nimbus-eth1/nimbus/transaction/call_evm.nim

201 lines
6.7 KiB
Nim
Raw Normal View History

# Nimbus - Various ways of calling the EVM
#
# Copyright (c) 2018-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [].}
import
chronicles,
Added basic async capabilities for vm2. (#1260) * Added basic async capabilities for vm2. This is a whole new Git branch, not the same one as last time (https://github.com/status-im/nimbus-eth1/pull/1250) - there wasn't much worth salvaging. Main differences: I didn't do the "each opcode has to specify an async handler" junk that I put in last time. Instead, in oph_memory.nim you can see sloadOp calling asyncChainTo and passing in an async operation. That async operation is then run by the execCallOrCreate (or asyncExecCallOrCreate) code in interpreter_dispatch.nim. In the test code, the (previously existing) macro called "assembler" now allows you to add a section called "initialStorage", specifying fake data to be used by the EVM computation run by that test. (In the long run we'll obviously want to write tests that for-real use the JSON-RPC API to asynchronously fetch data; for now, this was just an expedient way to write a basic unit test that exercises the async-EVM code pathway.) There's also a new macro called "concurrentAssemblers" that allows you to write a test that runs multiple assemblers concurrently (and then waits for them all to finish). There's one example test using this, in test_op_memory_lazy.nim, though you can't actually see it doing so unless you uncomment some echo statements in async_operations.nim (in which case you can see the two concurrently running EVM computations each printing out what they're doing, and you'll see that they interleave). A question: is it possible to make EVMC work asynchronously? (For now, this code compiles and "make test" passes even if ENABLE_EVMC is turned on, but it doesn't actually work asynchronously, it just falls back on doing the usual synchronous EVMC thing. See FIXME-asyncAndEvmc.) * Moved the AsyncOperationFactory to the BaseVMState object. * Made the AsyncOperationFactory into a table of fn pointers. Also ditched the plain-data Vm2AsyncOperation type; it wasn't really serving much purpose. Instead, the pendingAsyncOperation field directly contains the Future. * Removed the hasStorage idea. It's not the right solution to the "how do we know whether we still need to fetch the storage value or not?" problem. I haven't implemented the right solution yet, but at least we're better off not putting in a wrong one. * Added/modified/removed some comments. (Based on feedback on the PR.) * Removed the waitFor from execCallOrCreate. There was some back-and-forth in the PR regarding whether nested waitFor calls are acceptable: https://github.com/status-im/nimbus-eth1/pull/1260#discussion_r998587449 The eventual decision was to just change the waitFor to a doAssert (since we probably won't want this extra functionality when running synchronously anyway) to make sure that the Future is already finished.
2022-11-01 15:35:46 +00:00
chronos,
Unified database frontend integration (#1670) * Nimbus folder environment update details: * Integrated `CoreDbRef` for the sources in the `nimbus` sub-folder. * The `nimbus` program does not compile yet as it needs the updates in the parallel `stateless` sub-folder. * Stateless environment update details: * Integrated `CoreDbRef` for the sources in the `stateless` sub-folder. * The `nimbus` program compiles now. * Premix environment update details: * Integrated `CoreDbRef` for the sources in the `premix` sub-folder. * Fluffy environment update details: * Integrated `CoreDbRef` for the sources in the `fluffy` sub-folder. * Tools environment update details: * Integrated `CoreDbRef` for the sources in the `tools` sub-folder. * Nodocker environment update details: * Integrated `CoreDbRef` for the sources in the `hive_integration/nodocker` sub-folder. * Tests environment update details: * Integrated `CoreDbRef` for the sources in the `tests` sub-folder. * The unit tests compile and run cleanly now. * Generalise `CoreDbRef` to any `select_backend` supported database why: Generalisation was just missed due to overcoming some compiler oddity which was tied to rocksdb for testing. * Suppress compiler warning for `newChainDB()` why: Warning was added to this function which must be wrapped so that any `CatchableError` is re-raised as `Defect`. * Split off persistent `CoreDbRef` constructor into separate file why: This allows to compile a memory only database version without linking the backend library. * Use memory `CoreDbRef` database by default detail: Persistent DB constructor needs to import `db/core_db/persistent why: Most tests use memory DB anyway. This avoids linking `-lrocksdb` or any other backend by default. * fix `toLegacyBackend()` availability check why: got garbled after memory/persistent split. * Clarify raw access to MPT for snap sync handler why: Logically, `kvt` is not the raw access for the hexary trie (although this holds for the legacy database)
