nimbus-eth1/nimbus/db/aristo/aristo_tx.nim

373 lines
11 KiB
Nim
Raw Normal View History

# nimbus-eth1
Core db update storage root management for sub tries (#1964) * Aristo: Re-phrase `LayerDelta` and `LayerFinal` as object references why: Avoids copying in some cases * Fix copyright header * Aristo: Verify `leafTie.root` function argument for `merge()` proc why: Zero root will lead to inconsistent DB entry * Aristo: Update failure condition for hash labels compiler `hashify()` why: Node need not be rejected as long as links are on the schedule. In that case, `redo[]` is to become `wff.base[]` at a later stage. This amends an earlier fix, part of #1952 by also testing against the target nodes of the `wff.base[]` sets. * Aristo: Add storage root glue record to `hashify()` schedule why: An account leaf node might refer to a non-resolvable storage root ID. Storage root node chains will end up at the storage root. So the link `storage-root->account-leaf` needs an extra item in the schedule. * Aristo: fix error code returned by `fetchPayload()` details: Final error code is implied by the error code form the `hikeUp()` function. * CoreDb: Discard `createOk` argument in API `getRoot()` function why: Not needed for the legacy DB. For the `Arsto` DB, a lazy approach is implemented where a stprage root node is created on-the-fly. * CoreDb: Prevent `$$` logging in some cases why: Logging the function `$$` is not useful when it is used for internal use, i.e. retrieving an an error text for logging. * CoreDb: Add `tryHashFn()` to API for pretty printing why: Pretty printing must not change the hashification status for the `Aristo` DB. So there is an independent API wrapper for getting the node hash which never updated the hashes. * CoreDb: Discard `update` argument in API `hash()` function why: When calling the API function `hash()`, the latest state is always wanted. For a version that uses the current state as-is without checking, the function `tryHash()` was added to the backend. * CoreDb: Update opaque vertex ID objects for the `Aristo` backend why: For `Aristo`, vID objects encapsulate a numeric `VertexID` referencing a vertex (rather than a node hash as used on the legacy backend.) For storage sub-tries, there might be no initial vertex known when the descriptor is created. So opaque vertex ID objects are supported without a valid `VertexID` which will be initalised on-the-fly when the first item is merged. * CoreDb: Add pretty printer for opaque vertex ID objects * Cosmetics, printing profiling data * CoreDb: Fix segfault in `Aristo` backend when creating MPT descriptor why: Missing initialisation error * CoreDb: Allow MPT to inherit shared context on `Aristo` backend why: Creates descriptors with different storage roots for the same shared `Aristo` DB descriptor. * Cosmetics, update diagnostic message items for `Aristo` backend * Fix Copyright year
2024-01-11 19:11:38 +00:00
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
## Aristo DB -- Transaction interface
## ==================================
##
{.push raises: [].}
import
std/tables,
results,
"."/[aristo_desc, aristo_filter, aristo_get, aristo_layers, aristo_hashify]
func isTop*(tx: AristoTxRef): bool
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
func level*(db: AristoDbRef): int
# ------------------------------------------------------------------------------
# Private helpers
# ------------------------------------------------------------------------------
func getDbDescFromTopTx(tx: AristoTxRef): Result[AristoDbRef,AristoError] =
if not tx.isTop():
return err(TxNotTopTx)
let db = tx.db
if tx.level != db.stack.len:
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
return err(TxStackGarbled)
ok db
proc getTxUid(db: AristoDbRef): uint =
if db.txUidGen == high(uint):
db.txUidGen = 0
db.txUidGen.inc
db.txUidGen
# ------------------------------------------------------------------------------
# Public functions, getters
# ------------------------------------------------------------------------------
func txTop*(db: AristoDbRef): Result[AristoTxRef,AristoError] =
## Getter, returns top level transaction if there is any.
if db.txRef.isNil:
err(TxNoPendingTx)
else:
ok(db.txRef)
func isTop*(tx: AristoTxRef): bool =
## Getter, returns `true` if the argument `tx` referes to the current top
## level transaction.
tx.db.txRef == tx and tx.db.top.txUid == tx.txUid
func level*(tx: AristoTxRef): int =
## Getter, positive nesting level of transaction argument `tx`
tx.level
func level*(db: AristoDbRef): int =
## Getter, non-negative nesting level (i.e. number of pending transactions)
if not db.txRef.isNil:
