mirror of https://github.com/status-im/nimPNG.git
3000 lines
106 KiB
Nim
3000 lines
106 KiB
Nim
# Portable Network Graphics Encoder and Decoder written in Nim
|
|
#
|
|
# Copyright (c) 2015 Andri Lim
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in
|
|
# all copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
# THE SOFTWARE.
|
|
#
|
|
# this is a rewrite of LodePNG(www.lodev.org/lodepng)
|
|
# to be as idiomatic Nim as possible
|
|
# part of nimPDF sister projects
|
|
#-------------------------------------
|
|
|
|
import streams, endians, tables, hashes, math, nimz
|
|
|
|
const
|
|
NIM_PNG_VERSION = "0.1.5"
|
|
|
|
type
|
|
PNGChunkType = distinct int32
|
|
|
|
PNGcolorType* = enum
|
|
LCT_GREY = 0, # greyscale: 1,2,4,8,16 bit
|
|
LCT_RGB = 2, # RGB: 8,16 bit
|
|
LCT_PALETTE = 3, # palette: 1,2,4,8 bit
|
|
LCT_GREY_ALPHA = 4, # greyscale with alpha: 8,16 bit
|
|
LCT_RGBA = 6 # RGB with alpha: 8,16 bit
|
|
|
|
PNGFilter0 = enum
|
|
FLT_NONE,
|
|
FLT_SUB,
|
|
FLT_UP,
|
|
FLT_AVERAGE,
|
|
FLT_PAETH
|
|
|
|
PNGSettings = ref object of RootObj
|
|
|
|
PNGDecoder* = ref object of PNGSettings
|
|
colorConvert*: bool
|
|
|
|
#if false but rememberUnknownChunks is true, they're stored in the unknown chunks
|
|
#(off by default, useful for a png editor)
|
|
|
|
readTextChunks*: bool
|
|
rememberUnknownChunks*: bool
|
|
ignoreCRC*: bool
|
|
|
|
PNGInterlace* = enum
|
|
IM_NONE = 0, IM_INTERLACED = 1
|
|
|
|
PNGChunk = ref object of RootObj
|
|
length: int #range[0..0x7FFFFFFF]
|
|
chunkType: PNGChunkType
|
|
crc: uint32
|
|
data: string
|
|
pos: int
|
|
|
|
PNGHeader = ref object of PNGChunk
|
|
width, height: int #range[1..0x7FFFFFFF]
|
|
bitDepth: int
|
|
colorType: PNGcolorType
|
|
compressionMethod: int
|
|
filterMethod: int
|
|
interlaceMethod: PNGInterlace
|
|
|
|
RGBA8* = object
|
|
r*, g*, b*, a*: char
|
|
|
|
RGBA16* = object
|
|
r*, g*, b*, a*: uint16
|
|
|
|
ColorTree8 = Table[RGBA8, int]
|
|
|
|
PNGPalette = ref object of PNGChunk
|
|
palette: seq[RGBA8]
|
|
|
|
PNGData = ref object of PNGChunk
|
|
idat: string
|
|
|
|
PNGTime = ref object of PNGChunk
|
|
year: int #range[0..65535]
|
|
month: int #range[1..12]
|
|
day: int #range[1..31]
|
|
hour: int #range[0..23]
|
|
minute: int #range[0..59]
|
|
second: int #range[0..60] #to allow for leap seconds
|
|
|
|
PNGPhys = ref object of PNGChunk
|
|
physX, physY: int
|
|
unit: int
|
|
|
|
PNGTrans = ref object of PNGChunk
|
|
keyR, keyG, keyB: int
|
|
|
|
PNGBackground = ref object of PNGChunk
|
|
bkgdR, bkgdG, bkgdB: int
|
|
|
|
PNGText = ref object of PNGChunk
|
|
keyword: string
|
|
text: string
|
|
|
|
PNGZtxt = ref object of PNGChunk
|
|
keyword: string
|
|
text: string
|
|
|
|
PNGItxt = ref object of PNGChunk
|
|
keyword: string
|
|
text: string
|
|
languageTag: string
|
|
translatedKeyword: string
|
|
|
|
PNGGamma = ref object of PNGChunk
|
|
gamma: int
|
|
|
|
PNGChroma = ref object of PNGChunk
|
|
whitePointX, whitePointY: int
|
|
redX, redY: int
|
|
greenX, greenY: int
|
|
blueX, blueY: int
|
|
|
|
PNGStandarRGB = ref object of PNGChunk
|
|
renderingIntent: int
|
|
|
|
PNGICCProfile = ref object of PNGChunk
|
|
profileName: string
|
|
profile: string
|
|
|
|
PNGSPEntry = object
|
|
red, green, blue, alpha, frequency: int
|
|
|
|
PNGSPalette = ref object of PNGChunk
|
|
paletteName: string
|
|
sampleDepth: int
|
|
palette: seq[PNGSPEntry]
|
|
|
|
PNGHist = ref object of PNGChunk
|
|
histogram: seq[int]
|
|
|
|
PNGSbit = ref object of PNGChunk
|
|
|
|
PNGPass = object
|
|
w, h: array[0..6, int]
|
|
filterStart, paddedStart, start: array[0..7, int]
|
|
|
|
PNGColorMode* = ref object
|
|
colorType*: PNGcolorType
|
|
bitDepth*: int
|
|
paletteSize*: int
|
|
palette*: seq[RGBA8]
|
|
keyDefined*: bool
|
|
keyR*, keyG*, keyB*: int
|
|
|
|
PNGInfo* = ref object
|
|
width*: int
|
|
height*: int
|
|
mode*: PNGColorMode
|
|
backgroundDefined*: bool
|
|
backgroundR*, backgroundG*, backgroundB*: int
|
|
|
|
physDefined*: bool
|
|
physX*, physY*, physUnit*: int
|
|
|
|
timeDefined*: bool
|
|
year*: int #range[0..65535]
|
|
month*: int #range[1..12]
|
|
day*: int #range[1..31]
|
|
hour*: int #range[0..23]
|
|
minute*: int #range[0..59]
|
|
second*: int #range[0..60] #to allow for leap seconds
|
|
|
|
PNG* = ref object
|
|
settings*: PNGSettings
|
|
chunks*: seq[PNGChunk]
|
|
pixels*: string
|
|
|
|
PNGResult* = ref object
|
|
width*: int
|
|
height*: int
|
|
data*: string
|
|
|
|
proc makePNGDecoder*(): PNGDecoder =
|
|
var s: PNGDecoder
|
|
new(s)
|
|
s.colorConvert = true
|
|
s.readTextChunks = false
|
|
s.rememberUnknownChunks = false
|
|
s.ignoreCRC = false
|
|
result = s
|
|
|
|
proc signatureMaker(): string {. compiletime .} =
|
|
const signatureBytes = [137, 80, 78, 71, 13, 10, 26, 10]
|
|
result = ""
|
|
for c in signatureBytes: result.add chr(c)
|
|
|
|
proc makeChunkType*(val: string): PNGChunkType =
|
|
assert (val.len == 4)
|
|
result = PNGChunkType((ord(val[0]) shl 24) or (ord(val[1]) shl 16) or (ord(val[2]) shl 8) or ord(val[3]))
|
|
|
|
proc `$`*(tag: PNGChunkType): string =
|
|
result = newString(4)
|
|
let t = int(tag)
|
|
result[0] = chr(toU32(t shr 24) and 0xFF)
|
|
result[1] = chr(toU32(t shr 16) and 0xFF)
|
|
result[2] = chr(toU32(t shr 8) and 0xFF)
|
|
result[3] = chr(toU32(t) and 0xFF)
|
|
|
|
proc `==`(a, b: PNGChunkType): bool = int(a) == int(b)
|
|
#proc isAncillary(a: PNGChunkType): bool = (int(a) and (32 shl 24)) != 0
|
|
#proc isPrivate(a: PNGChunkType): bool = (int(a) and (32 shl 16)) != 0
|
|
#proc isSafeToCopy(a: PNGChunkType): bool = (int(a) and 32) != 0
|
|
|
|
proc crc32(crc: uint32, buf: string): uint32 =
|
|
const kcrc32 = [ 0'u32, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190,
|
|
0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320'u32, 0xf00f9344'u32, 0xd6d6a3e8'u32,
|
|
0xcb61b38c'u32, 0x9b64c2b0'u32, 0x86d3d2d4'u32, 0xa00ae278'u32, 0xbdbdf21c'u32]
|
|
|
|
var crcu32 = not crc
|
|
for b in buf:
|
|
crcu32 = (crcu32 shr 4) xor kcrc32[(crcu32 and 0xF) xor (ord(b) and 0xF)]
|
|
crcu32 = (crcu32 shr 4) xor kcrc32[(crcu32 and 0xF) xor (ord(b) shr 4)]
|
|
|
|
result = not crcu32
|
|
|
|
const
|
|
PNGSignature = signatureMaker()
|
|
IHDR = makeChunkType("IHDR")
|
|
IEND = makeChunkType("IEND")
|
|
PLTE = makeChunkType("PLTE")
|
|
IDAT = makeChunkType("IDAT")
|
|
tRNS = makeChunkType("tRNS")
|
|
bKGD = makeChunkType("bKGD")
|
|
pHYs = makeChunkType("pHYs")
|
|
tIME = makeChunkType("tIME")
|
|
iTXt = makeChunkType("iTXt")
|
|
zTXt = makeChunkType("zTXt")
|
|
tEXt = makeChunkType("tEXt")
|
|
gAMA = makeChunkType("gAMA")
|
|
cHRM = makeChunkType("cHRM")
|
|
sRGB = makeChunkType("sRGB")
|
|
iCCP = makeChunkType("iCCP")
|
|
sBIT = makeChunkType("sBIT")
|
|
sPLT = makeChunkType("sPLT")
|
|
hIST = makeChunkType("hIST")
|
|
|
|
# shared values used by multiple Adam7 related functions
|
|
ADAM7_IX = [ 0, 4, 0, 2, 0, 1, 0 ] # x start values
|
|
ADAM7_IY = [ 0, 0, 4, 0, 2, 0, 1 ] # y start values
|
|
ADAM7_DX = [ 8, 8, 4, 4, 2, 2, 1 ] # x delta values
|
|
ADAM7_DY = [ 8, 8, 8, 4, 4, 2, 2 ] # y delta values
|
|
|
|
proc PNGError(msg: string): ref Exception =
|
|
new(result)
|
|
result.msg = msg
|
|
|
|
proc newColorMode*(colorType=LCT_RGBA, bitDepth=8): PNGColorMode =
|
|
new(result)
|
|
result.keyDefined = false
|
|
result.keyR = 0
|
|
result.keyG = 0
|
|
result.keyB = 0
|
|
result.colorType = colorType
|
|
result.bitDepth = bitDepth
|
|
result.paletteSize = 0
|
|
|
|
proc copyTo*(src, dest: PNGColorMode) =
|
|
dest.keyDefined = src.keyDefined
|
|
dest.keyR = src.keyR
|
|
dest.keyG = src.keyG
|
|
dest.keyB = src.keyB
|
|
dest.colorType = src.colorType
|
|
dest.bitDepth = src.bitDepth
|
|
dest.paletteSize = src.paletteSize
|
|
if src.palette != nil:
|
|
newSeq(dest.palette, src.paletteSize)
|
|
for i in 0..src.palette.len-1: dest.palette[i] = src.palette[i]
|
|
|
|
proc newColorMode*(mode: PNGColorMode): PNGColorMode =
|
|
new(result)
|
|
mode.copyTo(result)
|
|
|
|
proc addPalette*(mode: PNGColorMode, r, g, b, a: int) =
|
|
if mode.palette == nil: mode.palette = @[]
|
|
mode.palette.add RGBA8(r: chr(r), g: chr(g), b: chr(b), a: chr(a))
|
|
mode.paletteSize = mode.palette.len
|
|
|
|
proc `==`(a, b: PNGColorMode): bool =
|
|
if a.colorType != b.colorType: return false
|
|
if a.bitDepth != b.bitDepth: return false
|
|
if a.keyDefined != b.keyDefined: return false
|
|
if a.keyDefined:
|
|
if a.keyR != b.keyR: return false
