nimbus-eth1/nimbus/evm/interpreter/op_handlers/oph_arithmetic.nim

468 lines
12 KiB
Nim
Raw Normal View History

# Nimbus
# Copyright (c) 2018-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed except
# according to those terms.
## EVM Opcode Handlers: Arithmetic and Logic Operators
## ===================================================
##
{.push raises: [].}
import
std/options,
../../../constants,
../../computation,
../../evm_errors,
../../stack,
../../types,
../op_codes,
../gas_costs,
../utils/utils_numeric,
./oph_defs,
eth/common
func slt(x, y: UInt256): bool =
type SignedWord = signedWordType(UInt256)
let x_neg = cast[SignedWord](x.mostSignificantWord) < 0
let y_neg = cast[SignedWord](y.mostSignificantWord) < 0
if x_neg xor y_neg: x_neg else: x < y
# ------------------------------------------------------------------------------
# Private, op handlers implementation
# ------------------------------------------------------------------------------
proc addOp(cpt: VmCpt): EvmResultVoid =
## 0x01, Addition
cpt.stack.binaryOp(`+`)
proc mulOp(cpt: VmCpt): EvmResultVoid =
## 0x02, Multiplication
cpt.stack.binaryOp(`*`)
proc subOp(cpt: VmCpt): EvmResultVoid =
## 0x03, Substraction
cpt.stack.binaryOp(`-`)
proc divideOp(cpt: VmCpt): EvmResultVoid =
## 0x04, Division
template div256(top, lhs, rhs) =
if rhs.isZero:
# EVM special casing of div by 0
top = zero(UInt256)
else:
top = lhs div rhs
cpt.stack.binaryWithTop(div256)
proc sdivOp(cpt: VmCpt): EvmResultVoid =
## 0x05, Signed division
template sdiv256(top, lhs, rhs) =
if rhs.isZero.not:
var signA, signB: bool
extractSign(lhs, signA)
extractSign(rhs, signB)
top = lhs div rhs
setSign(top, signA xor signB)
cpt.stack.binaryWithTop(sdiv256)
proc moduloOp(cpt: VmCpt): EvmResultVoid =
## 0x06, Modulo
template mod256(top, lhs, rhs) =
if rhs.isZero:
top = zero(UInt256)
else:
top = lhs mod rhs
cpt.stack.binaryWithTop(mod256)
proc smodOp(cpt: VmCpt): EvmResultVoid =
## 0x07, Signed modulo
template smod256(top, lhs, rhs) =
if rhs.isZero.not:
var sign: bool
extractSign(rhs, sign)
extractSign(lhs, sign)
top = lhs mod rhs
setSign(top, sign)
cpt.stack.binaryWithTop(smod256)
proc addmodOp(cpt: VmCpt): EvmResultVoid =
## 0x08, Modulo addition
## Intermediate computations do not roll over at 2^256
? cpt.stack.lsCheck(3)
let
lhs = cpt.stack.lsPeekInt(^1)
rhs = cpt.stack.lsPeekInt(^2)
modulus = cpt.stack.lsPeekInt(^3)
value = if modulus.isZero:
zero(UInt256)
else:
addmod(lhs, rhs, modulus)
cpt.stack.lsShrink(2)
cpt.stack.lsTop value
ok()
proc mulmodOp(cpt: VmCpt): EvmResultVoid =
## 0x09, Modulo multiplication
## Intermediate computations do not roll over at 2^256
? cpt.stack.lsCheck(3)
let
lhs = cpt.stack.lsPeekInt(^1)
rhs = cpt.stack.lsPeekInt(^2)
modulus = cpt.stack.lsPeekInt(^3)
value = if modulus.isZero:
zero(UInt256)
else:
mulmod(lhs, rhs, modulus)
cpt.stack.lsShrink(2)
cpt.stack.lsTop value
ok()
proc expOp(cpt: VmCpt): EvmResultVoid =
## 0x0A, Exponentiation
template exp256(top, base, exponent) =
? cpt.opcodeGasCost(Exp,
cpt.gasCosts[Exp].d_handler(exponent),
reason = "EXP: exponent bytes")
if not base.isZero:
top = base.pow(exponent)
elif exponent.isZero:
# https://github.com/ethereum/yellowpaper/issues/257
# https://github.com/ethereum/tests/pull/460
# https://github.com/ewasm/evm2wasm/issues/137
top = 1.u256
else:
top = zero(UInt256)
cpt.stack.binaryWithTop(exp256)