result = db.txRef.level
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
func to*(tx: AristoTxRef; T: type[AristoDbRef]): T =
## Getter, retrieves the parent database descriptor from argument `tx`
tx.db
proc forkTx*(
tx: AristoTxRef; # Transaction descriptor
dontHashify = false; # Process/fix MPT hashes
): Result[AristoDbRef,AristoError] =
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
## Clone a transaction into a new DB descriptor accessing the same backend
## database (if any) as the argument `db`. The new descriptor is linked to
## the transaction parent and is fully functional as a forked instance (see
## comments on `aristo_desc.reCentre()` for details.)
##
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
## Input situation:
## ::
## tx -> db0 with tx is top transaction, tx.level > 0
##
## Output situation:
## ::
## tx -> db0 \
## > share the same backend
## tx1 -> db1 /
##
## where `tx.level > 0`, `db1.level == 1` and `db1` is returned. The
## transaction `tx1` can be retrieved via `db1.txTop()`.
##
## The new DB descriptor will contain a copy of the argument transaction
## `tx` as top layer of level 1 (i.e. this is he only transaction.) Rolling
## back will end up at the backend layer (incl. backend filter.)
##
## If the arguent flag `dontHashify` is passed `true`, the clone descriptor
## will *NOT* be hashified right after construction.
##
## Use `aristo_desc.forget()` to clean up this descriptor.
##
let db = tx.db
# Verify `tx` argument
if db.txRef == tx:
if db.top.txUid != tx.txUid:
return err(TxArgStaleTx)
elif db.stack.len <= tx.level:
return err(TxArgStaleTx)
elif db.stack[tx.level].txUid != tx.txUid:
return err(TxArgStaleTx)
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
# Provide new empty stack layer
let stackLayer = block:
let rc = db.getIdgBE()
if rc.isOk:
Core db update storage root management for sub tries (#1964) * Aristo: Re-phrase `LayerDelta` and `LayerFinal` as object references why: Avoids copying in some cases * Fix copyright header * Aristo: Verify `leafTie.root` function argument for `merge()` proc why: Zero root will lead to inconsistent DB entry * Aristo: Update failure condition for hash labels compiler `hashify()` why: Node need not be rejected as long as links are on the schedule. In that case, `redo[]` is to become `wff.base[]` at a later stage. This amends an earlier fix, part of #1952 by also testing against the target nodes of the `wff.base[]` sets. * Aristo: Add storage root glue record to `hashify()` schedule why: An account leaf node might refer to a non-resolvable storage root ID. Storage root node chains will end up at the storage root. So the link `storage-root->account-leaf` needs an extra item in the schedule. * Aristo: fix error code returned by `fetchPayload()` details: Final error code is implied by the error code form the `hikeUp()` function. * CoreDb: Discard `createOk` argument in API `getRoot()` function why: Not needed for the legacy DB. For the `Arsto` DB, a lazy approach is implemented where a stprage root node is created on-the-fly. * CoreDb: Prevent `$$` logging in some cases why: Logging the function `$$` is not useful when it is used for internal use, i.e. retrieving an an error text for logging. * CoreDb: Add `tryHashFn()` to API for pretty printing why: Pretty printing must not change the hashification status for the `Aristo` DB. So there is an independent API wrapper for getting the node hash which never updated the hashes. * CoreDb: Discard `update` argument in API `hash()` function why: When calling the API function `hash()`, the latest state is always wanted. For a version that uses the current state as-is without checking, the function `tryHash()` was added to the backend. * CoreDb: Update opaque vertex ID objects for the `Aristo` backend why: For `Aristo`, vID objects encapsulate a numeric `VertexID` referencing a vertex (rather than a node hash as used on the legacy backend.) For storage sub-tries, there might be no initial vertex known when the descriptor is created. So opaque vertex ID objects are supported without a valid `VertexID` which will be initalised on-the-fly when the first item is merged. * CoreDb: Add pretty printer for opaque vertex ID objects * Cosmetics, printing profiling data * CoreDb: Fix segfault in `Aristo` backend when creating MPT descriptor why: Missing initialisation error * CoreDb: Allow MPT to inherit shared context on `Aristo` backend why: Creates descriptors with different storage roots for the same shared `Aristo` DB descriptor. * Cosmetics, update diagnostic message items for `Aristo` backend * Fix Copyright year
2024-01-11 19:11:38 +00:00
LayerRef(
delta: LayerDeltaRef(),
final: LayerFinalRef(vGen: rc.value))
elif rc.error == GetIdgNotFound:
Core db update storage root management for sub tries (#1964) * Aristo: Re-phrase `LayerDelta` and `LayerFinal` as object references why: Avoids copying in some cases * Fix copyright header * Aristo: Verify `leafTie.root` function argument for `merge()` proc why: Zero root will lead to inconsistent DB entry * Aristo: Update failure condition for hash labels compiler `hashify()` why: Node need not be rejected as long as links are on the schedule. In that case, `redo[]` is to become `wff.base[]` at a later stage. This amends an earlier fix, part of #1952 by also testing against the target nodes of the `wff.base[]` sets. * Aristo: Add storage root glue record to `hashify()` schedule why: An account leaf node might refer to a non-resolvable storage root ID. Storage root node chains will end up at the storage root. So the link `storage-root->account-leaf` needs an extra item in the schedule. * Aristo: fix error code returned by `fetchPayload()` details: Final error code is implied by the error code form the `hikeUp()` function. * CoreDb: Discard `createOk` argument in API `getRoot()` function why: Not needed for the legacy DB. For the `Arsto` DB, a lazy approach is implemented where a stprage root node is created on-the-fly. * CoreDb: Prevent `$$` logging in some cases why: Logging the function `$$` is not useful when it is used for internal use, i.e. retrieving an an error text for logging. * CoreDb: Add `tryHashFn()` to API for pretty printing why: Pretty printing must not change the hashification status for the `Aristo` DB. So there is an independent API wrapper for getting the node hash which never updated the hashes. * CoreDb: Discard `update` argument in API `hash()` function why: When calling the API function `hash()`, the latest state is always wanted. For a version that uses the current state as-is without checking, the function `tryHash()` was added to the backend. * CoreDb: Update opaque vertex ID objects for the `Aristo` backend why: For `Aristo`, vID objects encapsulate a numeric `VertexID` referencing a vertex (rather than a node hash as used on the legacy backend.) For storage sub-tries, there might be no initial vertex known when the descriptor is created. So opaque vertex ID objects are supported without a valid `VertexID` which will be initalised on-the-fly when the first item is merged. * CoreDb: Add pretty printer for opaque vertex ID objects * Cosmetics, printing profiling data * CoreDb: Fix segfault in `Aristo` backend when creating MPT descriptor why: Missing initialisation error * CoreDb: Allow MPT to inherit shared context on `Aristo` backend why: Creates descriptors with different storage roots for the same shared `Aristo` DB descriptor. * Cosmetics, update diagnostic message items for `Aristo` backend * Fix Copyright year
2024-01-11 19:11:38 +00:00
LayerRef.init()
else:
return err(rc.error)
# Set up clone associated to `db`
let txClone = ? db.fork(rawToplayer = true)
txClone.top = db.layersCc tx.level # Provide tx level 1 stack
txClone.stack = @[stackLayer] # Zero level stack
txClone.roFilter = db.roFilter # No need to copy (done when updated)
txClone.backend = db.backend
txClone.top.txUid = 1
txClone.txUidGen = 1
# Install transaction similar to `tx` on clone
txClone.txRef = AristoTxRef(
db: txClone,
txUid: 1,
level: 1)
Core db aristo hasher profiling and timing improvement (#1938) * Explicitly use shared `Kvt` table on `Ledger` and `Clique` lookup. why: Speeds up lookup time with `Aristo` backend. For writing `Clique` data, the `Companion` model allows to write `Clique` data past the database locked by evm transactions. * Implement `CoreDb` profiling with API tracking why: Chasing time spent per APT procs ... * Implement `Ledger` profiling with API tracking why: Chasing time spent per APT procs ... * Always hashify when commiting or storing why: A dirty cache makes no sense when committing * Make sure that a zero key is created when adding/updating vertices why: This is an error fix mainly for edge cases. A typical error was that the root key got deleted when there were only a few vertices left on the DB. * Need all created and changed vertices zero-keyed on the cache why: A zero key (i.e. empty Merkle hash) indicates that a vertex key needs to be updated. This would not be needed immediately after a merge as there is an actual leaf path on the cache layer. But after subsequent merge and delete operations this information might get blurred. * Re-org hashing algorithm why: Apart from errors, the previous implementation was too slow for two reasons: + some control hashes were calculated for debugging (now all verification is done in `aristo_check` module) + the leaf paths stored on the cache are used to build the labelling (aka hashing) schedule; there paths were accumulated over successive hash sessions although it is clear that all keys were generated, already
2023-12-12 17:47:41 +00:00
if not dontHashify:
txClone.hashify().isOkOr:
discard txClone.forget()
return err(error[1])
ok(txClone)
proc forkTop*(
db: AristoDbRef;
