike.root, vid)
if not nxt.isValid:
return err(DelVidStaleVtx)
No ext update (#2494) * Imported/rebase from `no-ext`, PR #2485 Store extension nodes together with the branch Extension nodes must be followed by a branch - as such, it makes sense to store the two together both in the database and in memory: * fewer reads, writes and updates to traverse the tree * simpler logic for maintaining the node structure * less space used, both memory and storage, because there are fewer nodes overall There is also a downside: hashes can no longer be cached for an extension - instead, only the extension+branch hash can be cached - this seems like a fine tradeoff since computing it should be fast. TODO: fix commented code * Fix merge functions and `toNode()` * Update `merkleSignCommit()` prototype why: Result is always a 32bit hash * Update short Merkle hash key generation details: Ethereum reference MPTs use Keccak hashes as node links if the size of an RLP encoded node is at least 32 bytes. Otherwise, the RLP encoded node value is used as a pseudo node link (rather than a hash.) This is specified in the yellow paper, appendix D. Different to the `Aristo` implementation, the reference MPT would not store such a node on the key-value database. Rather the RLP encoded node value is stored instead of a node link in a parent node is stored as a node link on the parent database. Only for the root hash, the top level node is always referred to by the hash. * Fix/update `Extension` sections why: Were commented out after removal of a dedicated `Extension` type which left the system disfunctional. * Clean up unused error codes * Update unit tests * Update docu --------- Co-authored-by: Jacek Sieka <jacek@status.im>
2024-07-16 19:47:59 +00:00
db.disposeOfVtx((hike.root, vid))
let vtx =
case nxt.vType
of Leaf:
VertexRef(
vType: Leaf,
lPfx: br.vtx.ePfx & NibblesBuf.nibble(nbl.byte) & nxt.lPfx,
lData: nxt.lData)
of Branch:
VertexRef(
vType: Branch,
ePfx: br.vtx.ePfx & NibblesBuf.nibble(nbl.byte) & nxt.ePfx,
bVid: nxt.bVid)
# Put the new vertex at the id of the obsolete branch
db.layersPutVtx((hike.root, br.vid), vtx)
ok()
2023-06-02 19:21:46 +00:00
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
Update storage tree admin (#2419) * Tighten `CoreDb` API for accounts why: Apart from cruft, the way to fetch the accounts state root via a `CoreDbColRef` record was unnecessarily complicated. * Extend `CoreDb` API for accounts to cover storage tries why: In future, this will make the notion of column objects obsolete. Storage trees will then be indexed by the account address rather than the vertex ID equivalent like a `CoreDbColRef`. * Apply new/extended accounts API to ledger and tests details: This makes the `distinct_ledger` module obsolete * Remove column object constructors why: They were needed as an abstraction of MPT sub-trees including storage trees. Now, storage trees are handled by the account (e.g. via address) they belong to and all other trees can be identified by a constant well known vertex ID. So there is no need for column objects anymore. Still there are some left-over column object methods wnich will be removed next. * Remove `serialise()` and `PayloadRef` from default Aristo API why: Not needed. `PayloadRef` was used for unstructured/unknown payload formats (account or blob) and `serialise()` was used for decodng `PayloadRef`. Now it is known in advance what the payload looks like. * Added query function `hasStorageData()` whether a storage area exists why: Useful for supporting `slotStateEmpty()` of the `CoreDb` API * In the `Ledger` replace `storage.stateEmpty()` by `slotStateEmpty()` * On Aristo, hide the storage root/vertex ID in the `PayloadRef` why: The storage vertex ID is fully controlled by Aristo while the `AristoAccount` object is controlled by the application. With the storage root part of the `AristoAccount` object, there was a useless administrative burden to keep that storage root field up to date. * Remove cruft, update comments etc. * Update changed MPT access paradigms why: Fixes verified proxy tests * Fluffy cosmetics
2024-06-27 09:01:26 +00:00
proc deleteAccountRecord*(
db: AristoDbRef;
accPath: Hash256;
