nimbus-eth1/execution_chain/db/kvt/kvt_tx_frame.nim

104 lines
3.3 KiB
Nim
Raw Normal View History

# nimbus-eth1
aristo: fork support via layers/txframes (#2960) * aristo: fork support via layers/txframes This change reorganises how the database is accessed: instead holding a "current frame" in the database object, a dag of frames is created based on the "base frame" held in `AristoDbRef` and all database access happens through this frame, which can be thought of as a consistent point-in-time snapshot of the database based on a particular fork of the chain. In the code, "frame", "transaction" and "layer" is used to denote more or less the same thing: a dag of stacked changes backed by the on-disk database. Although this is not a requirement, in practice each frame holds the change set of a single block - as such, the frame and its ancestors leading up to the on-disk state represents the state of the database after that block has been applied. "committing" means merging the changes to its parent frame so that the difference between them is lost and only the cumulative changes remain - this facility enables frames to be combined arbitrarily wherever they are in the dag. In particular, it becomes possible to consolidate a set of changes near the base of the dag and commit those to disk without having to re-do the in-memory frames built on top of them - this is useful for "flattening" a set of changes during a base update and sending those to storage without having to perform a block replay on top. Looking at abstractions, a side effect of this change is that the KVT and Aristo are brought closer together by considering them to be part of the "same" atomic transaction set - the way the code gets organised, applying a block and saving it to the kvt happens in the same "logical" frame - therefore, discarding the frame discards both the aristo and kvt changes at the same time - likewise, they are persisted to disk together - this makes reasoning about the database somewhat easier but has the downside of increased memory usage, something that perhaps will need addressing in the future. Because the code reasons more strictly about frames and the state of the persisted database, it also makes it more visible where ForkedChain should be used and where it is still missing - in particular, frames represent a single branch of history while forkedchain manages multiple parallel forks - user-facing services such as the RPC should use the latter, ie until it has been finalized, a getBlock request should consider all forks and not just the blocks in the canonical head branch. Another advantage of this approach is that `AristoDbRef` conceptually becomes more simple - removing its tracking of the "current" transaction stack simplifies reasoning about what can go wrong since this state now has to be passed around in the form of `AristoTxRef` - as such, many of the tests and facilities in the code that were dealing with "stack inconsistency" are now structurally prevented from happening. The test suite will need significant refactoring after this change. Once this change has been merged, there are several follow-ups to do: * there's no mechanism for keeping frames up to date as they get committed or rolled back - TODO * naming is confused - many names for the same thing for legacy reason * forkedchain support is still missing in lots of code * clean up redundant logic based on previous designs - in particular the debug and introspection code no longer makes sense * the way change sets are stored will probably need revisiting - because it's a stack of changes where each frame must be interrogated to find an on-disk value, with a base distance of 128 we'll at minimum have to perform 128 frame lookups for *every* database interaction - regardless, the "dag-like" nature will stay * dispose and commit are poorly defined and perhaps redundant - in theory, one could simply let the GC collect abandoned frames etc, though it's likely an explicit mechanism will remain useful, so they stay for now More about the changes: * `AristoDbRef` gains a `txRef` field (todo: rename) that "more or less" corresponds to the old `balancer` field * `AristoDbRef.stack` is gone - instead, there's a chain of `AristoTxRef` objects that hold their respective "layer" which has the actual changes * No more reasoning about "top" and "stack" - instead, each `AristoTxRef` can be a "head" that "more or less" corresponds to the old single-history `top` notion and its stack * `level` still represents "distance to base" - it's computed from the parent chain instead of being stored * one has to be careful not to use frames where forkedchain was intended - layers are only for a single branch of history! * fix layer vtop after rollback * engine fix * Fix test_txpool * Fix test_rpc * Fix copyright year * fix simulator * Fix copyright year * Fix copyright year * Fix tracer * Fix infinite recursion bug * Remove aristo and kvt empty files * Fic copyright year * Fix fc chain_kvt * ForkedChain refactoring * Fix merge master conflict * Fix copyright year * Reparent txFrame * Fix test * Fix txFrame reparent again * Cleanup and fix test * UpdateBase bugfix and fix test * Fixe newPayload bug discovered by hive * Fix engine api fcu * Clean up call template, chain_kvt, andn txguid * Fix copyright year * work around base block loading issue * Add test * Fix updateHead bug * Fix updateBase bug * Change func commitBase to proc commitBase * Touch up and fix debug mode crash --------- Co-authored-by: jangko <jangko128@gmail.com>
2025-02-06 08:04:50 +01:00