dontHashify = false; # Process/fix MPT hashes
): Result[AristoDbRef,AristoError] =
## Variant of `forkTx()` for the top transaction if there is any. Otherwise
## the top layer is cloned, only.
##
## Use `aristo_desc.forget()` to clean up this descriptor.
##
if db.txRef.isNil:
let dbClone = ? db.fork(rawToplayer = true)
dbClone.top = db.layersCc # Is a deep copy
dbClone.roFilter = db.roFilter # No need to copy contents when updated
dbClone.backend = db.backend
Core db aristo hasher profiling and timing improvement (#1938) * Explicitly use shared `Kvt` table on `Ledger` and `Clique` lookup. why: Speeds up lookup time with `Aristo` backend. For writing `Clique` data, the `Companion` model allows to write `Clique` data past the database locked by evm transactions. * Implement `CoreDb` profiling with API tracking why: Chasing time spent per APT procs ... * Implement `Ledger` profiling with API tracking why: Chasing time spent per APT procs ... * Always hashify when commiting or storing why: A dirty cache makes no sense when committing * Make sure that a zero key is created when adding/updating vertices why: This is an error fix mainly for edge cases. A typical error was that the root key got deleted when there were only a few vertices left on the DB. * Need all created and changed vertices zero-keyed on the cache why: A zero key (i.e. empty Merkle hash) indicates that a vertex key needs to be updated. This would not be needed immediately after a merge as there is an actual leaf path on the cache layer. But after subsequent merge and delete operations this information might get blurred. * Re-org hashing algorithm why: Apart from errors, the previous implementation was too slow for two reasons: + some control hashes were calculated for debugging (now all verification is done in `aristo_check` module) + the leaf paths stored on the cache are used to build the labelling (aka hashing) schedule; there paths were accumulated over successive hash sessions although it is clear that all keys were generated, already
2023-12-12 17:47:41 +00:00
if not dontHashify:
dbClone.hashify().isOkOr:
discard dbClone.forget()
return err(error[1])
return ok(dbClone)
db.txRef.forkTx dontHashify
proc exec*(
tx: AristoTxRef;
action: AristoDbAction;
dontHashify = false; # Process/fix MPT hashes
Core db update providing additional results code interface (#1776) * Split `core_db/base.nim` into several sources * Rename `core_db/legacy.nim` => `core_db/legacy_db.nim` * Update `CoreDb` API, dual methods returning `Result[]` or plain value detail: Plain value methods implemet the legacy API, they defect on error results * Redesign `CoreDB` direct backend access why: Made the `backend` directive integral part of the API * Discontinue providing unused or otherwise available functions details: + setTransactionID() removed, not used and not easily replicable in Aristo + maybeGet() removed, available via direct backend access + newPhk() removed, never used & was experimental anyway * Update/reorg backend API why: + Added error print function `$$()` + General descriptor completion (and optional validation) via `bless()` * Update `Aristo`/`Kvt` exception handling why: Avoid `CatchableError` exceptions, rather pass them as error code where appropriate. * More `CoreDB` compliant `Aristo` and `Kvt` methods details: + Providing functions like `contains()`, `getVtxRc()` (returns `Result[]`). + Additional error code: `NotImplemented` * Rewrite/reorg of Aristo DB constructor why: Previously used global object `DefaultQidLayoutRef` as default initialiser. This object was created at compile time which lead to non-gc safe functions. * Update nimbus/db/core_db/legacy_db.nim Co-authored-by: Kim De Mey <kim.demey@gmail.com> * Update nimbus/db/aristo/aristo_transcode.nim Co-authored-by: Kim De Mey <kim.demey@gmail.com> * Update nimbus/db/core_db/legacy_db.nim Co-authored-by: Kim De Mey <kim.demey@gmail.com> --------- Co-authored-by: Kim De Mey <kim.demey@gmail.com>
2023-09-26 10:21:13 +01:00
): Result[void,AristoError] =
## Execute function argument `action()` on a temporary `tx.forkTx()`
## transaction clone database. After return, the temporary database gets
## destroyed.
##
## If the arguent flag `dontHashify` is passed `true`, the clone database
## will *NOT* be hashified right after construction.
##
let db = ? tx.forkTx dontHashify
db.action()
? db.forget()
ok()