): Result[void,AristoError] =
## Delete the account leaf entry addressed by the argument `path`. If this
## leaf entry referres to a storage tree, this one will be deleted as well.
##
let
hike = accPath.hikeUp(VertexID(1), db).valueOr:
if error[1] in HikeAcceptableStopsNotFound:
return err(DelPathNotFound)
return err(error[1])
Update storage tree admin (#2419) * Tighten `CoreDb` API for accounts why: Apart from cruft, the way to fetch the accounts state root via a `CoreDbColRef` record was unnecessarily complicated. * Extend `CoreDb` API for accounts to cover storage tries why: In future, this will make the notion of column objects obsolete. Storage trees will then be indexed by the account address rather than the vertex ID equivalent like a `CoreDbColRef`. * Apply new/extended accounts API to ledger and tests details: This makes the `distinct_ledger` module obsolete * Remove column object constructors why: They were needed as an abstraction of MPT sub-trees including storage trees. Now, storage trees are handled by the account (e.g. via address) they belong to and all other trees can be identified by a constant well known vertex ID. So there is no need for column objects anymore. Still there are some left-over column object methods wnich will be removed next. * Remove `serialise()` and `PayloadRef` from default Aristo API why: Not needed. `PayloadRef` was used for unstructured/unknown payload formats (account or blob) and `serialise()` was used for decodng `PayloadRef`. Now it is known in advance what the payload looks like. * Added query function `hasStorageData()` whether a storage area exists why: Useful for supporting `slotStateEmpty()` of the `CoreDb` API * In the `Ledger` replace `storage.stateEmpty()` by `slotStateEmpty()` * On Aristo, hide the storage root/vertex ID in the `PayloadRef` why: The storage vertex ID is fully controlled by Aristo while the `AristoAccount` object is controlled by the application. With the storage root part of the `AristoAccount` object, there was a useless administrative burden to keep that storage root field up to date. * Remove cruft, update comments etc. * Update changed MPT access paradigms why: Fixes verified proxy tests * Fluffy cosmetics
2024-06-27 09:01:26 +00:00
stoID = hike.legs[^1].wp.vtx.lData.stoID
# Delete storage tree if present
if stoID.isValid:
? db.delStoTreeImpl((stoID.vid, stoID.vid), accPath)
?db.deleteImpl(hike)
db.layersPutAccLeaf(accPath, nil)
ok()
proc deleteGenericData*(
db: AristoDbRef;
root: VertexID;
path: openArray[byte];
): Result[bool,AristoError] =
## Delete the leaf data entry addressed by the argument `path`. The MPT
## sub-tree the leaf data entry is subsumed under is passed as argument
## `root` which must be greater than `VertexID(1)` and smaller than
## `LEAST_FREE_VID`.
Core db and aristo maintenance update (#2014) * Aristo: Update error return code why: Failing of `Aristo` function `delete()` might fail because there is no such data item on the db. This must return a single error code as is done with `fetch()`. * Ledger: Better error handling why: The `expect()` clauses have been replaced by raising asserts indicating the error from the database backend. Also, `delete()` failures are legitimate if the item to delete does not exist. * Aristo: Delete function must always leave a label on DB for `hashify()` why: The `hashify()` uses the labels left bu `merge()` and `delete()` to compile (and optimise) a scheduler for subsequent hashing. Originally, the labels were not used for deleted entries and `delete()` still had some edge case where the deletion label was not properly handled. * Aristo: Update `hashify()` scheduler, remove buggy optimisation why: Was left over from version without virtual state roots which did not know about account payload leaf vertices referring to storage roots. * Aristo: Label storage trie account in `delete()` similar to `merge()` details; The `delete()` function applied to a non-static state root (assumed to be a storage root) will check the payload of an accounts leaf and mark its Merkle keys to be re-checked when runninh `hashify()` * Aristo: Clean up and re-org recycled vertex IDs in `hashify()` why: Re-organising the recycled vertex IDs list intends to reduce the size of the list. This list is organised as a LIFO (or stack.) By reorganising it in a way so that the least vertex ID numbers are on top, the list will be kept smaller as observed on some examples (less than 30%.) * CoreDb: Accept storage trie deletion requests in non-initialised state why: Due to lazy initialisation, the root vertex ID might not yet exist. So the `Aristo` database handlers would reject this call with an error and this condition needs to be handled by the API (which realises the lazy feature.) * Cosmetics & code massage, prettify logging * fix missing import