# Copyright (c) 2023-2025 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
## Kvt DB -- Transaction frames helper
## ===================================
##
{.push raises: [].}
import
results,
./[kvt_desc, kvt_layers]
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
aristo: fork support via layers/txframes (#2960) * aristo: fork support via layers/txframes This change reorganises how the database is accessed: instead holding a "current frame" in the database object, a dag of frames is created based on the "base frame" held in `AristoDbRef` and all database access happens through this frame, which can be thought of as a consistent point-in-time snapshot of the database based on a particular fork of the chain. In the code, "frame", "transaction" and "layer" is used to denote more or less the same thing: a dag of stacked changes backed by the on-disk database. Although this is not a requirement, in practice each frame holds the change set of a single block - as such, the frame and its ancestors leading up to the on-disk state represents the state of the database after that block has been applied. "committing" means merging the changes to its parent frame so that the difference between them is lost and only the cumulative changes remain - this facility enables frames to be combined arbitrarily wherever they are in the dag. In particular, it becomes possible to consolidate a set of changes near the base of the dag and commit those to disk without having to re-do the in-memory frames built on top of them - this is useful for "flattening" a set of changes during a base update and sending those to storage without having to perform a block replay on top. Looking at abstractions, a side effect of this change is that the KVT and Aristo are brought closer together by considering them to be part of the "same" atomic transaction set - the way the code gets organised, applying a block and saving it to the kvt happens in the same "logical" frame - therefore, discarding the frame discards both the aristo and kvt changes at the same time - likewise, they are persisted to disk together - this makes reasoning about the database somewhat easier but has the downside of increased memory usage, something that perhaps will need addressing in the future. Because the code reasons more strictly about frames and the state of the persisted database, it also makes it more visible where ForkedChain should be used and where it is still missing - in particular, frames represent a single branch of history while forkedchain manages multiple parallel forks - user-facing services such as the RPC should use the latter, ie until it has been finalized, a getBlock request should consider all forks and not just the blocks in the canonical head branch. Another advantage of this approach is that `AristoDbRef` conceptually becomes more simple - removing its tracking of the "current" transaction stack simplifies reasoning about what can go wrong since this state now has to be passed around in the form of `AristoTxRef` - as such, many of the tests and facilities in the code that were dealing with "stack inconsistency" are now structurally prevented from happening. The test suite will need significant refactoring after this change. Once this change has been merged, there are several follow-ups to do: * there's no mechanism for keeping frames up to date as they get committed or rolled back - TODO * naming is confused - many names for the same thing for legacy reason * forkedchain support is still missing in lots of code * clean up redundant logic based on previous designs - in particular the debug and introspection code no longer makes sense * the way change sets are stored will probably need revisiting - because it's a stack of changes where each frame must be interrogated to find an on-disk value, with a base distance of 128 we'll at minimum have to perform 128 frame lookups for *every* database interaction - regardless, the "dag-like" nature will stay * dispose and commit are poorly defined and perhaps redundant - in theory, one could simply let the GC collect abandoned frames etc, though it's likely an explicit mechanism will remain useful, so they stay for now More about the changes: * `AristoDbRef` gains a `txRef` field (todo: rename) that "more or less" corresponds to the old `balancer` field * `AristoDbRef.stack` is gone - instead, there's a chain of `AristoTxRef` objects that hold their respective "layer" which has the actual changes * No more reasoning about "top" and "stack" - instead, each `AristoTxRef` can be a "head" that "more or less" corresponds to the old single-history `top` notion and its stack * `level` still represents "distance to base" - it's computed from the parent chain instead of being stored * one has to be careful not to use frames where forkedchain was intended - layers are only for a single branch of history! * fix layer vtop after rollback * engine fix * Fix test_txpool * Fix test_rpc * Fix copyright year * fix simulator * Fix copyright year * Fix copyright year * Fix tracer * Fix infinite recursion bug * Remove aristo and kvt empty files * Fic copyright year * Fix fc chain_kvt * ForkedChain refactoring * Fix merge master conflict * Fix copyright year * Reparent txFrame * Fix test * Fix txFrame reparent again * Cleanup and fix test * UpdateBase bugfix and fix test * Fixe newPayload bug discovered by hive * Fix engine api fcu * Clean up call template, chain_kvt, andn txguid * Fix copyright year * work around base block loading issue * Add test * Fix updateHead bug * Fix updateBase bug * Change func commitBase to proc commitBase * Touch up and fix debug mode crash --------- Co-authored-by: jangko <jangko128@gmail.com>