# ------------------------------------------------------------------------------
# Public functions: Transaction frame
# ------------------------------------------------------------------------------
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
proc txBegin*(db: AristoDbRef): Result[AristoTxRef,AristoError] =
## Starts a new transaction.
##
## Example:
## ::
## proc doSomething(db: AristoDbRef) =
## let tx = db.begin
## defer: tx.rollback()
## ... continue using db ...
## tx.commit()
##
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
if db.level != db.stack.len:
return err(TxStackGarbled)
db.stack.add db.top
db.top = LayerRef(
Core db update storage root management for sub tries (#1964) * Aristo: Re-phrase `LayerDelta` and `LayerFinal` as object references why: Avoids copying in some cases * Fix copyright header * Aristo: Verify `leafTie.root` function argument for `merge()` proc why: Zero root will lead to inconsistent DB entry * Aristo: Update failure condition for hash labels compiler `hashify()` why: Node need not be rejected as long as links are on the schedule. In that case, `redo[]` is to become `wff.base[]` at a later stage. This amends an earlier fix, part of #1952 by also testing against the target nodes of the `wff.base[]` sets. * Aristo: Add storage root glue record to `hashify()` schedule why: An account leaf node might refer to a non-resolvable storage root ID. Storage root node chains will end up at the storage root. So the link `storage-root->account-leaf` needs an extra item in the schedule. * Aristo: fix error code returned by `fetchPayload()` details: Final error code is implied by the error code form the `hikeUp()` function. * CoreDb: Discard `createOk` argument in API `getRoot()` function why: Not needed for the legacy DB. For the `Arsto` DB, a lazy approach is implemented where a stprage root node is created on-the-fly. * CoreDb: Prevent `$$` logging in some cases why: Logging the function `$$` is not useful when it is used for internal use, i.e. retrieving an an error text for logging. * CoreDb: Add `tryHashFn()` to API for pretty printing why: Pretty printing must not change the hashification status for the `Aristo` DB. So there is an independent API wrapper for getting the node hash which never updated the hashes. * CoreDb: Discard `update` argument in API `hash()` function why: When calling the API function `hash()`, the latest state is always wanted. For a version that uses the current state as-is without checking, the function `tryHash()` was added to the backend. * CoreDb: Update opaque vertex ID objects for the `Aristo` backend why: For `Aristo`, vID objects encapsulate a numeric `VertexID` referencing a vertex (rather than a node hash as used on the legacy backend.) For storage sub-tries, there might be no initial vertex known when the descriptor is created. So opaque vertex ID objects are supported without a valid `VertexID` which will be initalised on-the-fly when the first item is merged. * CoreDb: Add pretty printer for opaque vertex ID objects * Cosmetics, printing profiling data * CoreDb: Fix segfault in `Aristo` backend when creating MPT descriptor why: Missing initialisation error * CoreDb: Allow MPT to inherit shared context on `Aristo` backend why: Creates descriptors with different storage roots for the same shared `Aristo` DB descriptor. * Cosmetics, update diagnostic message items for `Aristo` backend * Fix Copyright year
2024-01-11 19:11:38 +00:00
delta: LayerDeltaRef(),
final: db.top.final.dup,
txUid: db.getTxUid)
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
db.txRef = AristoTxRef(
db: db,
txUid: db.top.txUid,
parent: db.txRef,
level: db.stack.len)
ok db.txRef
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
proc rollback*(
tx: AristoTxRef; # Top transaction on database
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
): Result[void,AristoError] =
## Given a *top level* handle, this function discards all database operations
## performed for this transactio. The previous transaction is returned if
## there was any.
##
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
let db = ? tx.getDbDescFromTopTx()
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
# Roll back to previous layer.
db.top = db.stack[^1]
db.stack.setLen(db.stack.len-1)
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
db.txRef = db.txRef.parent
ok()
