nimbus-eth1/nimbus/sync/snap/worker/db/hexary_desc.nim

424 lines
14 KiB
Nim
Raw Normal View History

# nimbus-eth1
# Copyright (c) 2021 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
import
std/[algorithm, hashes, sequtils, strutils, tables],
eth/[common/eth_types, p2p, trie/nibbles],
nimcrypto/keccak,
stint,
../../range_desc
{.push raises: [Defect].}
type
HexaryPpFn* = proc(key: RepairKey): string {.gcsafe.}
## For testing/debugging: key pretty printer function
ByteArray32* = array[32,byte]
## Used for 32 byte database keys
ByteArray33* = array[33,byte]
## Used for 31 byte database keys, i.e. <marker> + <32-byte-key>
NodeKey* = distinct ByteArray32
## Hash key without the hash wrapper
RepairKey* = distinct ByteArray33
## Byte prefixed `NodeKey` for internal DB records
# Example trie from https://eth.wiki/en/fundamentals/patricia-tree
#
# lookup data:
# "do": "verb"
# "dog": "puppy"
# "dodge": "coin"
# "horse": "stallion"
#
# trie DB:
# root: [16 A]
# A: [* * * * B * * * [20+"orse" "stallion"] * * * * * * * *]
# B: [00+"o" D]
# D: [* * * * * * E * * * * * * * * * "verb"]
# E: [17 [* * * * * * [35 "coin"] * * * * * * * * * "puppy"]]
#
# with first nibble of two-column rows:
# hex bits | node type length
# ---------+------------------
# 0 0000 | extension even
# 1 0001 | extension odd
# 2 0010 | leaf even
# 3 0011 | leaf odd
#
# and key path:
# "do": 6 4 6 f
# "dog": 6 4 6 f 6 7
# "dodge": 6 4 6 f 6 7 6 5
# "horse": 6 8 6 f 7 2 7 3 6 5
NodeKind* = enum
Branch
Extension
Leaf
RNodeState* = enum
Static = 0 ## Inserted as proof record
Locked ## Like `Static`, only added on-the-fly
Mutable ## Open for modification
TmpRoot ## Mutable root node
RNodeRef* = ref object
## Node for building a temporary hexary trie coined `repair tree`.
state*: RNodeState ## `Static` if added from proof data set
case kind*: NodeKind
of Leaf:
lPfx*: NibblesSeq ## Portion of path segment
lData*: Blob
of Extension:
ePfx*: NibblesSeq ## Portion of path segment
eLink*: RepairKey ## Single down link
of Branch:
bLink*: array[16,RepairKey] ## Down links
#
# Paraphrased comment from Andri's `stateless/readme.md` file in chapter
# `Deviation from yellow paper`, (also found here
# github.com/status-im/nimbus-eth1
# /tree/master/stateless#deviation-from-yellow-paper)
# [..] In the Yellow Paper, the 17th elem of the branch node can contain
# a value. But it is always empty in a real Ethereum state trie. The
# block witness spec also ignores this 17th elem when encoding or
# decoding a branch node. This can happen because in a Ethereum secure
# hexary trie, every keys have uniform length of 32 bytes or 64 nibbles.
# With the absence of the 17th element, a branch node will never contain
# a leaf value.
bData*: Blob
XNodeObj* = object
## Simplified version of `RNodeRef` to be used as a node for `XPathStep`
case kind*: NodeKind
of Leaf:
lPfx*: NibblesSeq ## Portion of path segment
lData*: Blob
of Extension:
ePfx*: NibblesSeq ## Portion of path segment
eLink*: Blob ## Single down link
of Branch:
bLink*: array[17,Blob] ## Down links followed by data
RPathStep* = object
## For constructing a repair tree traversal path `RPath`
key*: RepairKey ## Tree label, node hash
node*: RNodeRef ## Referes to data record
nibble*: int8 ## Branch node selector (if any)
RPath* = object
path*: seq[RPathStep]
tail*: NibblesSeq ## Stands for non completed leaf path
XPathStep* = object
## Similar to `RPathStep` for an arbitrary (sort of transparent) trie
key*: Blob ## Node hash implied by `node` data
node*: XNodeObj
nibble*: int8 ## Branch node selector (if any)
XPath* = object
path*: seq[XPathStep]
tail*: NibblesSeq ## Stands for non completed leaf path
depth*: int ## May indicate path length (typically 64)
RLeafSpecs* = object
## Temporarily stashed leaf data (as for an account.) Proper records
## have non-empty payload. Records with empty payload are administrative
## items, e.g. lower boundary records.
pathTag*: NodeTag ## Equivalent to account hash
nodeKey*: RepairKey ## Leaf hash into hexary repair table
payload*: Blob ## Data payload
HexaryTreeDB* = object
tab*: Table[RepairKey,RNodeRef] ## key-value trie table, in-memory db
repairKeyGen*: uint64 ## Unique tmp key generator
keyPp*: HexaryPpFn ## For debugging, might go away
const
EmptyNodeBlob* = seq[byte].default
EmptyNibbleRange* = EmptyNodeBlob.initNibbleRange
static:
# Not that there is no doubt about this ...
doAssert NodeKey.default.ByteArray32.initNibbleRange.len == 64
var
disablePrettyKeys* = false ## Degugging, print raw keys if `true`
# ------------------------------------------------------------------------------
# Private helpers
# ------------------------------------------------------------------------------
proc initImpl(key: var RepairKey; data: openArray[byte]): bool =
key.reset
if data.len <= 33:
if 0 < data.len:
let trg = addr key.ByteArray33[33 - data.len]
trg.copyMem(unsafeAddr data[0], data.len)
return true
proc initImpl(key: var NodeKey; data: openArray[byte]): bool =
key.reset
if data.len <= 32:
if 0 < data.len:
let trg = addr key.ByteArray32[32 - data.len]
trg.copyMem(unsafeAddr data[0], data.len)
return true
# ------------------------------------------------------------------------------
# Private debugging helpers
# ------------------------------------------------------------------------------
proc to*(key: NodeKey; T: type RepairKey): T {.gcsafe.}
proc toPfx(indent: int): string =
"\n" & " ".repeat(indent)
proc ppImpl(s: string; hex = false): string =
## For long strings print `begin..end` only
if hex:
let n = (s.len + 1) div 2
(if s.len < 20: s else: s[0 .. 5] & ".." & s[s.len-8 .. s.len-1]) &
"[" & (if 0 < n: "#" & $n else: "") & "]"
elif s.len <= 30:
s
else:
(if (s.len and 1) == 0: s[0 ..< 8] else: "0" & s[0 ..< 7]) &
"..(" & $s.len & ").." & s[s.len-16 ..< s.len]
proc ppImpl(key: RepairKey; db: HexaryTreeDB): string =
try:
if not disablePrettyKeys and not db.keyPp.isNil:
return db.keyPp(key)
except:
discard
key.ByteArray33.toSeq.mapIt(it.toHex(2)).join.toLowerAscii
proc ppImpl(key: NodeKey; db: HexaryTreeDB): string =
key.to(RepairKey).ppImpl(db)
proc ppImpl(w: openArray[RepairKey]; db: HexaryTreeDB): string =
w.mapIt(it.ppImpl(db)).join(",")
proc ppImpl(w: openArray[Blob]; db: HexaryTreeDB): string =
var q: seq[RepairKey]
for a in w:
var key: RepairKey
discard key.initImpl(a)
q.add key
q.ppImpl(db)
proc ppStr(blob: Blob): string =
if blob.len == 0: ""
else: blob.mapIt(it.toHex(2)).join.toLowerAscii.ppImpl(hex = true)
proc ppImpl(n: RNodeRef; db: HexaryTreeDB): string =
let so = n.state.ord
case n.kind:
of Leaf:
["l","ł","L","R"][so] & "(" & $n.lPfx & "," & n.lData.ppStr & ")"
of Extension:
["e","","E","R"][so] & "(" & $n.ePfx & "," & n.eLink.ppImpl(db) & ")"
of Branch:
["b","þ","B","R"][so] & "(" & n.bLink.ppImpl(db) & "," & n.bData.ppStr & ")"
proc ppImpl(n: XNodeObj; db: HexaryTreeDB): string =
case n.kind:
of Leaf:
"l(" & $n.lPfx & "," & n.lData.ppStr & ")"
of Extension:
var key: RepairKey
discard key.initImpl(n.eLink)
"e(" & $n.ePfx & "," & key.ppImpl(db) & ")"
of Branch:
"b(" & n.bLink[0..15].ppImpl(db) & "," & n.bLink[16].ppStr & ")"
proc ppImpl(w: RPathStep; db: HexaryTreeDB): string =
let
nibble = if 0 <= w.nibble: w.nibble.toHex(1).toLowerAscii else: "ø"
key = w.key.ppImpl(db)
"(" & key & "," & nibble & "," & w.node.ppImpl(db) & ")"
proc ppImpl(w: XPathStep; db: HexaryTreeDB): string =
let nibble = if 0 <= w.nibble: w.nibble.toHex(1).toLowerAscii else: "ø"
var key: RepairKey
discard key.initImpl(w.key)
"(" & key.ppImpl(db) & "," & $nibble & "," & w.node.ppImpl(db) & ")"