2025-02-06 08:04:50 +01:00
proc txFrameBegin*(db: KvtDbRef, parent: KvtTxRef): Result[KvtTxRef,KvtError] =
## Starts a new transaction.
##
## Example:
## ::
## proc doSomething(db: KvtDbRef) =
## let tx = db.begin
## defer: tx.rollback()
## ... continue using db ...
## tx.commit()
##
aristo: fork support via layers/txframes (#2960) * aristo: fork support via layers/txframes This change reorganises how the database is accessed: instead holding a "current frame" in the database object, a dag of frames is created based on the "base frame" held in `AristoDbRef` and all database access happens through this frame, which can be thought of as a consistent point-in-time snapshot of the database based on a particular fork of the chain. In the code, "frame", "transaction" and "layer" is used to denote more or less the same thing: a dag of stacked changes backed by the on-disk database. Although this is not a requirement, in practice each frame holds the change set of a single block - as such, the frame and its ancestors leading up to the on-disk state represents the state of the database after that block has been applied. "committing" means merging the changes to its parent frame so that the difference between them is lost and only the cumulative changes remain - this facility enables frames to be combined arbitrarily wherever they are in the dag. In particular, it becomes possible to consolidate a set of changes near the base of the dag and commit those to disk without having to re-do the in-memory frames built on top of them - this is useful for "flattening" a set of changes during a base update and sending those to storage without having to perform a block replay on top. Looking at abstractions, a side effect of this change is that the KVT and Aristo are brought closer together by considering them to be part of the "same" atomic transaction set - the way the code gets organised, applying a block and saving it to the kvt happens in the same "logical" frame - therefore, discarding the frame discards both the aristo and kvt changes at the same time - likewise, they are persisted to disk together - this makes reasoning about the database somewhat easier but has the downside of increased memory usage, something that perhaps will need addressing in the future. Because the code reasons more strictly about frames and the state of the persisted database, it also makes it more visible where ForkedChain should be used and where it is still missing - in particular, frames represent a single branch of history while forkedchain manages multiple parallel forks - user-facing services such as the RPC should use the latter, ie until it has been finalized, a getBlock request should consider all forks and not just the blocks in the canonical head branch. Another advantage of this approach is that `AristoDbRef` conceptually becomes more simple - removing its tracking of the "current" transaction stack simplifies reasoning about what can go wrong since this state now has to be passed around in the form of `AristoTxRef` - as such, many of the tests and facilities in the code that were dealing with "stack inconsistency" are now structurally prevented from happening. The test suite will need significant refactoring after this change. Once this change has been merged, there are several follow-ups to do: * there's no mechanism for keeping frames up to date as they get committed or rolled back - TODO * naming is confused - many names for the same thing for legacy reason * forkedchain support is still missing in lots of code * clean up redundant logic based on previous designs - in particular the debug and introspection code no longer makes sense * the way change sets are stored will probably need revisiting - because it's a stack of changes where each frame must be interrogated to find an on-disk value, with a base distance of 128 we'll at minimum have to perform 128 frame lookups for *every* database interaction - regardless, the "dag-like" nature will stay * dispose and commit are poorly defined and perhaps redundant - in theory, one could simply let the GC collect abandoned frames etc, though it's likely an explicit mechanism will remain useful, so they stay for now More about the changes: * `AristoDbRef` gains a `txRef` field (todo: rename) that "more or less" corresponds to the old `balancer` field * `AristoDbRef.stack` is gone - instead, there's a chain of `AristoTxRef` objects that hold their respective "layer" which has the actual changes * No more reasoning about "top" and "stack" - instead, each `AristoTxRef` can be a "head" that "more or less" corresponds to the old single-history `top` notion and its stack * `level` still represents "distance to base" - it's computed from the parent chain instead of being stored * one has to be careful not to use frames where forkedchain was intended - layers are only for a single branch of history! * fix layer vtop after rollback * engine fix * Fix test_txpool * Fix test_rpc * Fix copyright year * fix simulator * Fix copyright year * Fix copyright year * Fix tracer * Fix infinite recursion bug * Remove aristo and kvt empty files * Fic copyright year * Fix fc chain_kvt * ForkedChain refactoring * Fix merge master conflict * Fix copyright year * Reparent txFrame * Fix test * Fix txFrame reparent again * Cleanup and fix test * UpdateBase bugfix and fix test * Fixe newPayload bug discovered by hive * Fix engine api fcu * Clean up call template, chain_kvt, andn txguid * Fix copyright year * work around base block loading issue * Add test * Fix updateHead bug * Fix updateBase bug * Change func commitBase to proc commitBase * Touch up and fix debug mode crash --------- Co-authored-by: jangko <jangko128@gmail.com>