2024-02-08 16:32:16 +00:00
##
## The return value is `true` if the argument `path` deleted was the last
## one and the tree does not exist anymore.
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 15:23:53 +00:00
##
# Verify that `root` is neither an accounts tree nor a strorage tree.
if not root.isValid:
return err(DelRootVidMissing)
elif root == VertexID(1):
return err(DelAccRootNotAccepted)
elif LEAST_FREE_VID <= root.distinctBase:
return err(DelStoRootNotAccepted)
let hike = path.hikeUp(root, db).valueOr:
if error[1] in HikeAcceptableStopsNotFound:
return err(DelPathNotFound)
return err(error[1])
2023-06-02 19:21:46 +00:00
?db.deleteImpl(hike)
ok(not db.getVtx((root, root)).isValid)
proc deleteGenericTree*(
db: AristoDbRef; # Database, top layer
root: VertexID; # Root vertex
): Result[void,AristoError] =
## Variant of `deleteGenericData()` for purging the whole MPT sub-tree.
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 15:23:53 +00:00
##
# Verify that `root` is neither an accounts tree nor a strorage tree.
if not root.isValid:
return err(DelRootVidMissing)
elif root == VertexID(1):
return err(DelAccRootNotAccepted)
elif LEAST_FREE_VID <= root.distinctBase:
return err(DelStoRootNotAccepted)
db.delSubTreeImpl root
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 15:23:53 +00:00
proc deleteStorageData*(
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 15:23:53 +00:00
db: AristoDbRef;
accPath: Hash256; # Implies storage data tree
stoPath: Hash256;
): Result[bool,AristoError] =
## For a given account argument `accPath`, this function deletes the
## argument `stoPath` from the associated storage tree (if any, at all.) If
## the if the argument `stoPath` deleted was the last one on the storage tree,
## account leaf referred to by `accPath` will be updated so that it will
## not refer to a storage tree anymore. In the latter case only the function
## will return `true`.
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 15:23:53 +00:00
##
let
Update storage tree admin (#2419) * Tighten `CoreDb` API for accounts why: Apart from cruft, the way to fetch the accounts state root via a `CoreDbColRef` record was unnecessarily complicated. * Extend `CoreDb` API for accounts to cover storage tries why: In future, this will make the notion of column objects obsolete. Storage trees will then be indexed by the account address rather than the vertex ID equivalent like a `CoreDbColRef`. * Apply new/extended accounts API to ledger and tests details: This makes the `distinct_ledger` module obsolete * Remove column object constructors why: They were needed as an abstraction of MPT sub-trees including storage trees. Now, storage trees are handled by the account (e.g. via address) they belong to and all other trees can be identified by a constant well known vertex ID. So there is no need for column objects anymore. Still there are some left-over column object methods wnich will be removed next. * Remove `serialise()` and `PayloadRef` from default Aristo API why: Not needed. `PayloadRef` was used for unstructured/unknown payload formats (account or blob) and `serialise()` was used for decodng `PayloadRef`. Now it is known in advance what the payload looks like. * Added query function `hasStorageData()` whether a storage area exists why: Useful for supporting `slotStateEmpty()` of the `CoreDb` API * In