|
|
if a.keyG != b.keyG: return false
|
|
if a.keyB != b.keyB: return false
|
|
if a.paletteSize != b.paletteSize: return false
|
|
for i in 0..a.palette.len-1:
|
|
if a.palette[i] != b.palette[i]: return false
|
|
result = true
|
|
|
|
proc `!=`(a, b: PNGColorMode): bool = not (a == b)
|
|
|
|
proc readInt32(s: PNGChunk): int =
|
|
if s.pos + 4 > s.data.len: raise PNGError("index out of bound 4")
|
|
result = ord(s.data[s.pos]) shl 8
|
|
result = (result + ord(s.data[s.pos + 1])) shl 8
|
|
result = (result + ord(s.data[s.pos + 2])) shl 8
|
|
result = result + ord(s.data[s.pos + 3])
|
|
inc(s.pos, 4)
|
|
|
|
proc readInt16(s: PNGChunk): int =
|
|
if s.pos + 2 > s.data.len: raise PNGError("index out of bound 2")
|
|
result = ord(s.data[s.pos]) shl 8
|
|
result = result + ord(s.data[s.pos + 1])
|
|
inc(s.pos, 2)
|
|
|
|
proc readInt32BE(s: Stream): int =
|
|
var val = s.readInt32()
|
|
bigEndian32(addr(result), addr(val))
|
|
|
|
proc readByte(s: PNGChunk): int =
|
|
if s.pos + 1 > s.data.len: raise PNGError("index out of bound 1")
|
|
result = ord(s.data[s.pos])
|
|
inc s.pos
|
|
|
|
proc setPosition(s: PNGChunk, pos: int) =
|
|
if pos < 0 or pos > s.data.len: raise PNGError("set position error")
|
|
s.pos = pos
|
|
|
|
proc hasChunk*(png: PNG, chunkType: PNGChunkType): bool =
|
|
for c in png.chunks:
|
|
if c.chunkType == chunkType: return true
|
|
result = false
|
|
|
|
proc getChunk*(png: PNG, chunkType: PNGChunkType): PNGChunk =
|
|
for c in png.chunks:
|
|
if c.chunkType == chunkType: return c
|
|
|
|
proc bitDepthAllowed(colorType: PNGcolorType, bitDepth: int): bool =
|
|
case colorType
|
|
of LCT_GREY : result = bitDepth in {1, 2, 4, 8, 16}
|
|
of LCT_PALETTE: result = bitDepth in {1, 2, 4, 8}
|
|
else: result = bitDepth in {8, 16}
|
|
|
|
method validateChunk(chunk: PNGChunk, png: PNG): bool {.base.} = true
|
|
method parseChunk(chunk: PNGChunk, png: PNG): bool {.base.} = true
|
|
|
|
method validateChunk(header: PNGHeader, png: PNG): bool =
|
|
if header.width < 1 or header.width > 0x7FFFFFFF:
|
|
raise PNGError("image width not allowed: " & $header.width)
|
|
if header.height < 1 or header.height > 0x7FFFFFFF:
|
|
raise PNGError("image width not allowed: " & $header.height)
|
|
if header.colorType notin {LCT_GREY, LCT_RGB, LCT_PALETTE, LCT_GREY_ALPHA, LCT_RGBA}:
|
|
raise PNGError("color type not allowed: " & $int(header.colorType))
|
|
if not bitDepthAllowed(header.colorType, header.bitDepth):
|
|
raise PNGError("bit depth not allowed: " & $header.bitDepth)
|
|
if header.compressionMethod != 0:
|
|
raise PNGError("unsupported compression method")
|
|
if header.filterMethod != 0:
|
|
raise PNGError("unsupported filter method")
|
|
if header.interlaceMethod notin {IM_NONE, IM_INTERLACED}:
|
|
raise PNGError("unsupported interlace method")
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGHeader, png: PNG): bool =
|
|
if chunk.length != 13: return false
|
|
chunk.width = chunk.readInt32()
|
|
chunk.height = chunk.readInt32()
|
|
chunk.bitDepth = chunk.readByte()
|
|
chunk.colorType = PNGcolorType(chunk.readByte())
|
|
chunk.compressionMethod = chunk.readByte()
|
|
chunk.filterMethod = chunk.readByte()
|
|
chunk.interlaceMethod = PNGInterlace(chunk.readByte())
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGPalette, png: PNG): bool =
|
|
let paletteSize = chunk.length div 3
|
|
if paletteSize > 256: raise PNGError("palette size to big")
|
|
newSeq(chunk.palette, paletteSize)
|
|
for px in mitems(chunk.palette):
|
|
px.r = chr(chunk.readByte())
|
|
px.g = chr(chunk.readByte())
|
|
px.b = chr(chunk.readByte())
|
|
px.a = chr(255)
|
|
result = true
|
|
|
|
proc numChannels(colorType: PNGcolorType): int =
|
|
case colorType
|
|
of LCT_GREY: result = 1
|
|
of LCT_RGB : result = 3
|
|
of LCT_PALETTE: result = 1
|
|
of LCT_GREY_ALPHA: result = 2
|
|
of LCT_RGBA: result = 4
|
|
|
|
proc LCTBPP(colorType: PNGcolorType, bitDepth: int): int =
|
|
# bits per pixel is amount of channels * bits per channel
|
|
result = numChannels(colorType) * bitDepth
|
|
|
|
proc getBPP(header: PNGHeader): int =
|
|
# calculate bits per pixel out of colorType and bitDepth
|
|
result = LCTBPP(header.colorType, header.bitDepth)
|
|
|
|
proc getBPP(color: PNGColorMode): int =
|
|
# calculate bits per pixel out of colorType and bitDepth
|
|
result = LCTBPP(color.colorType, color.bitDepth)
|
|
|
|
proc idatRawSize(w, h: int, header: PNGHeader): int =
|
|
result = h * ((w * getBPP(header) + 7) div 8)
|
|
|
|
proc getRawSize(w, h: int, color: PNGColorMode): int =
|
|
result = (w * h * getBPP(color) + 7) div 8
|
|
|
|
#proc getRawSizeLct(w, h: int, colorType: PNGcolorType, bitDepth: int): int =
|
|
# result = (w * h * LCTBPP(colorType, bitDepth) + 7) div 8
|
|
|
|
method validateChunk(chunk: PNGData, png: PNG): bool =
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
|
|
var predict = 0
|
|
if header.interlaceMethod == IM_NONE:
|
|
# The extra header.height is added because this are the filter bytes every scanLine starts with
|
|
predict = idatRawSize(header.width, header.height, header) + header.height
|
|
else:
|
|
# Adam-7 interlaced: predicted size is the sum of the 7 sub-images sizes
|
|
let w = header.width
|
|
let h = header.height
|
|
predict += idatRawSize((w + 7) div 8, (h + 7) div 8, header) + (h + 7) div 8
|
|
if w > 4: predict += idatRawSize((w + 3) div 8, (h + 7) div 8, header) + (h + 7) div 8
|
|
predict += idatRawSize((w + 3) div 4, (h + 3) div 8, header) + (h + 3) div 8
|
|
if w > 2: predict += idatRawSize((w + 1) div 4, (h + 3) div 4, header) + (h + 3) div 4
|
|
predict += idatRawSize((w + 1) div 2, (h + 1) div 4, header) + (h + 1) div 4
|
|
if w > 1: predict += idatRawSize((w + 0) div 2, (h + 1) div 2, header) + (h + 1) div 2
|
|
predict += idatRawSize((w + 0) div 1, (h + 0) div 2, header) + (h + 0) div 2
|
|
|
|
if chunk.idat.len != predict: raise PNGError("Decompress size doesn't match predict")
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGData, png: PNG): bool =
|
|
var nz = nzInflateInit(chunk.data)
|
|
chunk.idat = zlib_decompress(nz)
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGTrans, png: PNG): bool =
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
if header == nil: return false
|
|
|
|
if header.colorType == LCT_PALETTE:
|
|
var plte = PNGPalette(png.getChunk(PLTE))
|
|
if plte == nil: return false
|
|
# error: more alpha values given than there are palette entries
|
|
if chunk.length > plte.palette.len:
|
|
raise PNGError("more alpha value than palette entries")
|
|
#can contain fewer values than palette entries
|
|
for i in 0..chunk.length-1: plte.palette[i].a = chr(chunk.readByte())
|
|
elif header.colorType == LCT_GREY:
|
|
# error: this chunk must be 2 bytes for greyscale image
|
|
if chunk.length != 2: raise PNGError("tRNS must be 2 bytes")
|
|
chunk.keyR = chunk.readInt16()
|
|
chunk.keyG = chunk.keyR
|
|
chunk.keyB = chunk.keyR
|
|
elif header.colorType == LCT_RGB:
|
|
# error: this chunk must be 6 bytes for RGB image
|
|
if chunk.length != 6: raise PNGError("tRNS must be 6 bytes")
|
|
chunk.keyR = chunk.readInt16()
|
|
chunk.keyG = chunk.readInt16()
|
|
chunk.keyB = chunk.readInt16()
|
|
else:
|
|
raise PNGError("tRNS chunk not allowed for other color models")
|
|
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGBackground, png: PNG): bool =
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
if header.colorType == LCT_PALETTE:
|
|
# error: this chunk must be 1 byte for indexed color image
|
|
if chunk.length != 1: raise PNGError("bkgd must be 1 byte")
|
|
chunk.bkgdR = chunk.readByte()
|
|
chunk.bkgdG = chunk.bkgdR
|
|
chunk.bkgdB = chunk.bkgdR
|
|
elif header.colorType in {LCT_GREY, LCT_GREY_ALPHA}:
|
|
# error: this chunk must be 2 bytes for greyscale image
|
|
if chunk.length != 2: raise PNGError("bkgd must be 2 byte")
|
|
chunk.bkgdR = chunk.readInt16()
|
|
chunk.bkgdG = chunk.bkgdR
|
|
chunk.bkgdB = chunk.bkgdR
|
|
elif header.colorType in {LCT_RGB, LCT_RGBA}:
|
|
# error: this chunk must be 6 bytes for greyscale image
|
|
if chunk.length != 6: raise PNGError("bkgd must be 6 byte")
|
|
chunk.bkgdR = chunk.readInt16()
|
|
chunk.bkgdG = chunk.readInt16()
|
|
chunk.bkgdB = chunk.readInt16()
|
|
result = true
|
|
|
|
proc initChunk(chunk: PNGChunk, chunkType: PNGChunkType, data: string, crc: uint32) =
|
|
chunk.length = data.len
|
|
chunk.crc = crc
|
|