2025-02-06 08:04:50 +01:00
let parent = if parent == nil: db.txRef else: parent
ok KvtTxRef(
db: db,
aristo: fork support via layers/txframes (#2960) * aristo: fork support via layers/txframes This change reorganises how the database is accessed: instead holding a "current frame" in the database object, a dag of frames is created based on the "base frame" held in `AristoDbRef` and all database access happens through this frame, which can be thought of as a consistent point-in-time snapshot of the database based on a particular fork of the chain. In the code, "frame", "transaction" and "layer" is used to denote more or less the same thing: a dag of stacked changes backed by the on-disk database. Although this is not a requirement, in practice each frame holds the change set of a single block - as such, the frame and its ancestors leading up to the on-disk state represents the state of the database after that block has been applied. "committing" means merging the changes to its parent frame so that the difference between them is lost and only the cumulative changes remain - this facility enables frames to be combined arbitrarily wherever they are in the dag. In particular, it becomes possible to consolidate a set of changes near the base of the dag and commit those to disk without having to re-do the in-memory frames built on top of them - this is useful for "flattening" a set of changes during a base update and sending those to storage without having to perform a block replay on top. Looking at abstractions, a side effect of this change is that the KVT and Aristo are brought closer together by considering them to be part of the "same" atomic transaction set - the way the code gets organised, applying a block and saving it to the kvt happens in the same "logical" frame - therefore, discarding the frame discards both the aristo and kvt changes at the same time - likewise, they are persisted to disk together - this makes reasoning about the database somewhat easier but has the downside of increased memory usage, something that perhaps will need addressing in the future. Because the code reasons more strictly about frames and the state of the persisted database, it also makes it more visible where ForkedChain should be used and where it is still missing - in particular, frames represent a single branch of history while forkedchain manages multiple parallel forks - user-facing services such as the RPC should use the latter, ie until it has been finalized, a getBlock request should consider all forks and not just the blocks in the canonical head branch. Another advantage of this approach is that `AristoDbRef` conceptually becomes more simple - removing its tracking of the "current" transaction stack simplifies reasoning about what can go wrong since this state now has to be passed around in the form of `AristoTxRef` - as such, many of the tests and facilities in the code that were dealing with "stack inconsistency" are now structurally prevented from happening. The test suite will need significant refactoring after this change. Once this change has been merged, there are several follow-ups to do: * there's no mechanism for keeping frames up to date as they get committed or rolled back - TODO * naming is confused - many names for the same thing for legacy reason * forkedchain support is still missing in lots of code * clean up redundant logic based on previous designs - in particular the debug and introspection code no longer makes sense * the way change sets are stored will probably need revisiting - because it's a stack of changes where each frame must be interrogated to find an on-disk value, with a base distance of 128 we'll at minimum have to perform 128 frame lookups for *every* database interaction - regardless, the "dag-like" nature will stay * dispose and commit are poorly defined and perhaps redundant - in theory, one could simply let the GC collect abandoned frames etc, though it's likely an explicit mechanism will remain useful, so they stay for now More about the changes: * `AristoDbRef` gains a `txRef` field (todo: rename) that "more or less" corresponds to the old `balancer` field * `AristoDbRef.stack` is gone - instead, there's a chain of `AristoTxRef` objects that hold their respective "layer" which has the actual changes * No more reasoning about "top" and "stack" - instead, each `AristoTxRef` can be a "head" that "more or less" corresponds to the old single-history `top` notion and its stack * `level` still represents "distance to base" - it's computed from the parent chain instead of being stored * one has to be careful not to use frames where forkedchain was intended - layers are only for a single branch of history! * fix layer vtop after rollback * engine fix * Fix test_txpool * Fix test_rpc * Fix copyright year * fix simulator * Fix copyright year * Fix copyright year * Fix tracer * Fix infinite recursion bug * Remove aristo and kvt empty files * Fic copyright year * Fix fc chain_kvt * ForkedChain refactoring * Fix merge master conflict * Fix copyright year * Reparent txFrame * Fix test * Fix txFrame reparent again * Cleanup and fix test * UpdateBase bugfix and fix test * Fixe newPayload bug discovered by hive * Fix engine api fcu * Clean up call template, chain_kvt, andn txguid * Fix copyright year * work around base block loading issue * Add test * Fix updateHead bug * Fix updateBase bug * Change func commitBase to proc commitBase * Touch up and fix debug mode crash --------- Co-authored-by: jangko <jangko128@gmail.com>