2023-08-04 11:10:09 +00:00
eth/common/eth_types_rlp,
../evm/[types, state, internals],
../db/ledger,
2022-12-02 04:39:12 +00:00
../common/common,
../evm/evm_errors,
2024-04-16 12:52:07 +00:00
../rpc/params,
./call_common
export
call_common
proc rpcCallEvm*(args: TransactionArgs,
header: common.BlockHeader,
com: CommonRef): EvmResult[CallResult] =
const globalGasCap = 0 # TODO: globalGasCap should configurable by user
2024-04-16 12:52:07 +00:00
let topHeader = common.BlockHeader(
Redesign of BaseVMState descriptor (#923) * Redesign of BaseVMState descriptor why: BaseVMState provides an environment for executing transactions. The current descriptor also provides data that cannot generally be known within the execution environment, e.g. the total gasUsed which is available not before after all transactions have finished. Also, the BaseVMState constructor has been replaced by a constructor that does not need pre-initialised input of the account database. also: Previous constructor and some fields are provided with a deprecated annotation (producing a lot of noise.) * Replace legacy directives in production sources * Replace legacy directives in unit test sources * fix CI (missing premix update) * Remove legacy directives * chase CI problem * rebased * Re-introduce 'AccountsCache' constructor optimisation for 'BaseVmState' re-initialisation why: Constructing a new 'AccountsCache' descriptor can be avoided sometimes when the current state root is properly positioned already. Such a feature existed already as the update function 'initStateDB()' for the 'BaseChanDB' where the accounts cache was linked into this desctiptor. The function 'initStateDB()' was removed and re-implemented into the 'BaseVmState' constructor without optimisation. The old version was of restricted use as a wrong accounts cache state would unconditionally throw an exception rather than conceptually ask for a remedy. The optimised 'BaseVmState' re-initialisation has been implemented for the 'persistBlocks()' function. also: moved some test helpers to 'test/replay' folder * Remove unused & undocumented fields from Chain descriptor why: Reduces attack surface in general & improves reading the code.
2022-01-18 16:19:32 +00:00
parentHash: header.blockHash,
timestamp: EthTime.now(),
gasLimit: 0.GasInt, ## ???
baseFeePerGas: Opt.none UInt256, ## ???
)
let vmState = ? BaseVMState.new(topHeader, com)
let params = ? toCallParams(vmState, args, globalGasCap, header.baseFeePerGas)
var dbTx = com.db.ctx.newTransaction()
defer: dbTx.dispose() # always dispose state changes
ok(runComputation(params, CallResult))
2024-04-16 12:52:07 +00:00
proc rpcCallEvm*(args: TransactionArgs,
header: common.BlockHeader,
com: CommonRef,
vmState: BaseVMState): EvmResult[CallResult] =
const globalGasCap = 0 # TODO: globalGasCap should configurable by user
let params = ? toCallParams(vmState, args, globalGasCap, header.baseFeePerGas)
var dbTx = com.db.ctx.newTransaction()
defer: dbTx.dispose() # always dispose state changes
ok(runComputation(params, CallResult))
2024-04-16 12:52:07 +00:00
proc rpcEstimateGas*(args: TransactionArgs,
header: common.BlockHeader,
com: CommonRef, gasCap: GasInt): EvmResult[GasInt] =
# Binary search the gas requirement, as it may be higher than the amount used
2024-04-16 12:52:07 +00:00
let topHeader = common.BlockHeader(
Redesign of BaseVMState descriptor (#923) * Redesign of BaseVMState descriptor why: BaseVMState provides an environment for executing transactions. The current descriptor also provides data that cannot generally be known within the execution environment, e.g. the total gasUsed which is available not before after all transactions have finished. Also, the BaseVMState constructor has been replaced by a constructor that does not need pre-initialised input of the account database. also: Previous constructor and some fields are provided with a deprecated annotation (producing a lot of noise.) * Replace legacy directives in production sources * Replace legacy directives in unit test sources * fix CI (missing premix update) * Remove legacy directives * chase CI problem * rebased * Re-introduce 'AccountsCache' constructor optimisation for 'BaseVmState' re-initialisation why: Constructing a new 'AccountsCache' descriptor can be avoided sometimes when the current state root is properly positioned already. Such a feature existed already as the update function 'initStateDB()' for the 'BaseChanDB' where the accounts cache was linked into this desctiptor. The function 'initStateDB()' was removed and re-implemented into the 'BaseVmState' constructor without optimisation. The old version was of restricted use as a wrong accounts cache state would unconditionally throw an exception rather than conceptually ask for a remedy. The optimised 'BaseVmState' re-initialisation has been implemented for the 'persistBlocks()' function. also: moved some test helpers to 'test/replay' folder * Remove unused & undocumented fields from Chain descriptor why: Reduces attack surface in general & improves reading the code.