proc signExtendOp(cpt: VmCpt): EvmResultVoid =
## 0x0B, Sign extend
## Extend length of twos complement signed integer.
template se256(top, bits, value) =
const one = 1.u256
if bits <= 31.u256:
let
testBit = bits.truncate(int) * 8 + 7
bitPos = one shl testBit
mask = bitPos - one
if not isZero(value and bitPos):
top = value or (not mask)
else:
top = value and mask
else:
top = value
cpt.stack.binaryWithTop(se256)
proc ltOp(cpt: VmCpt): EvmResultVoid =
## 0x10, Less-than comparison
template lt256(lhs, rhs): auto =
(lhs < rhs).uint.u256
cpt.stack.binaryOp(lt256)
proc gtOp(cpt: VmCpt): EvmResultVoid =
## 0x11, Greater-than comparison
template gt256(lhs, rhs): auto =
(lhs > rhs).uint.u256
cpt.stack.binaryOp(gt256)
proc sltOp(cpt: VmCpt): EvmResultVoid =
## 0x12, Signed less-than comparison
template slt256(lhs, rhs): auto =
slt(lhs, rhs).uint.u256
cpt.stack.binaryOp(slt256)
proc sgtOp(cpt: VmCpt): EvmResultVoid =
## 0x13, Signed greater-than comparison
# Arguments are swapped and SLT is used.
template sgt256(lhs, rhs): auto =
slt(rhs, lhs).uint.u256
cpt.stack.binaryOp(sgt256)
proc eqOp(cpt: VmCpt): EvmResultVoid =
## 0x14, Equality comparison
template eq256(lhs, rhs): auto =
(lhs == rhs).uint.u256
cpt.stack.binaryOp(eq256)
proc isZeroOp(cpt: VmCpt): EvmResultVoid =
## 0x15, Check if zero
template zero256(value): auto =
value.isZero.uint.u256
cpt.stack.unaryOp(zero256)
proc andOp(cpt: VmCpt): EvmResultVoid =
## 0x16, Bitwise AND
cpt.stack.binaryOp(`and`)
proc orOp(cpt: VmCpt): EvmResultVoid =
## 0x17, Bitwise OR
cpt.stack.binaryOp(`or`)
proc xorOp(cpt: VmCpt): EvmResultVoid =
## 0x18, Bitwise XOR
cpt.stack.binaryOp(`xor`)
proc notOp(cpt: VmCpt): EvmResultVoid =
## 0x19, Check if zero
cpt.stack.unaryOp(`not`)
proc byteOp(cpt: VmCpt): EvmResultVoid =
## 0x20, Retrieve single byte from word.
template byte256(top, position, value) =
if position >= 32.u256:
top = zero(UInt256)
else:
let pos = position.truncate(int)
when system.cpuEndian == bigEndian:
top = cast[array[32, byte]](value)[pos].u256
else:
top = cast[array[32, byte]](value)[31 - pos].u256
cpt.stack.binaryWithTop(byte256)
# Constantinople's new opcodes
proc shlOp(cpt: VmCpt): EvmResultVoid =
## 0x1b, Shift left
template shl256(top, lhs, num) =
let shiftLen = lhs.safeInt
if shiftLen >= 256:
top = 0.u256
else:
top = num shl shiftLen
cpt.stack.binaryWithTop(shl256)
proc shrOp(cpt: VmCpt): EvmResultVoid =
## 0x1c, Shift right logical
template shr256(top, lhs, num) =
let shiftLen = lhs.safeInt
if shiftLen >= 256:
top = 0.u256
else:
# uint version of `shr`
top = num shr shiftLen
cpt.stack.binaryWithTop(shr256)
proc sarOp(cpt: VmCpt): EvmResultVoid =
## 0x1d, Shift right arithmetic
template sar256(top, lhs, num256) =
let
shiftLen = lhs.safeInt
num = cast[Int256](num256)
if shiftLen >= 256:
if num.isNegative:
top = cast[UInt256]((-1).i256)
else:
top = 0.u256
else:
# int version of `shr` then force the result
# into uint256
top = cast[UInt256](num shr shiftLen)
cpt.stack.binaryWithTop(sar256)
# ------------------------------------------------------------------------------
# Public, op exec table entries
# ------------------------------------------------------------------------------
const
VmOpExecArithmetic*: seq[VmOpExec] = @[
(opCode: Add, ## 0x01, Addition
forks: VmOpAllForks,
name: "add",
info: "Addition operation",