chunk.chunkType = chunkType
|
|
chunk.data = data
|
|
chunk.pos = 0
|
|
|
|
method validateChunk(chunk: PNGTime, png: PNG): bool =
|
|
if chunk.year < 0 or chunk.year > 65535: raise PNGError("invalid year range[0..65535]")
|
|
if chunk.month < 1 or chunk.month > 12: raise PNGError("invalid month range[1..12]")
|
|
if chunk.day < 1 or chunk.day > 31: raise PNGError("invalid day range[1..32]")
|
|
if chunk.hour < 0 or chunk.hour > 23: raise PNGError("invalid hour range[0..23]")
|
|
if chunk.minute < 0 or chunk.minute > 59: raise PNGError("invalid minute range[0..59]")
|
|
#to allow for leap seconds
|
|
if chunk.second < 0 or chunk.second > 60: raise PNGError("invalid second range[0..60]")
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGTime, png: PNG): bool =
|
|
if chunk.length != 7: raise PNGError("tIME must be 7 bytes")
|
|
chunk.year = chunk.readInt16()
|
|
chunk.month = chunk.readByte()
|
|
chunk.day = chunk.readByte()
|
|
chunk.hour = chunk.readByte()
|
|
chunk.minute = chunk.readByte()
|
|
chunk.second = chunk.readByte()
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGPhys, png: PNG): bool =
|
|
if chunk.length != 9: raise PNGError("pHYs must be 9 bytes")
|
|
chunk.physX = chunk.readInt32()
|
|
chunk.physY = chunk.readInt32()
|
|
chunk.unit = chunk.readByte()
|
|
result = true
|
|
|
|
method validateChunk(chunk: PNGText, png: PNG): bool =
|
|
if(chunk.keyword.len < 1) or (chunk.keyword.len > 79):
|
|
raise PNGError("keyword too short or too long")
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGText, png: PNG): bool =
|
|
var len = 0
|
|
while(len < chunk.length) and (chunk.data[len] != chr(0)): inc len
|
|
if(len < 1) or (len > 79): raise PNGError("keyword too short or too long")
|
|
chunk.keyword = chunk.data.substr(0, len)
|
|
|
|
var textBegin = len + 1 # skip keyword null terminator
|
|
chunk.text = chunk.data.substr(textBegin)
|
|
result = true
|
|
|
|
method validateChunk(chunk: PNGZtxt, png: PNG): bool =
|
|
if(chunk.keyword.len < 1) or (chunk.keyword.len > 79):
|
|
raise PNGError("keyword too short or too long")
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGZtxt, png: PNG): bool =
|
|
var len = 0
|
|
while(len < chunk.length) and (chunk.data[len] != chr(0)): inc len
|
|
if(len < 1) or (len > 79): raise PNGError("keyword too short or too long")
|
|
chunk.keyword = chunk.data.substr(0, len)
|
|
|
|
var compMethod = ord(chunk.data[len + 1]) # skip keyword null terminator
|
|
if compMethod != 0: raise PNGError("unsupported comp method")
|
|
|
|
var nz = nzInflateInit(chunk.data.substr(len + 2))
|
|
chunk.text = zlib_decompress(nz)
|
|
|
|
result = true
|
|
|
|
method validateChunk(chunk: PNGItxt, png: PNG): bool =
|
|
if(chunk.keyword.len < 1) or (chunk.keyword.len > 79):
|
|
raise PNGError("keyword too short or too long")
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGItxt, png: PNG): bool =
|
|
if chunk.length < 5: raise PNGError("iTXt len too short")
|
|
|
|
var len = 0
|
|
while(len < chunk.length) and (chunk.data[len] != chr(0)): inc len
|
|
|
|
if(len + 3) >= chunk.length: raise PNGError("no null termination char, corrupt?")
|
|
if(len < 1) or (len > 79): raise PNGError("keyword too short or too long")
|
|
chunk.keyword = chunk.data.substr(0, len)
|
|
|
|
var compressed = ord(chunk.data[len + 1]) == 1 # skip keyword null terminator
|
|
var compMethod = ord(chunk.data[len + 2])
|
|
if compMethod != 0: raise PNGError("unsupported comp method")
|
|
|
|
len = 0
|
|
var i = len + 3
|
|
while(i < chunk.length) and (chunk.data[i] != chr(0)):
|
|
inc len
|
|
inc i
|
|
|
|
chunk.languageTag = chunk.data.substr(i, i + len)
|
|
|
|
len = 0
|
|
i += len + 1
|
|
while(i < chunk.length) and (chunk.data[i] != chr(0)):
|
|
inc len
|
|
inc i
|
|
|
|
chunk.translatedKeyword = chunk.data.substr(i, i + len)
|
|
|
|
let textBegin = i + len + 1
|
|
if compressed:
|
|
var nz = nzInflateInit(chunk.data.substr(textBegin))
|
|
chunk.text = zlib_decompress(nz)
|
|
else:
|
|
chunk.text = chunk.data.substr(textBegin)
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGGamma, png: PNG): bool =
|
|
if chunk.length != 4: raise PNGError("invalid gAMA length")
|
|
chunk.gamma = chunk.readInt32()
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGChroma, png: PNG): bool =
|
|
if chunk.length != 32: raise PNGError("invalid Chroma length")
|
|
chunk.whitePointX = chunk.readInt32()
|
|
chunk.whitePointY = chunk.readInt32()
|
|
chunk.redX = chunk.readInt32()
|
|
chunk.redY = chunk.readInt32()
|
|
chunk.greenX = chunk.readInt32()
|
|
chunk.greenY = chunk.readInt32()
|
|
chunk.blueX = chunk.readInt32()
|
|
chunk.blueY = chunk.readInt32()
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGStandarRGB, png: PNG): bool =
|
|
if chunk.length != 1: raise PNGError("invalid sRGB length")
|
|
chunk.renderingIntent = chunk.readByte()
|
|
result = true
|
|
|
|
method validateChunk(chunk: PNGICCProfile, png: PNG): bool =
|
|
if(chunk.profileName.len < 1) or (chunk.profileName.len > 79):
|
|
raise PNGError("keyword too short or too long")
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGICCProfile, png: PNG): bool =
|
|
var len = 0
|
|
while(len < chunk.length) and (chunk.data[len] != chr(0)): inc len
|
|
if(len < 1) or (len > 79): raise PNGError("keyword too short or too long")
|
|
chunk.profileName = chunk.data.substr(0, len)
|
|
|
|
var compMethod = ord(chunk.data[len + 1]) # skip keyword null terminator
|
|
if compMethod != 0: raise PNGError("unsupported comp method")
|
|
|
|
var nz = nzInflateInit(chunk.data.substr(len + 2))
|
|
chunk.profile = zlib_decompress(nz)
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGSPalette, png: PNG): bool =
|
|
var len = 0
|
|
while(len < chunk.length) and (chunk.data[len] != chr(0)): inc len
|
|
if(len < 1) or (len > 79): raise PNGError("keyword too short or too long")
|
|
chunk.paletteName = chunk.data.substr(0, len)
|
|
chunk.setPosition(len + 1)
|
|
chunk.sampleDepth = chunk.readByte()
|
|
if chunk.sampleDepth notin {8, 16}: raise PNGError("palette sample depth error")
|
|
|
|
let remainingLength = (chunk.length - (len + 2))
|
|
if chunk.sampleDepth == 8:
|
|
if (remainingLength mod 6) != 0: raise PNGError("palette length not divisible by 6")
|
|
let numSamples = remainingLength div 6
|
|
newSeq(chunk.palette, numSamples)
|
|
for p in mitems(chunk.palette):
|
|
p.red = chunk.readByte()
|
|
p.green = chunk.readByte()
|
|
p.blue = chunk.readByte()
|
|
p.alpha = chunk.readByte()
|
|
p.frequency = chunk.readInt16()
|
|
else: # chunk.sampleDepth == 16:
|
|
if (remainingLength mod 10) != 0: raise PNGError("palette length not divisible by 10")
|
|
let numSamples = remainingLength div 10
|
|
newSeq(chunk.palette, numSamples)
|
|
for p in mitems(chunk.palette):
|
|
p.red = chunk.readInt16()
|
|
p.green = chunk.readInt16()
|
|
p.blue = chunk.readInt16()
|
|
p.alpha = chunk.readInt16()
|
|
p.frequency = chunk.readInt16()
|
|
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGHist, png: PNG): bool =
|
|
if not png.hasChunk(PLTE): raise PNGError("Histogram need PLTE")
|
|
var plte = PNGPalette(png.getChunk(PLTE))
|
|
if plte.palette.len != (chunk.length div 2): raise PNGError("invalid histogram length")
|
|
newSeq(chunk.histogram, plte.palette.len)
|
|
for i in 0..chunk.histogram.high:
|
|
chunk.histogram[i] = chunk.readInt16()
|
|
result = true
|
|
|
|
method parseChunk(chunk: PNGSbit, png: PNG): bool =
|
|
let header = PNGHEader(png.getChunk(IHDR))
|
|
var expectedLen = 0
|
|
|
|
case header.colorType
|
|
of LCT_GREY: expectedLen = 1
|
|
of LCT_RGB: expectedLen = 3
|
|
of LCT_PALETTE: expectedLen = 3
|
|
of LCT_GREY_ALPHA: expectedLen = 2
|
|
of LCT_RGBA: expectedLen = 4
|
|
if chunk.length != expectedLen: raise PNGError("invalid sBIT length")
|
|
var expectedDepth = 8 #LCT_PALETTE
|
|
if header.colorType != LCT_PALETTE: expectedDepth = header.bitDepth
|
|
for c in chunk.data:
|
|
if (ord(c) == 0) or (ord(c) > expectedDepth): raise PNGError("invalid sBIT value")
|
|
|
|
result = true
|
|
|
|
proc make[T](): T = new(result)
|
|
|
|
proc createChunk(png: PNG, chunkType: PNGChunkType, data: string, crc: uint32): PNGChunk =
|
|
var settings = PNGDecoder(png.settings)
|
|
result = nil
|
|
|
|
if chunkType == IHDR: result = make[PNGHeader]()
|
|
elif chunkType == PLTE: result = make[PNGPalette]()
|
|
elif chunkType == IDAT:
|
|
if not png.hasChunk(IDAT): result = make[PNGData]()