2022-01-18 16:19:32 +00:00
parentHash: header.blockHash,
timestamp: EthTime.now(),
gasLimit: 0.GasInt, ## ???
baseFeePerGas: Opt.none UInt256, ## ???
)
let vmState = ? BaseVMState.new(topHeader, com)
let fork = vmState.fork
let txGas = GasInt gasFees[fork][GasTransaction] # txGas always 21000, use constants?
var params = ? toCallParams(vmState, args, gasCap, header.baseFeePerGas)
var
lo : GasInt = txGas - 1
2024-04-16 12:52:07 +00:00
hi : GasInt = GasInt args.gas.get(0.Quantity)
cap: GasInt
var dbTx = com.db.ctx.newTransaction()
defer: dbTx.dispose() # always dispose state changes
# Determine the highest gas limit can be used during the estimation.
if hi < txGas:
# block's gasLimit act as the gas ceiling
hi = header.gasLimit
# Normalize the max fee per gas the call is willing to spend.
2024-04-16 12:52:07 +00:00
var feeCap = GasInt args.gasPrice.get(0.Quantity)
if args.gasPrice.isSome and
(args.maxFeePerGas.isSome or args.maxPriorityFeePerGas.isSome):
return err(evmErr(EvmInvalidParam))
2024-04-16 12:52:07 +00:00
elif args.maxFeePerGas.isSome:
feeCap = GasInt args.maxFeePerGas.get
# Recap the highest gas limit with account's available balance.
if feeCap > 0:
2024-04-16 12:52:07 +00:00
if args.source.isNone:
return err(evmErr(EvmInvalidParam))
2024-04-16 12:52:07 +00:00
let balance = vmState.readOnlyStateDB.getBalance(ethAddr args.source.get)
var available = balance
2024-04-16 12:52:07 +00:00
if args.value.isSome:
let value = args.value.get
if value > available:
return err(evmErr(EvmInvalidParam))
available -= value
let allowance = available div feeCap.u256
# If the allowance is larger than maximum GasInt, skip checking
if allowance < high(GasInt).u256 and hi > allowance.truncate(GasInt):
2024-04-16 12:52:07 +00:00
let transfer = args.value.get(0.u256)
warn "Gas estimation capped by limited funds", original=hi, balance,
sent=transfer, maxFeePerGas=feeCap, fundable=allowance
hi = allowance.truncate(GasInt)
# Recap the highest gas allowance with specified gasCap.
if gasCap != 0 and hi > gasCap:
warn "Caller gas above allowance, capping", requested=hi, cap=gasCap
hi = gasCap
cap = hi
let intrinsicGas = intrinsicGas(params, vmState)
# Create a helper to check if a gas allowance results in an executable transaction
proc executable(gasLimit: GasInt): EvmResult[bool] =
if intrinsicGas > gasLimit:
# Special case, raise gas limit
return ok(true)
params.gasLimit = gasLimit
# TODO: bail out on consensus error similar to validateTransaction
let res = runComputation(params, string)
ok(res.len > 0)
# Execute the binary search and hone in on an executable gas limit
while lo+1 < hi:
let mid = (hi + lo) div 2
let failed = ? executable(mid)
if failed:
lo = mid
else:
hi = mid
# Reject the transaction as invalid if it still fails at the highest allowance
if hi == cap:
let failed = ? executable(hi)
if failed:
# TODO: provide more descriptive EVM error beside out of gas
# e.g. revert and other EVM errors
return err(evmErr(EvmInvalidParam))
ok(hi)
proc callParamsForTx(tx: Transaction, sender: EthAddress, vmState: BaseVMState): CallParams =
Added basic async capabilities for vm2. (#1260) * Added basic async capabilities for vm2. This is a whole new Git branch, not the same one as last time (https://github.com/status-im/nimbus-eth1/pull/1250) - there wasn't much worth salvaging. Main differences: I didn't do the "each opcode has to specify an async handler" junk that I put in last time. Instead, in oph_memory.nim you can see sloadOp calling asyncChainTo and passing in an async operation. That async operation is then run by the execCallOrCreate (or asyncExecCallOrCreate) code in interpreter_dispatch.nim. In the test code, the (previously existing) macro called "assembler" now allows you to add a section called "initialStorage", specifying fake data to be used by the EVM computation run by that test. (In the long run we'll obviously want to write tests that for-real use the JSON-RPC API to asynchronously fetch data; for now, this was just an expedient way to write a basic unit test that exercises the async-EVM code pathway.) There's also a new macro called "concurrentAssemblers" that allows you to write a test that runs multiple assemblers concurrently (and then waits for them all to finish). There's one example test using this, in test_op_memory_lazy.nim, though you can't actually see it doing so unless you uncomment some echo statements in async_operations.nim (in which case you can see the two concurrently running EVM computations each printing out what they're doing, and you'll see that they interleave). A question: is it possible to make EVMC work