exec: VmOpFn addOp),
(opCode: Mul, ## 0x02, Multiplication
forks: VmOpAllForks,
name: "mul",
info: "Multiplication operation",
exec: mulOp),
(opCode: Sub, ## 0x03, Subtraction
forks: VmOpAllForks,
name: "sub",
info: "Subtraction operation",
exec: subOp),
(opCode: Div, ## 0x04, Division
forks: VmOpAllForks,
name: "divide",
info: "Integer division operation",
exec: divideOp),
(opCode: Sdiv, ## 0x05, Signed division
forks: VmOpAllForks,
name: "sdiv",
info: "Signed integer division operation (truncated)",
exec: sdivOp),
(opCode: Mod, ## 0x06, Modulo
forks: VmOpAllForks,
name: "modulo",
info: "Modulo remainder operation",
exec: moduloOp),
(opCode: Smod, ## 0x07, Signed modulo
forks: VmOpAllForks,
name: "smod",
info: "Signed modulo remainder operation",
exec: smodOp),
2022-04-08 04:54:11 +00:00
(opCode: Addmod, ## 0x08, Modulo addition, Intermediate
## computations do not roll over at 2^256
forks: VmOpAllForks,
name: "addmod",
info: "Modulo addition operation",
exec: addmodOp),
2022-04-08 04:54:11 +00:00
(opCode: Mulmod, ## 0x09, Modulo multiplication, Intermediate
## computations do not roll over at 2^256
forks: VmOpAllForks,
name: "mulmod",
info: "Modulo multiplication operation",
exec: mulmodOp),
(opCode: Exp, ## 0x0a, Exponentiation
forks: VmOpAllForks,
name: "exp",
info: "Exponentiation operation",
exec: expOp),
(opCode: SignExtend, ## 0x0b, Extend 2's complemet length
forks: VmOpAllForks,
name: "signExtend",
info: "Extend length of twos complement signed integer",
exec: signExtendOp),
(opCode: Lt, ## 0x10, Less-than
forks: VmOpAllForks,
name: "lt",
info: "Less-than comparison",
exec: ltOp),
(opCode: Gt, ## 0x11, Greater-than
forks: VmOpAllForks,
name: "gt",
info: "Greater-than comparison",
exec: gtOp),
(opCode: Slt, ## 0x12, Signed less-than
forks: VmOpAllForks,
name: "slt",
info: "Signed less-than comparison",
exec: sltOp),
(opCode: Sgt, ## 0x13, Signed greater-than
forks: VmOpAllForks,
name: "sgt",
info: "Signed greater-than comparison",
exec: sgtOp),
(opCode: Eq, ## 0x14, Equality
forks: VmOpAllForks,
name: "eq",
info: "Equality comparison",
exec: eqOp),
(opCode: IsZero, ## 0x15, Not operator
forks: VmOpAllForks,
name: "isZero",
info: "Simple not operator (Note: real Yellow Paper description)",
exec: isZeroOp),
(opCode: And, ## 0x16, AND
forks: VmOpAllForks,
name: "andOp",
info: "Bitwise AND operation",
exec: andOp),
(opCode: Or, ## 0x17, OR
forks: VmOpAllForks,
name: "orOp",
info: "Bitwise OR operation",
exec: orOp),
(opCode: Xor, ## 0x18, XOR
forks: VmOpAllForks,
name: "xorOp",
info: "Bitwise XOR operation",
exec: xorOp),
(opCode: Not, ## 0x19, NOT
forks: VmOpAllForks,
name: "notOp",
info: "Bitwise NOT operation",
exec: notOp),
(opCode: Byte, ## 0x1a, Retrieve byte
forks: VmOpAllForks,
name: "byteOp",
info: "Retrieve single byte from word",
exec: byteOp),
# Constantinople's new opcodes
(opCode: Shl, ## 0x1b, Shift left
forks: VmOpConstantinopleAndLater,
name: "shlOp",
info: "Shift left",
exec: shlOp),
(opCode: Shr, ## 0x1c, Shift right logical
forks: VmOpConstantinopleAndLater,
name: "shrOp",
info: "Logical shift right",
exec: shrOp),
(opCode: Sar, ## 0x1d, Shift right arithmetic
forks: VmOpConstantinopleAndLater,
name: "sarOp",
info: "Arithmetic shift right",
exec: sarOp)]
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------