|
|
else:
|
|
var idat = PNGData(png.getChunk(IDAT))
|
|
idat.data.add data
|
|
return idat
|
|
elif chunkType == tRNS: result = make[PNGTrans]()
|
|
elif chunkType == bKGD: result = make[PNGBackground]()
|
|
elif chunkType == tIME: result = make[PNGTime]()
|
|
elif chunkType == pHYs: result = make[PNGPhys]()
|
|
elif chunkType == tEXt:
|
|
if settings.readTextChunks: result = make[PNGTExt]()
|
|
else:
|
|
if settings.rememberUnknownChunks: new(result)
|
|
elif chunkType == zTXt:
|
|
if settings.readTextChunks: result = make[PNGZtxt]()
|
|
else:
|
|
if settings.rememberUnknownChunks: new(result)
|
|
elif chunkType == iTXt:
|
|
if settings.readTextChunks: result = make[PNGItxt]()
|
|
else:
|
|
if settings.rememberUnknownChunks: new(result)
|
|
elif chunkType == gAMA: result = make[PNGGamma]()
|
|
elif chunkType == cHRM: result = make[PNGChroma]()
|
|
elif chunkType == iCCP: result = make[PNGICCProfile]()
|
|
elif chunkType == sRGB: result = make[PNGStandarRGB]()
|
|
elif chunkType == sPLT: result = make[PNGSPalette]()
|
|
elif chunkType == hIST: result = make[PNGHist]()
|
|
elif chunkType == sBIT: result = make[PNGSbit]()
|
|
else:
|
|
if settings.rememberUnknownChunks: new(result)
|
|
|
|
if result != nil:
|
|
result.initChunk(chunkType, data, crc)
|
|
|
|
proc parsePNG(s: Stream, settings: PNGDecoder): PNG =
|
|
var png: PNG
|
|
new(png)
|
|
png.chunks = @[]
|
|
if settings == nil: png.settings = makePNGDecoder()
|
|
else: png.settings = settings
|
|
|
|
let signature = s.readStr(8)
|
|
if signature != PNGSignature:
|
|
raise PNGError("signature mismatch")
|
|
|
|
while not s.atEnd():
|
|
let length = s.readInt32BE()
|
|
let chunkType = PNGChunkType(s.readInt32BE())
|
|
|
|
let data = s.readStr(length)
|
|
let crc = cast[uint32](s.readInt32BE())
|
|
let calculatedCRC = crc32(crc32(0, $chunkType), data)
|
|
if calculatedCRC != crc and not PNGDecoder(png.settings).ignoreCRC:
|
|
raise PNGError("wrong crc for: " & $chunkType)
|
|
var chunk = png.createChunk(chunkType, data, crc)
|
|
|
|
if chunkType != IDAT and chunk != nil:
|
|
if not chunk.parseChunk(png): raise PNGError("error parse chunk: " & $chunkType)
|
|
if not chunk.validateChunk(png): raise PNGError("invalid chunk: " & $chunkType)
|
|
if chunk != nil: png.chunks.add chunk
|
|
if chunkType == IEND: break
|
|
|
|
if not png.hasChunk(IHDR): raise PNGError("no IHDR found")
|
|
if not png.hasChunk(IDAT): raise PNGError("no IDAT found")
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
if header.colorType == LCT_PALETTE and not png.hasChunk(PLTE):
|
|
raise PNGError("expected PLTE not found")
|
|
|
|
# IDAT get special treatment because it can appear in multiple chunk
|
|
var idat = PNGData(png.getChunk(IDAT))
|
|
if not idat.parseChunk(png): raise PNGError("IDAT parse error")
|
|
if not idat.validateChunk(png): raise PNGError("bad IDAT")
|
|
result = png
|
|
|
|
# Paeth predicter, used by PNG filter type 4
|
|
proc paethPredictor(a, b, c: int): int =
|
|
let pa = abs(b - c)
|
|
let pb = abs(a - c)
|
|
let pc = abs(a + b - c - c)
|
|
|
|
if(pc < pa) and (pc < pb): return c
|
|
elif pb < pa: return b
|
|
result = a
|
|
|
|
proc readBitFromReversedStream(bitptr: var int, bitstream: cstring): int =
|
|
result = ((ord(bitstream[bitptr shr 3]) shr (7 - (bitptr and 0x7))) and 1)
|
|
inc bitptr
|
|
|
|
proc readBitsFromReversedStream(bitptr: var int, bitstream: cstring, nbits: int): int =
|
|
result = 0
|
|
var i = nbits - 1
|
|
while i > -1:
|
|
result += readBitFromReversedStream(bitptr, bitstream) shl i
|
|
dec i
|
|
|
|
proc `&=`(a: var char, b: char) =
|
|
a = chr(ord(a) and ord(b))
|
|
|
|
proc `|=`(a: var char, b: char) =
|
|
a = chr(ord(a) or ord(b))
|
|
|
|
proc setBitOfReversedStream0(bitptr: var int, bitstream: var cstring, bit: int) =
|
|
# the current bit in bitstream must be 0 for this to work
|
|
if bit != 0:
|
|
# earlier bit of huffman code is in a lesser significant bit of an earlier byte
|
|
bitstream[bitptr shr 3] |= cast[char](bit shl (7 - (bitptr and 0x7)))
|
|
inc bitptr
|
|
|
|
proc setBitOfReversedStream(bitptr: var int, bitstream: var cstring, bit: int) =
|
|
#the current bit in bitstream may be 0 or 1 for this to work
|
|
if bit == 0: bitstream[bitptr shr 3] &= cast[char](not (1 shl (7 - (bitptr and 0x7))))
|
|
else: bitstream[bitptr shr 3] |= cast[char](1 shl (7 - (bitptr and 0x7)))
|
|
inc bitptr
|
|
|
|
# index: bitgroup index, bits: bitgroup size(1, 2 or 4), in: bitgroup value, out: octet array to add bits to
|
|
proc addColorBits(output: var cstring, index, bits, input: int) =
|
|
var m = 1
|
|
if bits == 1: m = 7
|
|
elif bits == 2: m = 3
|
|
# p = the partial index in the byte, e.g. with 4 palettebits it is 0 for first half or 1 for second half
|
|
let p = index and m
|
|
|
|
var val = input and ((1 shl bits) - 1) #filter out any other bits of the input value
|
|
val = val shl (bits * (m - p))
|
|
let idx = index * bits div 8
|
|
if p == 0: output[idx] = chr(val)
|
|
else: output[idx] = chr(ord(output[idx]) or val)
|
|
|
|
proc unfilterScanLine(recon: var cstring, scanLine, precon: cstring, byteWidth, len: int, filterType: PNGFilter0) =
|
|
# For PNG filter method 0
|
|
# unfilter a PNG image scanLine by scanLine. when the pixels are smaller than 1 byte,
|
|
# the filter works byte per byte (byteWidth = 1)
|
|
# precon is the previous unfiltered scanLine, recon the result, scanLine the current one
|
|
# the incoming scanLines do NOT include the filtertype byte, that one is given in the parameter filterType instead
|
|
# recon and scanLine MAY be the same memory address! precon must be disjoint.
|
|
|
|
case filterType
|
|
of FLT_NONE:
|
|
for i in 0..len-1: recon[i] = scanLine[i]
|
|
of FLT_SUB:
|
|
for i in 0..byteWidth-1: recon[i] = scanLine[i]
|
|
for i in byteWidth..len-1: recon[i] = chr((ord(scanLine[i]) + ord(recon[i - byteWidth])) mod 256)
|
|
of FLT_UP:
|
|
if precon != nil:
|
|
for i in 0..len-1: recon[i] = chr((ord(scanLine[i]) + ord(precon[i])) mod 256)
|
|
else:
|
|
for i in 0..len-1: recon[i] = scanLine[i]
|
|
of FLT_AVERAGE:
|
|
if precon != nil:
|
|
for i in 0..byteWidth-1:
|
|
recon[i] = chr((ord(scanLine[i]) + ord(precon[i]) div 2) mod 256)
|
|
for i in byteWidth..len-1:
|
|
recon[i] = chr((ord(scanLine[i]) + ((ord(recon[i - byteWidth]) + ord(precon[i])) div 2)) mod 256)
|
|
else:
|
|
for i in 0..byteWidth-1: recon[i] = scanLine[i]
|
|
for i in byteWidth..len-1:
|
|
recon[i] = chr((ord(scanLine[i]) + ord(recon[i - byteWidth]) div 2) mod 256)
|
|
of FLT_PAETH:
|
|
if precon != nil:
|
|
for i in 0..byteWidth-1:
|
|
recon[i] = chr((ord(scanLine[i]) + ord(precon[i])) mod 256) #paethPredictor(0, precon[i], 0) is always precon[i]
|
|
for i in byteWidth..len-1:
|
|
recon[i] = chr((ord(scanLine[i]) + paethPredictor(ord(recon[i - byteWidth]), ord(precon[i]), ord(precon[i - byteWidth]))) mod 256)
|
|
else:
|
|
for i in 0..byteWidth-1: recon[i] = scanLine[i]
|
|
for i in byteWidth..len-1:
|
|
# paethPredictor(recon[i - byteWidth], 0, 0) is always recon[i - byteWidth]
|
|
recon[i] = chr((ord(scanLine[i]) + ord(recon[i - byteWidth])) mod 256)
|
|
|
|
proc unfilter(output: var cstring, input: cstring, w, h, bpp: int) =
|
|
# For PNG filter method 0
|
|
# this function unfilters a single image (e.g. without interlacing this is called once, with Adam7 seven times)
|
|
# output must have enough bytes allocated already, input must have the scanLines + 1 filtertype byte per scanLine
|
|
# w and h are image dimensions or dimensions of reduced image, bpp is bits per pixel
|
|
# input and output are allowed to be the same memory address (but aren't the same size since in has the extra filter bytes)
|
|
|
|
var prevLine = cstring(nil)
|
|
var inp = input
|
|
|
|
# byteWidth is used for filtering, is 1 when bpp < 8, number of bytes per pixel otherwise
|
|
let byteWidth = (bpp + 7) div 8
|
|
let lineBytes = (w * bpp + 7) div 8
|
|
|
|
for y in 0..h-1:
|
|
let outIndex = lineBytes * y
|
|
let inIndex = (1 + lineBytes) * y # the extra filterbyte added to each row
|
|
let filterType = PNGFilter0(input[inindex])
|
|
let scanLine: cstring = addr(inp[inIndex + 1])
|
|
var outp: cstring = addr(output[outIndex])
|
|
unfilterScanLine(outp, scanLine, prevLine, byteWidth, lineBytes, filterType)
|
|
prevLine = addr(output[outIndex])
|
|
|
|
proc removePaddingBits(output: var cstring, input: cstring, olinebits, ilinebits, h: int) =