2025-02-06 08:04:50 +01:00
layer: LayerRef(),
parent: parent,
)
aristo: fork support via layers/txframes (#2960) * aristo: fork support via layers/txframes This change reorganises how the database is accessed: instead holding a "current frame" in the database object, a dag of frames is created based on the "base frame" held in `AristoDbRef` and all database access happens through this frame, which can be thought of as a consistent point-in-time snapshot of the database based on a particular fork of the chain. In the code, "frame", "transaction" and "layer" is used to denote more or less the same thing: a dag of stacked changes backed by the on-disk database. Although this is not a requirement, in practice each frame holds the change set of a single block - as such, the frame and its ancestors leading up to the on-disk state represents the state of the database after that block has been applied. "committing" means merging the changes to its parent frame so that the difference between them is lost and only the cumulative changes remain - this facility enables frames to be combined arbitrarily wherever they are in the dag. In particular, it becomes possible to consolidate a set of changes near the base of the dag and commit those to disk without having to re-do the in-memory frames built on top of them - this is useful for "flattening" a set of changes during a base update and sending those to storage without having to perform a block replay on top. Looking at abstractions, a side effect of this change is that the KVT and Aristo are brought closer together by considering them to be part of the "same" atomic transaction set - the way the code gets organised, applying a block and saving it to the kvt happens in the same "logical" frame - therefore, discarding the frame discards both the aristo and kvt changes at the same time - likewise, they are persisted to disk together - this makes reasoning about the database somewhat easier but has the downside of increased memory usage, something that perhaps will need addressing in the future. Because the code reasons more strictly about frames and the state of the persisted database, it also makes it more visible where ForkedChain should be used and where it is still missing - in particular, frames represent a single branch of history while forkedchain manages multiple parallel forks - user-facing services such as the RPC should use the latter, ie until it has been finalized, a getBlock request should consider all forks and not just the blocks in the canonical head branch. Another advantage of this approach is that `AristoDbRef` conceptually becomes more simple - removing its tracking of the "current" transaction stack simplifies reasoning about what can go wrong since this state now has to be passed around in the form of `AristoTxRef` - as such, many of the tests and facilities in the code that were dealing with "stack inconsistency" are now structurally prevented from happening. The test suite will need significant refactoring after this change. Once this change has been merged, there are several follow-ups to do: * there's no mechanism for keeping frames up to date as they get committed or rolled back - TODO * naming is confused - many names for the same thing for legacy reason * forkedchain support is still missing in lots of code * clean up redundant logic based on previous designs - in particular the debug and introspection code no longer makes sense * the way change sets are stored will probably need revisiting - because it's a stack of changes where each frame must be interrogated to find an on-disk value, with a base distance of 128 we'll at minimum have to perform 128 frame lookups for *every* database interaction - regardless, the "dag-like" nature will stay * dispose and commit are poorly defined and perhaps redundant - in theory, one could simply let the GC collect abandoned frames etc, though it's likely an explicit mechanism will remain useful, so they stay for now More about the changes: * `AristoDbRef` gains a `txRef` field (todo: rename) that "more or less" corresponds to the old `balancer` field * `AristoDbRef.stack` is gone - instead, there's a chain of `AristoTxRef` objects that hold their respective "layer" which has the actual changes * No more reasoning about "top" and "stack" - instead, each `AristoTxRef` can be a "head" that "more or less" corresponds to the old single-history `top` notion and its stack * `level` still represents "distance to base" - it's computed from the parent chain instead of being stored * one has to be careful not to use frames where forkedchain was intended - layers are only for a single branch of history! * fix layer vtop after rollback * engine fix * Fix test_txpool * Fix test_rpc * Fix copyright year * fix simulator * Fix copyright year * Fix copyright year * Fix tracer * Fix infinite recursion bug * Remove aristo and kvt empty files * Fic copyright year * Fix fc chain_kvt * ForkedChain refactoring * Fix merge master conflict * Fix copyright year * Reparent txFrame * Fix test * Fix txFrame reparent again * Cleanup and fix test * UpdateBase bugfix and fix test * Fixe newPayload bug discovered by hive * Fix engine api fcu * Clean up call template, chain_kvt, andn txguid * Fix copyright year * work around base block loading issue * Add test * Fix updateHead bug * Fix updateBase bug * Change func commitBase to proc commitBase * Touch up and fix debug mode crash --------- Co-authored-by: jangko <jangko128@gmail.com>