proc commit*(
tx: AristoTxRef; # Top transaction on database
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
): Result[void,AristoError] =
## Given a *top level* handle, this function accepts all database operations
## performed through this handle and merges it to the previous layer. The
## previous transaction is returned if there was any.
##
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
let db = ? tx.getDbDescFromTopTx()
db.hashify().isOkOr:
return err(error[1])
# Pop layer from stack and merge database top layer onto it
let merged = block:
if db.top.delta.sTab.len == 0 and
db.top.delta.kMap.len == 0:
# Avoid `layersMergeOnto()`
Core db update storage root management for sub tries (#1964) * Aristo: Re-phrase `LayerDelta` and `LayerFinal` as object references why: Avoids copying in some cases * Fix copyright header * Aristo: Verify `leafTie.root` function argument for `merge()` proc why: Zero root will lead to inconsistent DB entry * Aristo: Update failure condition for hash labels compiler `hashify()` why: Node need not be rejected as long as links are on the schedule. In that case, `redo[]` is to become `wff.base[]` at a later stage. This amends an earlier fix, part of #1952 by also testing against the target nodes of the `wff.base[]` sets. * Aristo: Add storage root glue record to `hashify()` schedule why: An account leaf node might refer to a non-resolvable storage root ID. Storage root node chains will end up at the storage root. So the link `storage-root->account-leaf` needs an extra item in the schedule. * Aristo: fix error code returned by `fetchPayload()` details: Final error code is implied by the error code form the `hikeUp()` function. * CoreDb: Discard `createOk` argument in API `getRoot()` function why: Not needed for the legacy DB. For the `Arsto` DB, a lazy approach is implemented where a stprage root node is created on-the-fly. * CoreDb: Prevent `$$` logging in some cases why: Logging the function `$$` is not useful when it is used for internal use, i.e. retrieving an an error text for logging. * CoreDb: Add `tryHashFn()` to API for pretty printing why: Pretty printing must not change the hashification status for the `Aristo` DB. So there is an independent API wrapper for getting the node hash which never updated the hashes. * CoreDb: Discard `update` argument in API `hash()` function why: When calling the API function `hash()`, the latest state is always wanted. For a version that uses the current state as-is without checking, the function `tryHash()` was added to the backend. * CoreDb: Update opaque vertex ID objects for the `Aristo` backend why: For `Aristo`, vID objects encapsulate a numeric `VertexID` referencing a vertex (rather than a node hash as used on the legacy backend.) For storage sub-tries, there might be no initial vertex known when the descriptor is created. So opaque vertex ID objects are supported without a valid `VertexID` which will be initalised on-the-fly when the first item is merged. * CoreDb: Add pretty printer for opaque vertex ID objects * Cosmetics, printing profiling data * CoreDb: Fix segfault in `Aristo` backend when creating MPT descriptor why: Missing initialisation error * CoreDb: Allow MPT to inherit shared context on `Aristo` backend why: Creates descriptors with different storage roots for the same shared `Aristo` DB descriptor. * Cosmetics, update diagnostic message items for `Aristo` backend * Fix Copyright year
2024-01-11 19:11:38 +00:00
db.top.delta = db.stack[^1].delta
db.stack.setLen(db.stack.len-1)
db.top
else:
let layer = db.stack[^1]
db.stack.setLen(db.stack.len-1)
db.top.layersMergeOnto layer[]
layer
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
# Install `merged` stack top layer and update stack
db.top = merged
db.txRef = tx.parent
if 0 < db.stack.len:
db.txRef.txUid = db.getTxUid
db.top.txUid = db.txRef.txUid
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
ok()
proc collapse*(
tx: AristoTxRef; # Top transaction on database
commit: bool; # Commit if `true`, otherwise roll back
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
): Result[void,AristoError] =
## Iterated application of `commit()` or `rollback()` performing the
## something similar to
## ::
## while true:
## discard tx.commit() # ditto for rollback()
## if db.topTx.isErr: break
## tx = db.topTx.value
##
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
let db = ? tx.getDbDescFromTopTx()
if commit:
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
# For commit, hashify the current layer if requested and install it
db.hashify().isOkOr:
return err(error[1])
Core db and aristo updates for destructor and tx logic (#1894) * Disable `TransactionID` related functions from `state_db.nim` why: Functions `getCommittedStorage()` and `updateOriginalRoot()` from the `state_db` module are nowhere used. The emulation of a legacy `TransactionID` type functionality is administratively expensive to provide by `Aristo` (the legacy DB version is only partially implemented, anyway). As there is no other place where `TransactionID`s are used, they will not be provided by the `Aristo` variant of the `CoreDb`. For the legacy DB API, nothing will change. * Fix copyright headers in source code * Get rid of compiler warning * Update Aristo code, remove unused `merge()` variant, export `hashify()` why: Adapt to upcoming `CoreDb` wrapper * Remove synced tx feature from `Aristo` why: + This feature allowed to synchronise transaction methods like begin, commit, and rollback for a group of descriptors. + The feature is over engineered and not needed for `CoreDb`, neither is it complete (some convergence features missing.) * Add debugging helpers to `Kvt` also: Update database iterator, add count variable yield argument similar to `Aristo`. * Provide optional destructors for `CoreDb` API why; For the upcoming Aristo wrapper, this allows to control when certain smart destruction and update can take place. The auto destructor works fine in general when the storage/cache strategy is known and acceptable when creating descriptors. * Add update option for `CoreDb` API function `hash()` why; The hash function is typically used to get the state root of the MPT. Due to lazy hashing, this might be not available on the `Aristo` DB. So the `update` function asks for re-hashing the gurrent state changes if needed. * Update API tracking log mode: `info` => `debug * Use shared `Kvt` descriptor in new Ledger API why: No need to create a new descriptor all the time
2023-11-16 19:35:03 +00:00
db.top.txUid = 0
db.stack.setLen(0)
db.txRef = AristoTxRef(nil)
ok()
# ------------------------------------------------------------------------------
# Public functions: save database
# ------------------------------------------------------------------------------
proc stow*(
db: AristoDbRef; # Database
persistent = false; # Stage only unless `true`
chunkedMpt = false; # Partial data (e.g. from `snap`)