|
|
# After filtering there are still padding bits if scanLines have non multiple of 8 bit amounts. They need
|
|
# to be removed (except at last scanLine of (Adam7-reduced) image) before working with pure image buffers
|
|
# for the Adam7 code, the color convert code and the output to the user.
|
|
# in and out are allowed to be the same buffer, in may also be higher but still overlapping; in must
|
|
# have >= ilinebits*h bits, out must have >= olinebits*h bits, olinebits must be <= ilinebits
|
|
# also used to move bits after earlier such operations happened, e.g. in a sequence of reduced images from Adam7
|
|
# only useful if (ilinebits - olinebits) is a value in the range 1..7
|
|
|
|
let diff = ilinebits - olinebits
|
|
var
|
|
ibp = 0
|
|
obp = 0 # input and output bit pointers
|
|
for y in 0..h-1:
|
|
for x in 0..olinebits-1:
|
|
var bit = readBitFromReversedStream(ibp, input)
|
|
setBitOfReversedStream(obp, output, bit)
|
|
inc(ibp, diff)
|
|
|
|
# Outputs various dimensions and positions in the image related to the Adam7 reduced images.
|
|
# passw: output containing the width of the 7 passes
|
|
# passh: output containing the height of the 7 passes
|
|
# filter_passstart: output containing the index of the start and end of each
|
|
# reduced image with filter bytes
|
|
# padded_passstart output containing the index of the start and end of each
|
|
# reduced image when without filter bytes but with padded scanLines
|
|
# passstart: output containing the index of the start and end of each reduced
|
|
# image without padding between scanLines, but still padding between the images
|
|
# w, h: width and height of non-interlaced image
|
|
# bpp: bits per pixel
|
|
# "padded" is only relevant if bpp is less than 8 and a scanLine or image does not
|
|
# end at a full byte
|
|
proc Adam7PassValues(pass: var PNGPass, w, h, bpp: int) =
|
|
#the passstart values have 8 values:
|
|
# the 8th one indicates the byte after the end of the 7th (= last) pass
|
|
|
|
# calculate width and height in pixels of each pass
|
|
for i in 0..6:
|
|
pass.w[i] = (w + ADAM7_DX[i] - ADAM7_IX[i] - 1) div ADAM7_DX[i]
|
|
pass.h[i] = (h + ADAM7_DY[i] - ADAM7_IY[i] - 1) div ADAM7_DY[i]
|
|
if pass.w[i] == 0: pass.h[i] = 0
|
|
if pass.h[i] == 0: pass.w[i] = 0
|
|
|
|
pass.filterStart[0] = 0
|
|
pass.paddedStart[0] = 0
|
|
pass.start[0] = 0
|
|
for i in 0..6:
|
|
# if passw[i] is 0, it's 0 bytes, not 1 (no filtertype-byte)
|
|
pass.filterStart[i + 1] = pass.filterStart[i]
|
|
if (pass.w[i] != 0) and (pass.h[i] != 0):
|
|
pass.filterStart[i + 1] += pass.h[i] * (1 + (pass.w[i] * bpp + 7) div 8)
|
|
# bits padded if needed to fill full byte at end of each scanLine
|
|
pass.paddedStart[i + 1] = pass.paddedStart[i] + pass.h[i] * ((pass.w[i] * bpp + 7) div 8)
|
|
# only padded at end of reduced image
|
|
pass.start[i + 1] = pass.start[i] + (pass.h[i] * pass.w[i] * bpp + 7) div 8
|
|
|
|
# input: Adam7 interlaced image, with no padding bits between scanLines, but between
|
|
# reduced images so that each reduced image starts at a byte.
|
|
# output: the same pixels, but re-ordered so that they're now a non-interlaced image with size w*h
|
|
# bpp: bits per pixel
|
|
# output has the following size in bits: w * h * bpp.
|
|
# input is possibly bigger due to padding bits between reduced images.
|
|
# output must be big enough AND must be 0 everywhere if bpp < 8 in the current implementation
|
|
# (because that's likely a little bit faster)
|
|
# NOTE: comments about padding bits are only relevant if bpp < 8
|
|
|
|
proc Adam7Deinterlace(output: var cstring, input: cstring, w, h, bpp: int) =
|
|
var pass: PNGPass
|
|
Adam7PassValues(pass, w, h, bpp)
|
|
|
|
if bpp >= 8:
|
|
for i in 0..6:
|
|
var byteWidth = bpp div 8
|
|
for y in 0..pass.h[i]-1:
|
|
for x in 0..pass.w[i]-1:
|
|
var inStart = pass.start[i] + (y * pass.w[i] + x) * byteWidth
|
|
var outStart = ((ADAM7_IY[i] + y * ADAM7_DY[i]) * w + ADAM7_IX[i] + x * ADAM7_DX[i]) * byteWidth
|
|
for b in 0..byteWidth-1:
|
|
output[outStart + b] = input[inStart + b]
|
|
else: # bpp < 8: Adam7 with pixels < 8 bit is a bit trickier: with bit pointers
|
|
for i in 0..6:
|
|
var ilinebits = bpp * pass.w[i]
|
|
var olinebits = bpp * w
|
|
for y in 0..pass.h[i]-1:
|
|
for x in 0..pass.w[i]-1:
|
|
var ibp = (8 * pass.start[i]) + (y * ilinebits + x * bpp)
|
|
var obp = (ADAM7_IY[i] + y * ADAM7_DY[i]) * olinebits + (ADAM7_IX[i] + x * ADAM7_DX[i]) * bpp
|
|
for b in 0..bpp-1:
|
|
var bit = readBitFromReversedStream(ibp, input)
|
|
# note that this function assumes the out buffer is completely 0, use setBitOfReversedStream otherwise
|
|
setBitOfReversedStream0(obp, output, bit)
|
|
|
|
proc postProcessscanLines(png: PNG) =
|
|
# This function converts the filtered-padded-interlaced data
|
|
# into pure 2D image buffer with the PNG's colorType.
|
|
# Steps:
|
|
# *) if no Adam7: 1) unfilter 2) remove padding bits (= posible extra bits per scanLine if bpp < 8)
|
|
# *) if adam7: 1) 7x unfilter 2) 7x remove padding bits 3) Adam7_deinterlace
|
|
# NOTE: the input buffer will be overwritten with intermediate data!
|
|
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
let bpp = header.getBPP()
|
|
let w = header.width
|
|
let h = header.height
|
|
let bitsPerLine = w * bpp
|
|
let bitsPerPaddedLine = ((w * bpp + 7) div 8) * 8
|
|
var idat = PNGData(png.getChunk(IDAT))
|
|
png.pixels = newString(idatRawSize(header.width, header.height, header))
|
|
var input = cstring(idat.idat)
|
|
var output = cstring(png.pixels)
|
|
zeroMem(output, png.pixels.len)
|
|
|
|
if header.interlaceMethod == IM_NONE:
|
|
if(bpp < 8) and (bitsPerLine != bitsPerPaddedLine):
|
|
unfilter(input, input, w, h, bpp)
|
|
removePaddingBits(output, input, bitsPerLine, bitsPerPaddedLine, h)
|
|
# we can immediatly filter into the out buffer, no other steps needed
|
|
else: unfilter(output, input, w, h, bpp)
|
|
else: # interlace_method is 1 (Adam7)
|
|
var pass: PNGPass
|
|
Adam7PassValues(pass, w, h, bpp)
|
|
|
|
for i in 0..6:
|
|
var outp: cstring = addr(input[pass.paddedStart[i]])
|
|
var inp: cstring = addr(input[pass.filterStart[i]])
|
|
unfilter(outp, inp, pass.w[i], pass.h[i], bpp)
|
|
|
|
# TODO: possible efficiency improvement:
|
|
# if in this reduced image the bits fit nicely in 1 scanLine,
|
|
# move bytes instead of bits or move not at all
|
|
if bpp < 8:
|
|
# remove padding bits in scanLines; after this there still may be padding
|
|
# bits between the different reduced images: each reduced image still starts nicely at a byte
|
|
outp = addr(input[pass.start[i]])
|
|
inp = addr(input[pass.paddedStart[i]])
|
|
removePaddingBits(outp, inp, pass.w[i] * bpp, ((pass.w[i] * bpp + 7) div 8) * 8, pass.h[i])
|
|
|
|
Adam7Deinterlace(output, input, w, h, bpp)
|
|
|
|
proc getColorMode(png: PNG): PNGColorMode =
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
var cm = newColorMode(header.colorType, header.bitDepth)
|
|
var plte = PNGPalette(png.getChunk(PLTE))
|
|
if plte != nil:
|
|
cm.paletteSize = plte.palette.len
|
|
newSeq(cm.palette, cm.paletteSize)
|
|
for i in 0..cm.paletteSize-1: cm.palette[i] = plte.palette[i]
|
|
var trans = PNGTrans(png.getChunk(tRNS))
|
|
if trans != nil:
|
|
if cm.colorType in {LCT_GREY, LCT_RGB}:
|
|
cm.keyDefined = true
|
|
cm.keyR = trans.keyR
|
|
cm.keyG = trans.keyG
|
|
cm.keyB = trans.keyB
|
|
result = cm
|
|
|
|
proc getInfo*(png: PNG): PNGInfo =
|
|
result = new(PNGInfo)
|
|
result.mode = png.getColorMode()
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
result.width = header.width
|
|
result.height = header.height
|
|
var bkgd = PNGBackground(png.getChunk(bKGD))
|
|
if bkgd == nil: result.backgroundDefined = false
|
|
else:
|
|
result.backgroundDefined = true
|
|
result.backgroundR = bkgd.bkgdR
|
|
result.backgroundG = bkgd.bkgdG
|
|
result.backgroundB = bkgd.bkgdB
|
|
|
|
var phys = PNGPhys(png.getChunk(pHYs))
|
|
if phys == nil: result.physDefined = false
|
|
else:
|
|
result.physDefined = true
|
|
result.physX = phys.physX
|
|
result.physY = phys.physY
|
|
result.physUnit = phys.unit
|
|
|
|
var time = PNGTime(png.getChunk(tIME))
|
|
if time == nil: result.timeDefined = false
|
|
else:
|
|
result.timeDefined = true
|
|
result.year = time.year
|
|
result.month = time.month
|
|
result.day = time.day
|
|
result.hour = time.hour
|
|
result.minute = time.minute
|
|
result.second = time.second
|
|
|
|
proc getChunkNames*(png: PNG): string =
|
|
result = ""
|
|
var i = 0
|
|
for c in png.chunks:
|
|
result.add ($c.chunkType)
|
|
if i < png.chunks.high: result.add ' '
|
|
inc i
|
|
|
|
proc RGBFromGrey8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
output[x] = input[i]
|
|
output[x+1] = input[i]
|
|
output[x+2] = input[i]
|
|
|
|
proc RGBFromGrey16(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
let y = i * 2
|
|
output[x] = input[y]
|
|
output[x+1] = input[y]
|
|
output[x+2] = input[y]
|
|
|
|
proc RGBFromGrey124(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
var highest = ((1 shl mode.bitDepth) - 1) #highest possible value for this bit depth
|
|
var obp = 0
|
|
for i in 0..numPixels-1:
|
|
let val = chr((readBitsFromReversedStream(obp, input, mode.bitDepth) * 255) div highest)
|
|
let x = i * 3
|
|
output[x] = val
|
|
output[x+1] = val
|
|
output[x+2] = val
|
|
|
|
proc RGBFromRGB8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
output[x] = input[x]
|
|
output[x+1] = input[x+1]
|
|
output[x+2] = input[x+2]
|
|
|
|
proc RGBFromRGB16(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
let y = i * 6
|
|
output[x] = input[y]
|
|
output[x+1] = input[y+2]
|
|
output[x+2] = input[y+4]
|
|
|
|
proc RGBFromPalette8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
let index = ord(input[i])
|
|
if index >= mode.paletteSize:
|
|
# This is an error according to the PNG spec, but most PNG decoders make it black instead.
|
|
# Done here too, slightly faster due to no error handling needed.
|
|
output[x] = chr(0)
|
|
output[x+1] = chr(0)
|
|
output[x+2] = chr(0)
|
|
else:
|
|
output[x] = mode.palette[index].r
|
|
output[x+1] = mode.palette[index].g
|
|
output[x+2] = mode.palette[index].b
|
|
|
|
proc RGBFromPalette124(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
var obp = 0
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
let index = readBitsFromReversedStream(obp, input, mode.bitDepth)
|
|
if index >= mode.paletteSize:
|
|
# This is an error according to the PNG spec, but most PNG decoders make it black instead.
|
|
# Done here too, slightly faster due to no error handling needed.
|
|
output[x] = chr(0)
|
|
output[x+1] = chr(0)
|
|
output[x+2] = chr(0)
|
|
else:
|
|
output[x] = mode.palette[index].r
|
|
output[x+1] = mode.palette[index].g
|
|
output[x+2] = mode.palette[index].b
|
|
|
|
proc RGBFromGreyAlpha8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
let val = input[i * 2]
|
|
output[x] = val
|
|
output[x+1] = val
|
|
output[x+2] = val
|
|
|
|
proc RGBFromGreyAlpha16(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
let val = input[i * 4]
|
|
output[x] = val
|
|
output[x+1] = val
|
|
output[x+2] = val
|
|
|
|
proc RGBFromRGBA8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
let y = i * 4
|
|
output[x] = input[y]
|
|
output[x+1] = input[y+1]
|
|
output[x+2] = input[y+2]
|
|
|
|
proc RGBFromRGBA16(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 3
|
|
let y = i * 8
|
|
output[x] = input[y]
|
|
output[x+1] = input[y+2]
|
|
output[x+2] = input[y+4]
|
|
|
|
proc RGBAFromGrey8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
output[x] = input[i]
|
|
output[x+1] = input[i]
|
|
output[x+2] = input[i]
|
|
if mode.keyDefined and (ord(input[i]) == mode.keyR): output[x+3] = chr(0)
|
|
else: output[x+3] = chr(255)
|
|
|
|
proc RGBAFromGrey16(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
let y = i * 2
|
|
output[x] = input[y]
|
|
output[x+1] = input[y]
|
|
output[x+2] = input[y]
|
|
let keyR = 256 * ord(input[y + 0]) + ord(input[y + 1])
|
|
if mode.keyDefined and (keyR == mode.keyR): output[x+3] = chr(0)
|
|
else: output[x+3] = chr(255)
|
|
|
|
proc RGBAFromGrey124(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
var highest = ((1 shl mode.bitDepth) - 1) #highest possible value for this bit depth
|
|
var obp = 0
|
|
for i in 0..numPixels-1:
|
|
let val = readBitsFromReversedStream(obp, input, mode.bitDepth)
|
|
let value = chr((val * 255) div highest)
|
|
let x = i * 4
|
|
output[x] = value
|
|
output[x+1] = value
|
|
output[x+2] = value
|
|
if mode.keyDefined and (ord(val) == mode.keyR): output[x+3] = chr(0)
|
|
else: output[x+3] = chr(255)
|
|
|
|
proc RGBAFromRGB8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
let y = i * 3
|
|
output[x] = input[y]
|
|
output[x+1] = input[y+1]
|
|
output[x+2] = input[y+2]
|
|
if mode.keyDefined and (mode.keyR == ord(input[y])) and
|
|
(mode.keyG == ord(input[y+1])) and (mode.keyB == ord(input[y+2])): output[x+3] = chr(0)
|
|
else: output[x+3] = chr(255)
|
|
|
|
proc RGBAFromRGB16(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
let y = i * 6
|
|
output[x] = input[y]
|
|
output[x+1] = input[y+2]
|
|
output[x+2] = input[y+4]
|
|
let keyR = 256 * ord(input[y]) + ord(input[y+1])
|
|
let keyG = 256 * ord(input[y+2]) + ord(input[y+3])
|
|
let keyB = 256 * ord(input[y+4]) + ord(input[y+5])
|
|
if mode.keyDefined and (mode.keyR == keyR) and
|
|
(mode.keyG == keyG) and (mode.keyB == keyB): output[x+3] = chr(0)
|
|
else: output[x+3] = chr(255)
|
|
|
|
proc RGBAFromPalette8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
let index = ord(input[i])
|
|
if index >= mode.paletteSize:
|
|
# This is an error according to the PNG spec, but most PNG decoders make it black instead.
|
|
# Done here too, slightly faster due to no error handling needed.
|
|
output[x] = chr(0)
|
|
output[x+1] = chr(0)
|
|
output[x+2] = chr(0)
|
|
output[x+3] = chr(0)
|
|
else:
|
|
output[x] = mode.palette[index].r
|
|
output[x+1] = mode.palette[index].g
|
|
output[x+2] = mode.palette[index].b
|
|
output[x+3] = mode.palette[index].a
|
|
|
|
proc RGBAFromPalette124(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
var obp = 0
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
let index = readBitsFromReversedStream(obp, input, mode.bitDepth)
|
|
if index >= mode.paletteSize:
|
|
# This is an error according to the PNG spec, but most PNG decoders make it black instead.
|
|
# Done here too, slightly faster due to no error handling needed.
|
|
output[x] = chr(0)
|
|
output[x+1] = chr(0)
|
|
output[x+2] = chr(0)
|
|
output[x+3] = chr(0)
|
|
else:
|
|
output[x] = mode.palette[index].r
|
|
output[x+1] = mode.palette[index].g
|
|
output[x+2] = mode.palette[index].b
|
|
output[x+3] = mode.palette[index].a
|
|
|
|
proc RGBAFromGreyAlpha8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
let val = input[i * 2]
|
|
output[x] = val
|
|
output[x+1] = val
|
|
output[x+2] = val
|
|
output[x+3] = input[i * 2 + 1]
|
|
|
|
proc RGBAFromGreyAlpha16(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
let val = input[i * 4]
|
|
output[x] = val
|
|
output[x+1] = val
|
|
output[x+2] = val
|
|
output[x+3] = input[i * 4 + 2]
|
|
|
|
proc RGBAFromRGBA8(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
let y = i * 4
|
|
output[x] = input[y]
|
|
output[x+1] = input[y+1]
|
|
output[x+2] = input[y+2]
|
|
output[x+3] = input[y+3]
|
|
|
|
proc RGBAFromRGBA16(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode) =
|
|
for i in 0..numPixels-1:
|
|
let x = i * 4
|
|
let y = i * 8
|
|
output[x] = input[y]
|
|
output[x+1] = input[y+2]
|
|
output[x+2] = input[y+4]
|
|
output[x+3] = input[y+6]
|
|
|
|
type
|
|
convertRGBA = proc(output: var cstring, input: cstring, numPixels: int, mode: PNGColorMode)
|
|
convertRGBA8 = proc(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode)
|
|
convertRGBA16 = proc(p: var RGBA16, input: cstring, px: int, mode: PNGColorMode)
|
|
pixelRGBA8 = proc(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8)
|
|
pixelRGBA16 = proc(p: RGBA16, output: var cstring, px: int, mode: PNGColorMode)
|
|
|
|
proc hash*(c: RGBA8): Hash =
|
|
var h: Hash = 0
|
|
h = h !& ord(c.r)
|
|
h = h !& ord(c.g)
|
|
h = h !& ord(c.b)
|
|
h = h !& ord(c.a)
|
|
|
|
proc RGBA8FromGrey8(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
p.r = input[px]
|
|
p.g = input[px]
|
|
p.b = input[px]
|
|
if mode.keyDefined and (ord(p.r) == mode.keyR): p.a = chr(0)
|
|
else: p.a = chr(255)
|
|
|
|
proc RGBA8FromGrey16(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 2
|
|
let keyR = 256 * ord(input[i]) + ord(input[i + 1])
|
|
p.r = input[i]
|
|
p.g = input[i]
|
|
p.b = input[i]
|
|
if mode.keyDefined and (keyR == mode.keyR): p.a = chr(0)
|
|
else: p.a = chr(255)
|
|
|
|
proc RGBA8FromGrey124(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
let highest = ((1 shl mode.bitDepth) - 1) #highest possible value for this bit depth
|
|
var obp = px * mode.bitDepth
|
|
let val = readBitsFromReversedStream(obp, input, mode.bitDepth)
|
|
let value = chr((val * 255) div highest)
|
|
p.r = value
|
|
p.g = value
|
|
p.b = value
|
|
if mode.keyDefined and (ord(val) == mode.keyR): p.a = chr(0)
|
|
else: p.a = chr(255)
|
|
|
|
proc RGBA8FromRGB8(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
let y = px * 3
|
|
p.r = input[y]
|
|
p.g = input[y+1]
|
|
p.b = input[y+2]
|
|
if mode.keyDefined and (mode.keyR == ord(input[y])) and
|
|
(mode.keyG == ord(input[y+1])) and (mode.keyB == ord(input[y+2])): p.a = chr(0)
|
|
else: p.a = chr(255)
|
|
|
|
proc RGBA8FromRGB16(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
let y = px * 6
|
|
p.r = input[y]
|
|
p.g = input[y+2]
|
|
p.b = input[y+4]
|
|
let keyR = 256 * ord(input[y]) + ord(input[y+1])
|
|
let keyG = 256 * ord(input[y+2]) + ord(input[y+3])
|
|
let keyB = 256 * ord(input[y+4]) + ord(input[y+5])
|
|
if mode.keyDefined and (mode.keyR == keyR) and
|
|
(mode.keyG == keyG) and (mode.keyB == keyB): p.a = chr(0)
|
|
else: p.a = chr(255)
|
|
|
|
proc RGBA8FromPalette8(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
let index = ord(input[px])
|
|
if index >= mode.paletteSize:
|
|
# This is an error according to the PNG spec,
|
|
# but common PNG decoders make it black instead.
|
|
# Done here too, slightly faster due to no error handling needed.
|
|
p.r = chr(0)
|
|
p.g = chr(0)
|
|
p.b = chr(0)
|
|
p.a = chr(255)
|
|
else:
|
|
p.r = mode.palette[index].r
|
|
p.g = mode.palette[index].g
|
|
p.b = mode.palette[index].b
|
|
p.a = mode.palette[index].a
|
|
|
|
proc RGBA8FromPalette124(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
var obp = px * mode.bitDepth
|
|
let index = readBitsFromReversedStream(obp, input, mode.bitDepth)
|
|
if index >= mode.paletteSize:
|
|
# This is an error according to the PNG spec,
|
|
# but common PNG decoders make it black instead.
|
|
# Done here too, slightly faster due to no error handling needed.
|
|
p.r = chr(0)
|
|
p.g = chr(0)
|
|
p.b = chr(0)
|
|
p.a = chr(255)
|
|
else:
|
|
p.r = mode.palette[index].r
|
|
p.g = mode.palette[index].g
|
|
p.b = mode.palette[index].b
|
|
p.a = mode.palette[index].a
|
|
|
|
proc RGBA8FromGreyAlpha8(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 2
|
|
let val = input[i]
|
|
p.r = val
|
|
p.g = val
|
|
p.b = val
|
|
p.a = input[i+1]
|
|
|
|
proc RGBA8FromGreyAlpha16(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 4
|
|
let val = input[i]
|
|
p.r = val
|
|
p.g = val
|
|
p.b = val
|
|
p.a = input[i+2]
|
|
|
|
proc RGBA8FromRGBA8(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 4
|
|
p.r = input[i]
|
|
p.g = input[i+1]
|
|
p.b = input[i+2]
|
|
p.a = input[i+3]
|
|
|
|
proc RGBA8FromRGBA16(p: var RGBA8, input: cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 8
|
|
p.r = input[i]
|
|
p.g = input[i+2]
|
|
p.b = input[i+4]
|
|
p.a = input[i+6]
|
|
|
|
proc RGBA16FromGrey(p: var RGBA16, input: cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 2
|
|
let val = 256 * ord(input[i]) + ord(input[i + 1])
|
|
p.r = val
|
|
p.g = val
|
|
p.b = val
|
|
if mode.keyDefined and (val == mode.keyR): p.a = 0
|
|
else: p.a = 65535
|
|
|
|
proc RGBA16FromRGB(p: var RGBA16, input: cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 6
|
|
p.r = 256 * ord(input[i]) + ord(input[i+1])
|
|
p.g = 256 * ord(input[i+2]) + ord(input[i+3])
|
|
p.b = 256 * ord(input[i+4]) + ord(input[i+5])
|
|
if mode.keyDefined and (int(p.r) == mode.keyR) and
|
|
(int(p.g) == mode.keyG) and (int(p.b) == mode.keyB): p.a = 0
|
|
else: p.a = 65535
|
|
|
|
proc RGBA16FromGreyAlpha(p: var RGBA16, input: cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 4
|
|
let val = 256 * ord(input[i]) + ord(input[i + 1])
|
|
p.r = val
|
|
p.g = val
|
|
p.b = val
|
|
p.a = 256 * ord(input[i + 2]) + ord(input[i + 3])
|
|
|
|
proc RGBA16FromRGBA(p: var RGBA16, input: cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 8
|
|
p.r = 256 * ord(input[i]) + ord(input[i+1])
|
|
p.g = 256 * ord(input[i+2]) + ord(input[i+3])
|
|
p.b = 256 * ord(input[i+4]) + ord(input[i+5])
|
|
p.a = 256 * ord(input[i+6]) + ord(input[i+7])
|
|
|
|
proc RGBA8ToGrey8(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
output[px] = p.r
|
|
|
|
proc RGBA8ToGrey16(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
let i = px * 2
|
|
output[i] = p.r
|
|
output[i+1] = p.r
|
|
|
|
proc RGBA8ToGrey124(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
# take the most significant bits of grey
|
|
let grey = (ord(p.r) shr (8 - mode.bitDepth)) and ((1 shl mode.bitDepth) - 1)
|
|
addColorBits(output, px, mode.bitDepth, grey)
|
|
|
|
proc RGBA8ToRGB8(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
let i = px * 3
|
|
output[i] = p.r
|
|
output[i+1] = p.g
|
|
output[i+2] = p.b
|
|
|
|
proc RGBA8ToRGB16(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
let i = px * 6
|
|
output[i] = p.r
|
|
output[i+2] = p.g
|
|
output[i+4] = p.b
|
|
output[i+1] = p.r
|
|
output[i+3] = p.g
|
|
output[i+5] = p.b
|
|
|
|
proc RGBA8ToPalette8(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
output[px] = chr(ct[p])
|
|
|
|
proc RGBA8ToPalette124(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
addColorBits(output, px, mode.bitDepth, ct[p])
|
|
|
|
proc RGBA8ToGreyAlpha8(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
let i = px * 2
|
|
output[i] = p.r
|
|
output[i+1] = p.a
|
|
|
|
proc RGBA8ToGreyAlpha16(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
let i = px * 4
|
|
output[i] = p.r
|
|
output[i+1] = p.r
|
|
output[i+2] = p.a
|
|
output[i+3] = p.a
|
|
|
|
proc RGBA8ToRGBA8(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
let i = px * 4
|
|
output[i] = p.r
|
|
output[i+1] = p.g
|
|
output[i+2] = p.b
|
|
output[i+3] = p.a
|
|
|
|
proc RGBA8ToRGBA16(p: RGBA8, output: var cstring, px: int, mode: PNGColorMode, ct: ColorTree8) =
|
|
let i = px * 8
|
|
output[i] = p.r
|
|
output[i+2] = p.g
|
|
output[i+4] = p.b
|
|
output[i+6] = p.a
|
|
output[i+1] = p.r
|
|
output[i+3] = p.g
|
|
output[i+5] = p.b
|
|
output[i+7] = p.a
|
|
|
|
proc RGBA16ToGrey(p: RGBA16, output: var cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 2
|
|
output[i] = chr((ord(p.r) shr 8) and 255)
|
|
output[i+1] = chr(ord(p.r) and 255)
|
|
|
|
proc RGBA16ToRGB(p: RGBA16, output: var cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 6
|
|
output[i] = chr((ord(p.r) shr 8) and 255)
|
|
output[i+1] = chr(ord(p.r) and 255)
|
|
output[i+2] = chr((ord(p.g) shr 8) and 255)
|
|
output[i+3] = chr(ord(p.g) and 255)
|
|
output[i+4] = chr((ord(p.b) shr 8) and 255)
|
|
output[i+5] = chr(ord(p.b) and 255)
|
|
|
|
proc RGBA16ToGreyAlpha(p: RGBA16, output: var cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 4
|
|
output[i] = chr((ord(p.r) shr 8) and 255)
|
|
output[i+1] = chr(ord(p.r) and 255)
|
|
output[i+2] = chr((ord(p.a) shr 8) and 255)
|
|
output[i+3] = chr(ord(p.a) and 255)
|
|
|
|
proc RGBA16ToRGBA(p: RGBA16, output: var cstring, px: int, mode: PNGColorMode) =
|
|
let i = px * 8
|
|
output[i] = chr((ord(p.r) shr 8) and 255)
|
|
output[i+1] = chr(ord(p.r) and 255)
|
|
output[i+2] = chr((ord(p.g) shr 8) and 255)
|
|
output[i+3] = chr(ord(p.g) and 255)
|
|
output[i+4] = chr((ord(p.b) shr 8) and 255)
|
|
output[i+5] = chr(ord(p.b) and 255)
|
|
output[i+6] = chr((ord(p.a) shr 8) and 255)
|
|
output[i+7] = chr(ord(p.a) and 255)
|
|
|
|
proc getColorRGBA16(mode: PNGColorMode): convertRGBA16 =
|
|
if mode.colorType == LCT_GREY: return RGBA16FromGrey
|
|
elif mode.colorType == LCT_RGB: return RGBA16FromRGB
|
|
elif mode.colorType == LCT_GREY_ALPHA: return RGBA16FromGreyAlpha
|
|
elif mode.colorType == LCT_RGBA: return RGBA16FromRGBA
|
|
else: raise PNGError("unsupported converter16")
|
|
|
|
proc getPixelRGBA16(mode: PNGColorMode): pixelRGBA16 =
|
|
if mode.colorType == LCT_GREY: return RGBA16ToGrey
|
|
elif mode.colorType == LCT_RGB: return RGBA16ToRGB
|
|
elif mode.colorType == LCT_GREY_ALPHA: return RGBA16ToGreyAlpha
|
|
elif mode.colorType == LCT_RGBA: return RGBA16ToRGBA
|
|
else: raise PNGError("unsupported pixel16 converter")
|
|
|
|
proc getColorRGBA8(mode: PNGColorMode): convertRGBA8 =
|
|
if mode.colorType == LCT_GREY:
|
|
if mode.bitDepth == 8: return RGBA8FromGrey8
|
|
elif mode.bitDepth == 16: return RGBA8FromGrey16
|
|
else: return RGBA8FromGrey124
|
|
elif mode.colorType == LCT_RGB:
|
|
if mode.bitDepth == 8: return RGBA8FromRGB8
|
|
else: return RGBA8FromRGB16
|
|
elif mode.colorType == LCT_PALETTE:
|
|
if mode.bitDepth == 8: return RGBA8FromPalette8
|
|
else: return RGBA8FromPalette124
|
|
elif mode.colorType == LCT_GREY_ALPHA:
|
|
if mode.bitDepth == 8: return RGBA8FromGreyAlpha8
|
|
else: return RGBA8FromGreyAlpha16
|
|
elif mode.colorType == LCT_RGBA:
|
|
if mode.bitDepth == 8: return RGBA8FromRGBA8
|
|
else: return RGBA8FromRGBA16
|
|
else: raise PNGError("unsupported converter8")
|
|
|
|
proc getPixelRGBA8(mode: PNGColorMode): pixelRGBA8 =
|
|
if mode.colorType == LCT_GREY:
|
|
if mode.bitDepth == 8: return RGBA8ToGrey8
|
|
elif mode.bitDepth == 16: return RGBA8ToGrey16
|
|
else: return RGBA8ToGrey124
|
|
elif mode.colorType == LCT_RGB:
|
|
if mode.bitDepth == 8: return RGBA8ToRGB8
|
|
else: return RGBA8ToRGB16
|
|
elif mode.colorType == LCT_PALETTE:
|
|
if mode.bitDepth == 8: return RGBA8ToPalette8
|
|
else: return RGBA8ToPalette124
|
|
elif mode.colorType == LCT_GREY_ALPHA:
|
|
if mode.bitDepth == 8: return RGBA8ToGreyAlpha8
|
|
else: return RGBA8ToGreyAlpha16
|
|
elif mode.colorType == LCT_RGBA:
|
|
if mode.bitDepth == 8: return RGBA8ToRGBA8
|
|
else: return RGBA8ToRGBA16
|
|
else: raise PNGError("unsupported pixel8 converter")
|
|
|
|
proc getConverterRGB(mode: PNGColorMode): convertRGBA =
|
|
if mode.colorType == LCT_GREY:
|
|
if mode.bitDepth == 8: return RGBFromGrey8
|
|
elif mode.bitDepth == 16: return RGBFromGrey16
|
|
else: return RGBFromGrey124
|
|
elif mode.colorType == LCT_RGB:
|
|
if mode.bitDepth == 8: return RGBFromRGB8
|
|
else: return RGBFromRGB16
|
|
elif mode.colorType == LCT_PALETTE:
|
|
if mode.bitDepth == 8: return RGBFromPalette8
|
|
else: return RGBFromPalette124
|
|
elif mode.colorType == LCT_GREY_ALPHA:
|
|
if mode.bitDepth == 8: return RGBFromGreyAlpha8
|
|
else: return RGBFromGreyAlpha16
|
|
elif mode.colorType == LCT_RGBA:
|
|
if mode.bitDepth == 8: return RGBFromRGBA8
|
|
else: return RGBFromRGBA16
|
|
else: raise PNGError("unsupported RGB converter")
|
|
|
|