2025-02-06 08:04:50 +01:00
proc baseTxFrame*(db: KvtDbRef): KvtTxRef =
db.txRef
proc rollback*(
tx: KvtTxRef; # Top transaction on database
): Result[void,KvtError] =
## Given a *top level* handle, this function discards all database operations
## performed for this transactio. The previous transaction is returned if
## there was any.
##
aristo: fork support via layers/txframes (#2960) * aristo: fork support via layers/txframes This change reorganises how the database is accessed: instead holding a "current frame" in the database object, a dag of frames is created based on the "base frame" held in `AristoDbRef` and all database access happens through this frame, which can be thought of as a consistent point-in-time snapshot of the database based on a particular fork of the chain. In the code, "frame", "transaction" and "layer" is used to denote more or less the same thing: a dag of stacked changes backed by the on-disk database. Although this is not a requirement, in practice each frame holds the change set of a single block - as such, the frame and its ancestors leading up to the on-disk state represents the state of the database after that block has been applied. "committing" means merging the changes to its parent frame so that the difference between them is lost and only the cumulative changes remain - this facility enables frames to be combined arbitrarily wherever they are in the dag. In particular, it becomes possible to consolidate a set of changes near the base of the dag and commit those to disk without having to re-do the in-memory frames built on top of them - this is useful for "flattening" a set of changes during a base update and sending those to storage without having to perform a block replay on top. Looking at abstractions, a side effect of this change is that the KVT and Aristo are brought closer together by considering them to be part of the "same" atomic transaction set - the way the code gets organised, applying a block and saving it to the kvt happens in the same "logical" frame - therefore, discarding the frame discards both the aristo and kvt changes at the same time - likewise, they are persisted to disk together - this makes reasoning about the database somewhat easier but has the downside of increased memory usage, something that perhaps will need addressing in the future. Because the code reasons more strictly about frames and the state of the persisted database, it also makes it more visible where ForkedChain should be used and where it is still missing - in particular, frames represent a single branch of history while forkedchain manages multiple parallel forks - user-facing services such as the RPC should use the latter, ie until it has been finalized, a getBlock request should consider all forks and not just the blocks in the canonical head branch. Another advantage of this approach is that `AristoDbRef` conceptually becomes more simple - removing its tracking of the "current" transaction stack simplifies reasoning about what can go wrong since this state now has to be passed around in the form of `AristoTxRef` - as such, many of the tests and facilities in the code that were dealing with "stack inconsistency" are now structurally prevented from happening. The test suite will need significant refactoring after this change. Once this change has been merged, there are several follow-ups to do: * there's no mechanism for keeping frames up to date as they get committed or rolled back - TODO * naming is confused - many names for the same thing for legacy reason * forkedchain support is still missing in lots of code * clean up redundant logic based on previous designs - in particular the debug and introspection code no longer makes sense * the way change sets are stored will probably need revisiting - because it's a stack of changes where each frame must be interrogated to find an on-disk value, with a base distance of 128 we'll at minimum have to perform 128 frame lookups for *every* database interaction - regardless, the "dag-like" nature will stay * dispose and commit are poorly defined and perhaps redundant - in theory, one could simply let the GC collect abandoned frames etc, though it's likely an explicit mechanism will remain useful, so they stay for now More about the changes: * `AristoDbRef` gains a `txRef` field (todo: rename) that "more or less" corresponds to the old `balancer` field * `AristoDbRef.stack` is gone - instead, there's a chain of `AristoTxRef` objects that hold their respective "layer" which has the actual changes * No more reasoning about "top" and "stack" - instead, each `AristoTxRef` can be a "head" that "more or less" corresponds to the old single-history `top` notion and its stack * `level` still represents "distance to base" - it's computed from the parent chain instead of being stored * one has to be careful not to use frames where forkedchain was intended - layers are only for a single branch of history! * fix layer vtop after rollback * engine fix * Fix test_txpool * Fix test_rpc * Fix copyright year * fix simulator * Fix copyright year * Fix copyright year * Fix tracer * Fix infinite recursion bug * Remove aristo and kvt empty files * Fic copyright year * Fix fc chain_kvt * ForkedChain refactoring * Fix merge master conflict * Fix copyright year * Reparent txFrame * Fix test * Fix txFrame reparent again * Cleanup and fix test * UpdateBase bugfix and fix test * Fixe newPayload bug discovered by hive * Fix engine api fcu * Clean up call template, chain_kvt, andn txguid * Fix copyright year * work around base block loading issue * Add test * Fix updateHead bug * Fix updateBase bug * Change func commitBase to proc commitBase * Touch up and fix debug mode crash --------- Co-authored-by: jangko <jangko128@gmail.com>
2025-02-06 08:04:50 +01:00
tx.layer[] = Layer()
ok()