the `Ledger` replace `storage.stateEmpty()` by `slotStateEmpty()` * On Aristo, hide the storage root/vertex ID in the `PayloadRef` why: The storage vertex ID is fully controlled by Aristo while the `AristoAccount` object is controlled by the application. With the storage root part of the `AristoAccount` object, there was a useless administrative burden to keep that storage root field up to date. * Remove cruft, update comments etc. * Update changed MPT access paradigms why: Fixes verified proxy tests * Fluffy cosmetics
2024-06-27 09:01:26 +00:00
accHike = db.fetchAccountHike(accPath).valueOr:
if error == FetchAccInaccessible:
return err(DelStoAccMissing)
return err(error)
wpAcc = accHike.legs[^1].wp
Update storage tree admin (#2419) * Tighten `CoreDb` API for accounts why: Apart from cruft, the way to fetch the accounts state root via a `CoreDbColRef` record was unnecessarily complicated. * Extend `CoreDb` API for accounts to cover storage tries why: In future, this will make the notion of column objects obsolete. Storage trees will then be indexed by the account address rather than the vertex ID equivalent like a `CoreDbColRef`. * Apply new/extended accounts API to ledger and tests details: This makes the `distinct_ledger` module obsolete * Remove column object constructors why: They were needed as an abstraction of MPT sub-trees including storage trees. Now, storage trees are handled by the account (e.g. via address) they belong to and all other trees can be identified by a constant well known vertex ID. So there is no need for column objects anymore. Still there are some left-over column object methods wnich will be removed next. * Remove `serialise()` and `PayloadRef` from default Aristo API why: Not needed. `PayloadRef` was used for unstructured/unknown payload formats (account or blob) and `serialise()` was used for decodng `PayloadRef`. Now it is known in advance what the payload looks like. * Added query function `hasStorageData()` whether a storage area exists why: Useful for supporting `slotStateEmpty()` of the `CoreDb` API * In the `Ledger` replace `storage.stateEmpty()` by `slotStateEmpty()` * On Aristo, hide the storage root/vertex ID in the `PayloadRef` why: The storage vertex ID is fully controlled by Aristo while the `AristoAccount` object is controlled by the application. With the storage root part of the `AristoAccount` object, there was a useless administrative burden to keep that storage root field up to date. * Remove cruft, update comments etc. * Update changed MPT access paradigms why: Fixes verified proxy tests * Fluffy cosmetics
2024-06-27 09:01:26 +00:00
stoID = wpAcc.vtx.lData.stoID
if not stoID.isValid:
return err(DelStoRootMissing)
let stoHike = stoPath.hikeUp(stoID.vid, db).valueOr:
if error[1] in HikeAcceptableStopsNotFound:
return err(DelPathNotFound)
return err(error[1])
# Mark account path Merkle keys for update
db.updateAccountForHasher accHike
?db.deleteImpl(stoHike)
db.layersPutStoLeaf(AccountKey.mixUp(accPath, stoPath), nil)
# Make sure that an account leaf has no dangling sub-trie
if db.getVtx((stoID.vid, stoID.vid)).isValid:
return ok(false)
# De-register the deleted storage tree from the account record
let leaf = wpAcc.vtx.dup # Dup on modify
leaf.lData.stoID.isValid = false
db.layersPutAccLeaf(accPath, leaf)
db.layersPutVtx((accHike.root, wpAcc.vid), leaf)
ok(true)