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
): Result[void,AristoError] =
## If there is no backend while the `persistent` argument is set `true`,
## the function returns immediately with an error. The same happens if there
## is a pending transaction.
##
## The function then merges the data from the top layer cache into the
## backend stage area. After that, the top layer cache is cleared.
##
## Staging the top layer cache might fail withh a partial MPT when it is
## set up from partial MPT chunks as it happens with `snap` sync processing.
## In this case, the `chunkedMpt` argument must be set `true` (see alse
## `fwdFilter`.)
##
## If the argument `persistent` is set `true`, all the staged data are merged
## into the physical backend database and the staged data area is cleared.
##
if not db.txRef.isNil:
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
return err(TxPendingTx)
if 0 < db.stack.len:
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
return err(TxStackGarbled)
if persistent and not db.canResolveBackendFilter():
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
return err(TxBackendNotWritable)
db.hashify().isOkOr:
return err(error[1])
let fwd = db.fwdFilter(db.top, chunkedMpt).valueOr:
return err(error[1])
if fwd.isValid:
# Merge `top` layer into `roFilter`
db.merge(fwd).isOkOr:
return err(error[1])
Core db update storage root management for sub tries (#1964) * Aristo: Re-phrase `LayerDelta` and `LayerFinal` as object references why: Avoids copying in some cases * Fix copyright header * Aristo: Verify `leafTie.root` function argument for `merge()` proc why: Zero root will lead to inconsistent DB entry * Aristo: Update failure condition for hash labels compiler `hashify()` why: Node need not be rejected as long as links are on the schedule. In that case, `redo[]` is to become `wff.base[]` at a later stage. This amends an earlier fix, part of #1952 by also testing against the target nodes of the `wff.base[]` sets. * Aristo: Add storage root glue record to `hashify()` schedule why: An account leaf node might refer to a non-resolvable storage root ID. Storage root node chains will end up at the storage root. So the link `storage-root->account-leaf` needs an extra item in the schedule. * Aristo: fix error code returned by `fetchPayload()` details: Final error code is implied by the error code form the `hikeUp()` function. * CoreDb: Discard `createOk` argument in API `getRoot()` function why: Not needed for the legacy DB. For the `Arsto` DB, a lazy approach is implemented where a stprage root node is created on-the-fly. * CoreDb: Prevent `$$` logging in some cases why: Logging the function `$$` is not useful when it is used for internal use, i.e. retrieving an an error text for logging. * CoreDb: Add `tryHashFn()` to API for pretty printing why: Pretty printing must not change the hashification status for the `Aristo` DB. So there is an independent API wrapper for getting the node hash which never updated the hashes. * CoreDb: Discard `update` argument in API `hash()` function why: When calling the API function `hash()`, the latest state is always wanted. For a version that uses the current state as-is without checking, the function `tryHash()` was added to the backend. * CoreDb: Update opaque vertex ID objects for the `Aristo` backend why: For `Aristo`, vID objects encapsulate a numeric `VertexID` referencing a vertex (rather than a node hash as used on the legacy backend.) For storage sub-tries, there might be no initial vertex known when the descriptor is created. So opaque vertex ID objects are supported without a valid `VertexID` which will be initalised on-the-fly when the first item is merged. * CoreDb: Add pretty printer for opaque vertex ID objects * Cosmetics, printing profiling data * CoreDb: Fix segfault in `Aristo` backend when creating MPT descriptor why: Missing initialisation error * CoreDb: Allow MPT to inherit shared context on `Aristo` backend why: Creates descriptors with different storage roots for the same shared `Aristo` DB descriptor. * Cosmetics, update diagnostic message items for `Aristo` backend * Fix Copyright year
2024-01-11 19:11:38 +00:00
db.top = LayerRef(
delta: LayerDeltaRef(),
final: LayerFinalRef())
if db.roFilter.isValid:
db.top.final.vGen = db.roFilter.vGen
else:
let rc = db.getIdgUBE()
if rc.isOk:
db.top.final.vGen = rc.value
else:
# It is OK if there was no `Idg`. Otherwise something serious happened
# and there is no way to recover easily.
doAssert rc.error == GetIdgNotFound
if persistent:
Aristo db api extensions for use as core db backend (#1754) * Update docu * Update Aristo/Kvt constructor prototype why: Previous version used an `enum` value to indicate what backend is to be used. This was replaced by using the backend object type. * Rewrite `hikeUp()` return code into `Result[Hike,(Hike,AristoError)]` why: Better code maintenance. Previously, the `Hike` object was returned. It had an internal error field so partial success was also available on a failure. This error field has been removed. * Use `openArray[byte]` rather than `Blob` in functions prototypes * Provide synchronised multi instance transactions why: The `CoreDB` object was geared towards the legacy DB which used a single transaction for the key-value backend DB. Different state roots are provided by the backend database, so all instances work directly on the same backend. Aristo db instances have different in-memory mappings (aka different state roots) and the transactions are on top of there mappings. So each instance might run different transactions. Multi instance transactions are a compromise to converge towards the legacy behaviour. The synchronised transactions span over all instances available at the time when base transaction was opened. Instances created later are unaffected. * Provide key-value pair database iterator why: Needed in `CoreDB` for `replicate()` emulation also: Some update of internal code * Extend API (i.e. prototype variants) why: Needed for `CoreDB` geared towards the legacy backend which has a more basic API than Aristo.
2023-09-15 16:23:53 +01:00
? db.resolveBackendFilter()
db.roFilter = FilterRef(nil)
# Delete/clear top
db.top = LayerRef(
Core db update storage root management for sub tries (#1964) * Aristo: Re-phrase `LayerDelta` and `LayerFinal` as object references why: Avoids copying in some cases * Fix copyright header * Aristo: Verify `leafTie.root` function argument for `merge()` proc why: Zero root will lead to inconsistent DB entry * Aristo: Update failure condition for hash labels compiler `hashify()` why: Node need not be rejected as long as links are on the schedule. In that case, `redo[]` is to become `wff.base[]` at a later stage. This amends an earlier fix, part of #1952 by also testing against the target nodes of the `wff.base[]` sets. * Aristo: Add storage root glue record to `hashify()` schedule why: An account leaf node might refer to a non-resolvable storage root ID. Storage root node chains will end up at the storage root. So the link `storage-root->account-leaf` needs an extra item in the schedule. * Aristo: fix error code returned by `fetchPayload()` details: Final error code is implied by the error code form the `hikeUp()` function. * CoreDb: Discard `createOk` argument in API `getRoot()` function why: Not needed for the legacy DB. For the `Arsto` DB, a lazy approach is implemented where a stprage root node is created on-the-fly. * CoreDb: Prevent `$$` logging in some cases why: Logging the function `$$` is not useful when it is used for internal use, i.e. retrieving an an error text for logging. * CoreDb: Add `tryHashFn()` to API for pretty printing why: Pretty printing must not change the hashification status for the `Aristo` DB. So there is an independent API wrapper for getting the node hash which never updated the hashes. * CoreDb: Discard `update` argument in API `hash()` function why: When calling the API function `hash()`, the latest state is always wanted. For a version that uses the current state as-is without checking, the function `tryHash()` was added to the backend. * CoreDb: Update opaque vertex ID objects for the `Aristo` backend why: For `Aristo`, vID objects encapsulate a numeric `VertexID` referencing a vertex (rather than a node hash as used on the legacy backend.) For storage sub-tries, there might be no initial vertex known when the descriptor is created. So opaque vertex ID objects are supported without a valid `VertexID` which will be initalised on-the-fly when the first item is merged. * CoreDb: Add pretty printer for opaque vertex ID objects * Cosmetics, printing profiling data * CoreDb: Fix segfault in `Aristo` backend when creating MPT descriptor why: Missing initialisation error * CoreDb: Allow MPT to inherit shared context on `Aristo` backend why: Creates descriptors with different storage roots for the same shared `Aristo` DB descriptor. * Cosmetics, update diagnostic message items for `Aristo` backend * Fix Copyright year
2024-01-11 19:11:38 +00:00
delta: LayerDeltaRef(),
final: LayerFinalRef(vGen: db.vGen),
txUid: db.top.txUid)
ok()
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------