asynchronously? (For now, this code compiles and "make test" passes even if ENABLE_EVMC is turned on, but it doesn't actually work asynchronously, it just falls back on doing the usual synchronous EVMC thing. See FIXME-asyncAndEvmc.) * Moved the AsyncOperationFactory to the BaseVMState object. * Made the AsyncOperationFactory into a table of fn pointers. Also ditched the plain-data Vm2AsyncOperation type; it wasn't really serving much purpose. Instead, the pendingAsyncOperation field directly contains the Future. * Removed the hasStorage idea. It's not the right solution to the "how do we know whether we still need to fetch the storage value or not?" problem. I haven't implemented the right solution yet, but at least we're better off not putting in a wrong one. * Added/modified/removed some comments. (Based on feedback on the PR.) * Removed the waitFor from execCallOrCreate. There was some back-and-forth in the PR regarding whether nested waitFor calls are acceptable: https://github.com/status-im/nimbus-eth1/pull/1260#discussion_r998587449 The eventual decision was to just change the waitFor to a doAssert (since we probably won't want this extra functionality when running synchronously anyway) to make sure that the Future is already finished.
2022-11-01 15:35:46 +00:00
# Is there a nice idiom for this kind of thing? Should I
# just be writing this as a bunch of assignment statements?
result = CallParams(
vmState: vmState,
gasPrice: tx.gasPrice,
gasLimit: tx.gasLimit,
sender: sender,
to: tx.destination,
isCreate: tx.contractCreation,
value: tx.value,
input: tx.payload
)
if tx.txType > TxLegacy:
result.accessList = tx.accessList
if tx.txType >= TxEip4844:
result.versionedHashes = tx.versionedHashes
proc callParamsForTest(tx: Transaction, sender: EthAddress, vmState: BaseVMState): CallParams =
Added basic async capabilities for vm2. (#1260) * Added basic async capabilities for vm2. This is a whole new Git branch, not the same one as last time (https://github.com/status-im/nimbus-eth1/pull/1250) - there wasn't much worth salvaging. Main differences: I didn't do the "each opcode has to specify an async handler" junk that I put in last time. Instead, in oph_memory.nim you can see sloadOp calling asyncChainTo and passing in an async operation. That async operation is then run by the execCallOrCreate (or asyncExecCallOrCreate) code in interpreter_dispatch.nim. In the test code, the (previously existing) macro called "assembler" now allows you to add a section called "initialStorage", specifying fake data to be used by the EVM computation run by that test. (In the long run we'll obviously want to write tests that for-real use the JSON-RPC API to asynchronously fetch data; for now, this was just an expedient way to write a basic unit test that exercises the async-EVM code pathway.) There's also a new macro called "concurrentAssemblers" that allows you to write a test that runs multiple assemblers concurrently (and then waits for them all to finish). There's one example test using this, in test_op_memory_lazy.nim, though you can't actually see it doing so unless you uncomment some echo statements in async_operations.nim (in which case you can see the two concurrently running EVM computations each printing out what they're doing, and you'll see that they interleave). A question: is it possible to make EVMC work asynchronously? (For now, this code compiles and "make test" passes even if ENABLE_EVMC is turned on, but it doesn't actually work asynchronously, it just falls back on doing the usual synchronous EVMC thing. See FIXME-asyncAndEvmc.) * Moved the AsyncOperationFactory to the BaseVMState object. * Made the AsyncOperationFactory into a table of fn pointers. Also ditched the plain-data Vm2AsyncOperation type; it wasn't really serving much purpose. Instead, the pendingAsyncOperation field directly contains the Future. * Removed the hasStorage idea. It's not the right solution to the "how do we know whether we still need to fetch the storage value or not?" problem. I haven't implemented the right solution yet, but at least we're better off not putting in a wrong one. * Added/modified/removed some comments. (Based on feedback on the PR.) * Removed the waitFor from execCallOrCreate. There was some back-and-forth in the PR regarding whether nested waitFor calls are acceptable: https://github.com/status-im/nimbus-eth1/pull/1260#discussion_r998587449 The eventual decision was to just change the waitFor to a doAssert (since we probably won't want this extra functionality when running synchronously anyway) to make sure that the Future is already finished.