proc commit*(
tx: KvtTxRef; # Top transaction on database
): Result[void,KvtError] =
## Given a *top level* handle, this function accepts all database operations
## performed through this handle and merges it to the previous layer. The
## previous transaction is returned if there was any.
##
aristo: fork support via layers/txframes (#2960) * aristo: fork support via layers/txframes This change reorganises how the database is accessed: instead holding a "current frame" in the database object, a dag of frames is created based on the "base frame" held in `AristoDbRef` and all database access happens through this frame, which can be thought of as a consistent point-in-time snapshot of the database based on a particular fork of the chain. In the code, "frame", "transaction" and "layer" is used to denote more or less the same thing: a dag of stacked changes backed by the on-disk database. Although this is not a requirement, in practice each frame holds the change set of a single block - as such, the frame and its ancestors leading up to the on-disk state represents the state of the database after that block has been applied. "committing" means merging the changes to its parent frame so that the difference between them is lost and only the cumulative changes remain - this facility enables frames to be combined arbitrarily wherever they are in the dag. In particular, it becomes possible to consolidate a set of changes near the base of the dag and commit those to disk without having to re-do the in-memory frames built on top of them - this is useful for "flattening" a set of changes during a base update and sending those to storage without having to perform a block replay on top. Looking at abstractions, a side effect of this change is that the KVT and Aristo are brought closer together by considering them to be part of the "same" atomic transaction set - the way the code gets organised, applying a block and saving it to the kvt happens in the same "logical" frame - therefore, discarding the frame discards both the aristo and kvt changes at the same time - likewise, they are persisted to disk together - this makes reasoning about the database somewhat easier but has the downside of increased memory usage, something that perhaps will need addressing in the future. Because the code reasons more strictly about frames and the state of the persisted database, it also makes it more visible where ForkedChain should be used and where it is still missing - in particular, frames represent a single branch of history while forkedchain manages multiple parallel forks - user-facing services such as the RPC should use the latter, ie until it has been finalized, a getBlock request should consider all forks and not just the blocks in the canonical head branch. Another advantage of this approach is that `AristoDbRef` conceptually becomes more simple - removing its tracking of the "current" transaction stack simplifies reasoning about what can go wrong since this state now has to be passed around in the form of `AristoTxRef` - as such, many of the tests and facilities in the code that were dealing with "stack inconsistency" are now structurally prevented from happening. The test suite will need significant refactoring after this change. Once this change has been merged, there are several follow-ups to do: * there's no mechanism for keeping frames up to date as they get committed or rolled back - TODO * naming is confused - many names for the same thing for legacy reason * forkedchain support is still missing in lots of code * clean up redundant logic based on previous designs - in particular the debug and introspection code no longer makes sense * the way change sets are stored will probably need revisiting - because it's a stack of changes where each frame must be interrogated to find an on-disk value, with a base distance of 128 we'll at minimum have to perform 128 frame lookups for *every* database interaction - regardless, the "dag-like" nature will stay * dispose and commit are poorly defined and perhaps redundant - in theory, one could simply let the GC collect abandoned frames etc, though it's likely an explicit mechanism will remain useful, so they stay for now More about the changes: * `AristoDbRef` gains a `txRef` field (todo: rename) that "more or less" corresponds to the old `balancer` field * `AristoDbRef.stack` is gone - instead, there's a chain of `AristoTxRef` objects that hold their respective "layer" which has the actual changes * No more reasoning about "top" and "stack" - instead, each `AristoTxRef` can be a "head" that "more or less" corresponds to the old single-history `top` notion and its stack * `level` still represents "distance to base" - it's computed from the parent chain instead of being stored * one has to be careful not to use frames where forkedchain was intended - layers are only for a single branch of history! * fix layer vtop after rollback * engine fix * Fix test_txpool * Fix test_rpc * Fix copyright year * fix simulator * Fix copyright year * Fix copyright year * Fix tracer * Fix infinite recursion bug * Remove aristo and kvt empty files * Fic copyright year * Fix fc chain_kvt * ForkedChain refactoring * Fix merge master conflict * Fix copyright year * Reparent txFrame * Fix test * Fix txFrame reparent again * Cleanup and fix test * UpdateBase bugfix and fix test * Fixe newPayload bug discovered by hive * Fix engine api fcu * Clean up call template, chain_kvt, andn txguid * Fix copyright year * work around base block loading issue * Add test * Fix updateHead bug * Fix updateBase bug * Change func commitBase to proc commitBase * Touch up and fix debug mode crash --------- Co-authored-by: jangko <jangko128@gmail.com>
2025-02-06 08:04:50 +01:00
doAssert tx.parent != nil, "don't commit base tx"