proc deleteStorageTree*(
db: AristoDbRef; # Database, top layer
accPath: Hash256; # Implies storage data tree
): Result[void,AristoError] =
## Variant of `deleteStorageData()` for purging the whole storage tree
## associated to the account argument `accPath`.
##
let
Update storage tree admin (#2419) * Tighten `CoreDb` API for accounts why: Apart from cruft, the way to fetch the accounts state root via a `CoreDbColRef` record was unnecessarily complicated. * Extend `CoreDb` API for accounts to cover storage tries why: In future, this will make the notion of column objects obsolete. Storage trees will then be indexed by the account address rather than the vertex ID equivalent like a `CoreDbColRef`. * Apply new/extended accounts API to ledger and tests details: This makes the `distinct_ledger` module obsolete * Remove column object constructors why: They were needed as an abstraction of MPT sub-trees including storage trees. Now, storage trees are handled by the account (e.g. via address) they belong to and all other trees can be identified by a constant well known vertex ID. So there is no need for column objects anymore. Still there are some left-over column object methods wnich will be removed next. * Remove `serialise()` and `PayloadRef` from default Aristo API why: Not needed. `PayloadRef` was used for unstructured/unknown payload formats (account or blob) and `serialise()` was used for decodng `PayloadRef`. Now it is known in advance what the payload looks like. * Added query function `hasStorageData()` whether a storage area exists why: Useful for supporting `slotStateEmpty()` of the `CoreDb` API * In the `Ledger` replace `storage.stateEmpty()` by `slotStateEmpty()` * On Aristo, hide the storage root/vertex ID in the `PayloadRef` why: The storage vertex ID is fully controlled by Aristo while the `AristoAccount` object is controlled by the application. With the storage root part of the `AristoAccount` object, there was a useless administrative burden to keep that storage root field up to date. * Remove cruft, update comments etc. * Update changed MPT access paradigms why: Fixes verified proxy tests * Fluffy cosmetics
2024-06-27 09:01:26 +00:00
accHike = db.fetchAccountHike(accPath).valueOr:
if error == FetchAccInaccessible:
return err(DelStoAccMissing)
return err(error)
wpAcc = accHike.legs[^1].wp
Update storage tree admin (#2419) * Tighten `CoreDb` API for accounts why: Apart from cruft, the way to fetch the accounts state root via a `CoreDbColRef` record was unnecessarily complicated. * Extend `CoreDb` API for accounts to cover storage tries why: In future, this will make the notion of column objects obsolete. Storage trees will then be indexed by the account address rather than the vertex ID equivalent like a `CoreDbColRef`. * Apply new/extended accounts API to ledger and tests details: This makes the `distinct_ledger` module obsolete * Remove column object constructors why: They were needed as an abstraction of MPT sub-trees including storage trees. Now, storage trees are handled by the account (e.g. via address) they belong to and all other trees can be identified by a constant well known vertex ID. So there is no need for column objects anymore. Still there are some left-over column object methods wnich will be removed next. * Remove `serialise()` and `PayloadRef` from default Aristo API why: Not needed. `PayloadRef` was used for unstructured/unknown payload formats (account or blob) and `serialise()` was used for decodng `PayloadRef`. Now it is known in advance what the payload looks like. * Added query function `hasStorageData()` whether a storage area exists why: Useful for supporting `slotStateEmpty()` of the `CoreDb` API * In the `Ledger` replace `storage.stateEmpty()` by `slotStateEmpty()` * On Aristo, hide the storage root/vertex ID in the `PayloadRef` why: The storage vertex ID is fully controlled by Aristo while the `AristoAccount` object is controlled by the application. With the storage root part of the `AristoAccount` object, there was a useless administrative burden to keep that storage root field up to date. * Remove cruft, update comments etc. * Update changed MPT access paradigms why: Fixes verified proxy tests * Fluffy cosmetics
2024-06-27 09:01:26 +00:00
stoID = wpAcc.vtx.lData.stoID
if not stoID.isValid:
return err(DelStoRootMissing)
# Mark account path Merkle keys for update
db.updateAccountForHasher accHike
? db.delStoTreeImpl((stoID.vid, stoID.vid), accPath)
# De-register the deleted storage tree from the accounts record
let leaf = wpAcc.vtx.dup # Dup on modify
leaf.lData.stoID.isValid = false
db.layersPutAccLeaf(accPath, leaf)
db.layersPutVtx((accHike.root, wpAcc.vid), leaf)
ok()
2023-06-02 19:21:46 +00:00
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------