2022-11-01 15:35:46 +00:00
result = CallParams(
vmState: vmState,
gasPrice: tx.gasPrice,
gasLimit: tx.gasLimit,
sender: sender,
to: tx.destination,
isCreate: tx.contractCreation,
value: tx.value,
input: tx.payload,
noIntrinsic: true, # Don't charge intrinsic gas.
noRefund: true, # Don't apply gas refund/burn rule.
)
if tx.txType > TxLegacy:
result.accessList = tx.accessList
Added basic async capabilities for vm2. (#1260) * Added basic async capabilities for vm2. This is a whole new Git branch, not the same one as last time (https://github.com/status-im/nimbus-eth1/pull/1250) - there wasn't much worth salvaging. Main differences: I didn't do the "each opcode has to specify an async handler" junk that I put in last time. Instead, in oph_memory.nim you can see sloadOp calling asyncChainTo and passing in an async operation. That async operation is then run by the execCallOrCreate (or asyncExecCallOrCreate) code in interpreter_dispatch.nim. In the test code, the (previously existing) macro called "assembler" now allows you to add a section called "initialStorage", specifying fake data to be used by the EVM computation run by that test. (In the long run we'll obviously want to write tests that for-real use the JSON-RPC API to asynchronously fetch data; for now, this was just an expedient way to write a basic unit test that exercises the async-EVM code pathway.) There's also a new macro called "concurrentAssemblers" that allows you to write a test that runs multiple assemblers concurrently (and then waits for them all to finish). There's one example test using this, in test_op_memory_lazy.nim, though you can't actually see it doing so unless you uncomment some echo statements in async_operations.nim (in which case you can see the two concurrently running EVM computations each printing out what they're doing, and you'll see that they interleave). A question: is it possible to make EVMC work asynchronously? (For now, this code compiles and "make test" passes even if ENABLE_EVMC is turned on, but it doesn't actually work asynchronously, it just falls back on doing the usual synchronous EVMC thing. See FIXME-asyncAndEvmc.) * Moved the AsyncOperationFactory to the BaseVMState object. * Made the AsyncOperationFactory into a table of fn pointers. Also ditched the plain-data Vm2AsyncOperation type; it wasn't really serving much purpose. Instead, the pendingAsyncOperation field directly contains the Future. * Removed the hasStorage idea. It's not the right solution to the "how do we know whether we still need to fetch the storage value or not?" problem. I haven't implemented the right solution yet, but at least we're better off not putting in a wrong one. * Added/modified/removed some comments. (Based on feedback on the PR.) * Removed the waitFor from execCallOrCreate. There was some back-and-forth in the PR regarding whether nested waitFor calls are acceptable: https://github.com/status-im/nimbus-eth1/pull/1260#discussion_r998587449 The eventual decision was to just change the waitFor to a doAssert (since we probably won't want this extra functionality when running synchronously anyway) to make sure that the Future is already finished.
2022-11-01 15:35:46 +00:00
if tx.txType >= TxEip4844:
result.versionedHashes = tx.versionedHashes
proc txCallEvm*(tx: Transaction,
sender: EthAddress,
vmState: BaseVMState): GasInt =
let
call = callParamsForTx(tx, sender, vmState)
runComputation(call, GasInt)
proc testCallEvm*(tx: Transaction,
sender: EthAddress,
vmState: BaseVMState): CallResult =
let call = callParamsForTest(tx, sender, vmState)
runComputation(call, CallResult)