aristo: fork support via layers/txframes (#2960) * aristo: fork support via layers/txframes This change reorganises how the database is accessed: instead holding a "current frame" in the database object, a dag of frames is created based on the "base frame" held in `AristoDbRef` and all database access happens through this frame, which can be thought of as a consistent point-in-time snapshot of the database based on a particular fork of the chain. In the code, "frame", "transaction" and "layer" is used to denote more or less the same thing: a dag of stacked changes backed by the on-disk database. Although this is not a requirement, in practice each frame holds the change set of a single block - as such, the frame and its ancestors leading up to the on-disk state represents the state of the database after that block has been applied. "committing" means merging the changes to its parent frame so that the difference between them is lost and only the cumulative changes remain - this facility enables frames to be combined arbitrarily wherever they are in the dag. In particular, it becomes possible to consolidate a set of changes near the base of the dag and commit those to disk without having to re-do the in-memory frames built on top of them - this is useful for "flattening" a set of changes during a base update and sending those to storage without having to perform a block replay on top. Looking at abstractions, a side effect of this change is that the KVT and Aristo are brought closer together by considering them to be part of the "same" atomic transaction set - the way the code gets organised, applying a block and saving it to the kvt happens in the same "logical" frame - therefore, discarding the frame discards both the aristo and kvt changes at the same time - likewise, they are persisted to disk together - this makes reasoning about the database somewhat easier but has the downside of increased memory usage, something that perhaps will need addressing in the future. Because the code reasons more strictly about frames and the state of the persisted database, it also makes it more visible where ForkedChain should be used and where it is still missing - in particular, frames represent a single branch of history while forkedchain manages multiple parallel forks - user-facing services such as the RPC should use the latter, ie until it has been finalized, a getBlock request should consider all forks and not just the blocks in the canonical head branch. Another advantage of this approach is that `AristoDbRef` conceptually becomes more simple - removing its tracking of the "current" transaction stack simplifies reasoning about what can go wrong since this state now has to be passed around in the form of `AristoTxRef` - as such, many of the tests and facilities in the code that were dealing with "stack inconsistency" are now structurally prevented from happening. The test suite will need significant refactoring after this change. Once this change has been merged, there are several follow-ups to do: * there's no mechanism for keeping frames up to date as they get committed or rolled back - TODO * naming is confused - many names for the same thing for legacy reason * forkedchain support is still missing in lots of code * clean up redundant logic based on previous designs - in particular the debug and introspection code no longer makes sense * the way change sets are stored will probably need revisiting - because it's a stack of changes where each frame must be interrogated to find an on-disk value, with a base distance of 128 we'll at minimum have to perform 128 frame lookups for *every* database interaction - regardless, the "dag-like" nature will stay * dispose and commit are poorly defined and perhaps redundant - in theory, one could simply let the GC collect abandoned frames etc, though it's likely an explicit mechanism will remain useful, so they stay for now More about the changes: * `AristoDbRef` gains a `txRef` field (todo: rename) that "more or less" corresponds to the old `balancer` field * `AristoDbRef.stack` is gone - instead, there's a chain of `AristoTxRef` objects that hold their respective "layer" which has the actual changes * No more reasoning about "top" and "stack" - instead, each `AristoTxRef` can be a "head" that "more or less" corresponds to the old single-history `top` notion and its stack * `level` still represents "distance to base" - it's computed from the parent chain instead of being stored * one has to be careful not to use frames where forkedchain was intended - layers are only for a single branch of history! * fix layer vtop after rollback * engine fix * Fix test_txpool * Fix test_rpc * Fix copyright year * fix simulator * Fix copyright year * Fix copyright year * Fix tracer * Fix infinite recursion bug * Remove aristo and kvt empty files * Fic copyright year * Fix fc chain_kvt * ForkedChain refactoring * Fix merge master conflict * Fix copyright year * Reparent txFrame * Fix test * Fix txFrame reparent again * Cleanup and fix test * UpdateBase bugfix and fix test * Fixe newPayload bug discovered by hive * Fix engine api fcu * Clean up call template, chain_kvt, andn txguid * Fix copyright year * work around base block loading issue * Add test * Fix updateHead bug * Fix updateBase bug * Change func commitBase to proc commitBase * Touch up and fix debug mode crash --------- Co-authored-by: jangko <jangko128@gmail.com>
2025-02-06 08:04:50 +01:00
mergeAndReset(tx.parent.layer[], tx.layer[])
ok()
proc txFramePersist*(
db: KvtDbRef; # Database
batch: PutHdlRef;
) =
## Persistently store data onto backend database. If the system is running
## without a database backend, the function returns immediately with an
## error.
##
## The function merges all staged data from the top layer cache onto the
## backend stage area. After that, the top layer cache is cleared.
##
## Finally, the staged data are merged into the physical backend database
## and the staged data area is cleared. Wile performing this last step,
## the recovery journal is updated (if available.)
##
let be = db.backend
doAssert not be.isNil, "Persisting to backend requires ... a backend!"
# Store structural single trie entries
for k,v in db.txRef.layer.sTab:
be.putKvpFn(batch, k, v)
# TODO above, we only prepare the changes to the database but don't actually
# write them to disk - the code below that updates the frame should
# really run after things have been written (to maintain sync betweeen
# in-memory and on-disk state)
# Done with txRef, all saved to backend
db.txRef.layer.sTab.clear()
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------