proc ppImpl(db: HexaryTreeDB; root: NodeKey): seq[string] =
## Dump the entries from the a generic repair tree. This function assumes
## that mapped keys are printed `$###` if a node is locked or static, and
## some substitute for the first letter `$` otherwise (if they are mutable.)
proc toKey(s: string): uint64 =
try:
result = s[1 ..< s.len].parseUint
except ValueError as e:
raiseAssert "Ooops ppImpl(s=" & s & "): name=" & $e.name & " msg=" & e.msg
if s[0] != '$':
result = result or (1u64 shl 63)
proc cmpIt(x, y: (uint64,string)): int =
cmp(x[0],y[0])
try:
var accu: seq[(uint64,string)]
if root.ByteArray32 != ByteArray32.default:
accu.add @[(0u64, "($0" & "," & root.ppImpl(db) & ")")]
for key,node in db.tab.pairs:
accu.add (
key.ppImpl(db).tokey,
"(" & key.ppImpl(db) & "," & node.ppImpl(db) & ")")
result = accu.sorted(cmpIt).mapIt(it[1])
except Exception as e:
result &= " ! Ooops ppImpl(): name=" & $e.name & " msg=" & e.msg
# ------------------------------------------------------------------------------
# Public debugging helpers
# ------------------------------------------------------------------------------
proc pp*(s: string; hex = false): string =
## For long strings print `begin..end` only
s.ppImpl(hex)
proc pp*(w: NibblesSeq): string =
$w
proc pp*(key: RepairKey): string =
## Raw key, for referenced key dump use `key.pp(db)` below
key.ByteArray33.toSeq.mapIt(it.toHex(2)).join.tolowerAscii
proc pp*(key: NodeKey): string =
## Raw key, for referenced key dump use `key.pp(db)` below
key.ByteArray32.toSeq.mapIt(it.toHex(2)).join.tolowerAscii
proc pp*(key: NodeKey|RepairKey; db: HexaryTreeDB): string =
key.ppImpl(db)
proc pp*(w: RNodeRef|XNodeObj|RPathStep; db: HexaryTreeDB): string =
w.ppImpl(db)
proc pp*(w:openArray[RPathStep|XPathStep]; db:HexaryTreeDB; indent=4): string =
w.toSeq.mapIt(it.ppImpl(db)).join(indent.toPfx)
proc pp*(w: RPath; db: HexaryTreeDB; indent=4): string =
w.path.pp(db,indent) & indent.toPfx & "(" & $w.tail & ")"
proc pp*(w: XPath; db: HexaryTreeDB; indent=4): string =
w.path.pp(db,indent) & indent.toPfx & "(" & $w.tail & "," & $w.depth & ")"
proc pp*(db: HexaryTreeDB; root: NodeKey; indent=4): string =
## Dump the entries from the a generic repair tree.
db.ppImpl(root).join(indent.toPfx)
proc pp*(db: HexaryTreeDB; indent=4): string =
## varinat of `pp()` above
db.ppImpl(NodeKey.default).join(indent.toPfx)
# ------------------------------------------------------------------------------
# Public constructor (or similar)
# ------------------------------------------------------------------------------
proc init*(key: var NodeKey; data: openArray[byte]): bool =
key.initImpl(data)
proc init*(key: var RepairKey; data: openArray[byte]): bool =
key.initImpl(data)
proc newRepairKey*(db: var HexaryTreeDB): RepairKey =
db.repairKeyGen.inc
var src = db.repairKeyGen.toBytesBE
(addr result.ByteArray33[25]).copyMem(addr src[0], 8)
result.ByteArray33[0] = 1
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
proc hash*(a: NodeKey): Hash =
## Tables mixin
a.ByteArray32.hash
proc hash*(a: RepairKey): Hash =
## Tables mixin
a.ByteArray33.hash
proc `==`*(a, b: NodeKey): bool =
## Tables mixin
a.ByteArray32 == b.ByteArray32
proc `==`*(a, b: RepairKey): bool =
## Tables mixin
a.ByteArray33 == b.ByteArray33
proc to*(tag: NodeTag; T: type NodeKey): T =
tag.UInt256.toBytesBE.T
proc to*(key: NodeKey; T: type NibblesSeq): T =
key.ByteArray32.initNibbleRange
proc to*(key: NodeKey; T: type RepairKey): T =
(addr result.ByteArray33[1]).copyMem(unsafeAddr key.ByteArray32[0], 32)
proc to*(hash: Hash256; T: type NodeKey): T =
hash.data.NodeKey
proc isZero*[T: NodeTag|NodeKey|RepairKey](a: T): bool =
a == T.default
proc isNodeKey*(a: RepairKey): bool =
a.ByteArray33[0] == 0
proc digestTo*(data: Blob; T: type NodeKey): T =
keccak256.digest(data).data.T
proc convertTo*[W: NodeKey|RepairKey](data: Blob; T: type W): T =
## Probably lossy conversion, use `init()` for safe conversion
discard result.init(data)
proc convertTo*(node: RNodeRef; T: type Blob): T =
## Write the node as an RLP-encoded blob
var writer = initRlpWriter()
proc appendOk(writer: var RlpWriter; key: RepairKey): bool =
if key.isZero:
writer.append(EmptyNodeBlob)
elif key.isNodeKey:
var hash: Hash256
(addr hash.data[0]).copyMem(unsafeAddr key.ByteArray33[1], 32)
writer.append(hash)
else:
return false
true
case node.kind:
of Branch:
writer.startList(17)
for n in 0 ..< 16:
if not writer.appendOk(node.bLink[n]):
return # empty `Blob`
writer.append(node.bData)
of Extension:
writer.startList(2)
writer.append(node.ePfx.hexPrefixEncode(isleaf = false))
if not writer.appendOk(node.eLink):
return # empty `Blob`
of Leaf:
writer.startList(2)
writer.append(node.lPfx.hexPrefixEncode(isleaf = true))
writer.append(node.lData)
writer.finish()
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------