proc getConverterRGBA(mode: PNGColorMode): convertRGBA =
|
|
if mode.colorType == LCT_GREY:
|
|
if mode.bitDepth == 8: return RGBAFromGrey8
|
|
elif mode.bitDepth == 16: return RGBAFromGrey16
|
|
else: return RGBAFromGrey124
|
|
elif mode.colorType == LCT_RGB:
|
|
if mode.bitDepth == 8: return RGBAFromRGB8
|
|
else: return RGBAFromRGB16
|
|
elif mode.colorType == LCT_PALETTE:
|
|
if mode.bitDepth == 8: return RGBAFromPalette8
|
|
else: return RGBAFromPalette124
|
|
elif mode.colorType == LCT_GREY_ALPHA:
|
|
if mode.bitDepth == 8: return RGBAFromGreyAlpha8
|
|
else: return RGBAFromGreyAlpha16
|
|
elif mode.colorType == LCT_RGBA:
|
|
if mode.bitDepth == 8: return RGBAFromRGBA8
|
|
else: return RGBAFromRGBA16
|
|
else: raise PNGError("unsupported RGBA converter")
|
|
|
|
proc convert*(output: var cstring, input: cstring, modeOut, modeIn: PNGColorMode, numPixels: int) =
|
|
var tree: ColorTree8
|
|
if modeOut.colorType == LCT_PALETTE:
|
|
let palSize = min(1 shl modeOut.bitDepth, modeOut.paletteSize)
|
|
tree = initTable[RGBA8, int]()
|
|
for i in 0..palSize-1:
|
|
tree[modeOut.palette[i]] = i
|
|
|
|
if(modeIn.bitDepth == 16) and (modeOut.bitDepth == 16):
|
|
let cvt = getColorRGBA16(modeIn)
|
|
let pxl = getPixelRGBA16(modeOut)
|
|
for px in 0..numPixels-1:
|
|
var p = RGBA16(r:0, g:0, b:0, a:0)
|
|
cvt(p, input, px, modeIn)
|
|
pxl(p, output, px, modeOut)
|
|
elif(modeOut.bitDepth == 8) and (modeOut.colorType == LCT_RGBA):
|
|
let cvt = getConverterRGBA(modeIn)
|
|
cvt(output, input, numPixels, modeIn)
|
|
elif(modeOut.bitDepth == 8) and (modeOut.colorType == LCT_RGB):
|
|
let cvt = getConverterRGB(modeIn)
|
|
cvt(output, input, numPixels, modeIn)
|
|
else:
|
|
let cvt = getColorRGBA8(modeIn)
|
|
let pxl = getPixelRGBA8(modeOut)
|
|
for px in 0..numPixels-1:
|
|
var p = RGBA8(r:chr(0), g:chr(0), b:chr(0), a:chr(0))
|
|
cvt(p, input, px, modeIn)
|
|
pxl(p, output, px, modeOut, tree)
|
|
|
|
proc convert*(png: PNG, colorType: PNGcolorType, bitDepth: int): PNGResult =
|
|
#TODO: check if this works according to the statement in the documentation: "The converter can convert
|
|
# from greyscale input color type, to 8-bit greyscale or greyscale with alpha"
|
|
#if(colorType notin {LCT_RGB, LCT_RGBA}) and (bitDepth != 8):
|
|
#raise PNGError("unsupported color mode conversion")
|
|
|
|
let header = PNGHeader(png.getChunk(IHDR))
|
|
let modeIn = png.getColorMode()
|
|
let modeOut = newColorMode(colorType, bitDepth)
|
|
let size = getRawSize(header.width, header.height, modeOut)
|
|
let numPixels = header.width * header.height
|
|
let input = cstring(png.pixels)
|
|
|
|
new(result)
|
|
result.width = header.width
|
|
result.height = header.height
|
|
result.data = newString(size)
|
|
var output = cstring(result.data)
|
|
|
|
if modeOut == modeIn:
|
|
copyMem(output, input, size)
|
|
return result
|
|
|
|
convert(output, input, modeOut, modeIn, numPixels)
|
|
|
|
proc decodePNG*(s: Stream, colorType: PNGcolorType, bitDepth: int, settings = PNGDecoder(nil)): PNGResult =
|
|
if not bitDepthAllowed(colorType, bitDepth):
|
|
raise PNGError("colorType and bitDepth combination not allowed")
|
|
var png = s.parsePNG(settings)
|
|
png.postProcessscanLines()
|
|
|
|
if PNGDecoder(png.settings).colorConvert:
|
|
result = png.convert(colorType, bitDepth)
|
|
else:
|
|
let header = PNGHeader(png.getChunk(IHDR))
|
|
new(result)
|
|
result.width = header.width
|
|
result.height = header.height
|
|
result.data = png.pixels
|
|
|
|
proc decodePNG*(s: Stream, settings = PNGDecoder(nil)): PNG =
|
|
var png = s.parsePNG(settings)
|
|
png.postProcessscanLines()
|
|
result = png
|
|
|
|
proc loadPNG*(fileName: string, colorType: PNGcolorType, bitDepth: int, settings: PNGDecoder): PNGResult =
|
|
try:
|
|
var s = newFileStream(fileName, fmRead)
|
|
if s == nil: return nil
|
|
result = s.decodePNG(colorType, bitDepth, settings)
|
|
s.close()
|
|
except:
|
|
debugEcho getCurrentExceptionMsg()
|
|
result = nil
|
|
|
|
proc loadPNG32*(fileName: string, settings = PNGDecoder(nil)): PNGResult =
|
|
result = loadPNG(fileName, LCT_RGBA, 8, settings)
|
|
|
|
proc loadPNG24*(fileName: string, settings = PNGDecoder(nil)): PNGResult =
|
|
result = loadPNG(fileName, LCT_RGB, 8, settings)
|
|
|
|
proc decodePNG32*(input: string, settings = PNGDecoder(nil)): PNGResult =
|
|
try:
|
|
var s = newStringStream(input)
|
|
if s == nil: return nil
|
|
result = s.decodePNG(LCT_RGBA, 8, settings)
|
|
except:
|
|
debugEcho getCurrentExceptionMsg()
|
|
result = nil
|
|
|
|
proc decodePNG24*(input: string, settings = PNGDecoder(nil)): PNGResult =
|
|
try:
|
|
var s = newStringStream(input)
|
|
if s == nil: return nil
|
|
result = s.decodePNG(LCT_RGB, 8, settings)
|
|
except:
|
|
debugEcho getCurrentExceptionMsg()
|
|
result = nil
|
|
|
|
#Encoder/Decoder demarcation line-----------------------------
|
|
|
|
type
|
|
PNGFilterStrategy* = enum
|
|
#every filter at zero
|
|
LFS_ZERO,
|
|
#Use filter that gives minimum sum, as described in the official PNG filter heuristic.
|
|
LFS_MINSUM,
|
|
#Use the filter type that gives smallest Shannon entropy for this scanLine. Depending
|
|
#on the image, this is better or worse than minsum.
|
|
LFS_ENTROPY,
|
|
#Brute-force-search PNG filters by compressing each filter for each scanLine.
|
|
#Experimental, very slow, and only rarely gives better compression than MINSUM.
|
|
LFS_BRUTE_FORCE,
|
|
#use predefined_filters buffer: you specify the filter type for each scanLine
|
|
LFS_PREDEFINED
|
|
|
|
PNGKeyText = object
|
|
keyword, text: string
|
|
|
|
PNGIText = object
|
|
keyword: string
|
|
text: string
|
|
languageTag: string
|
|
translatedKeyword: string
|
|
|
|
PNGUnknown = ref object of PNGChunk
|
|
PNGEnd = ref object of PNGChunk
|
|
|
|
PNGEncoder* = ref object of PNGSettings
|
|
#automatically choose output PNG color type. Default: true
|
|
autoConvert*: bool
|
|
modeIn*: PNGColorMode
|
|
modeOut*: PNGColorMode
|
|
|
|
#If true, follows the official PNG heuristic: if the PNG uses a palette or lower than
|
|
#8 bit depth, set all filters to zero. Otherwise use the filter_strategy. Note that to
|
|
#completely follow the official PNG heuristic, filter_palette_zero must be true and
|
|
#filter_strategy must be LFS_MINSUM
|
|
filterPaletteZero*: bool
|
|
|
|
#Which filter strategy to use when not using zeroes due to filter_palette_zero.
|
|
#Set filter_palette_zero to 0 to ensure always using your chosen strategy. Default: LFS_MINSUM
|
|
filterStrategy*: PNGFilterStrategy
|
|
|
|
#used if filter_strategy is LFS_PREDEFINED. In that case, this must point to a buffer with
|
|
#the same length as the amount of scanLines in the image, and each value must <= 5.
|
|
#Don't forget that filter_palette_zero must be set to false to ensure this is also used on palette or low bitdepth images.
|
|
predefinedFilters*: string
|
|
|
|
#force creating a PLTE chunk if colorType is 2 or 6 (= a suggested palette).
|
|
#If colorType is 3, PLTE is _always_ created.
|
|
forcePalette*: bool
|
|
|
|
#add nimPNG identifier and version as a text chunk, for debugging
|
|
addID*: bool
|
|
#encode text chunks as zTXt chunks instead of tEXt chunks, and use compression in iTXt chunks
|
|
textCompression*: bool
|
|
textList*: seq[PNGKeyText]
|
|
itextList*: seq[PNGIText]
|
|
|
|
interlaceMethod*: PNGInterlace
|
|
|
|
backgroundDefined*: bool
|
|
backgroundR*, backgroundG*, backgroundB*: int
|
|
|
|
physDefined*: bool
|
|
physX*, physY*, physUnit*: int
|
|
|
|
timeDefined*: bool
|
|
year*: int #range[0..65535]
|
|
month*: int #range[1..12]
|
|
day*: int #range[1..31]
|
|
hour*: int #range[0..23]
|
|
minute*: int #range[0..59]
|
|
second*: int #range[0..60] #to allow for leap seconds
|
|
|
|
unknown*: seq[PNGUnknown]
|
|
|
|
PNGColorProfile = ref object
|
|
colored: bool #not greyscale
|
|
key: bool #if true, image is not opaque. Only if true and alpha is false, color key is possible.
|
|
keyR, keyG, keyB: int #these values are always in 16-bit bitdepth in the profile
|
|
alpha: bool #alpha channel or alpha palette required
|
|
numColors: int #amount of colors, up to 257. Not valid if bits == 16.
|
|
palette: seq[RGBA8] #Remembers up to the first 256 RGBA colors, in no particular order
|
|
bits: int #bits per channel (not for palette). 1,2 or 4 for greyscale only. 16 if 16-bit per channel required.
|
|
|
|
proc makePNGEncoder*(): PNGEncoder =
|
|
var s: PNGEncoder
|
|
s = new(PNGEncoder)
|
|
s.filterPaletteZero = true
|
|
s.filterStrategy = LFS_MINSUM
|
|
s.autoConvert = true
|
|
s.modeIn = newColorMode()
|
|
s.modeOut = newColorMode()
|
|
s.forcePalette = false
|
|
s.predefinedFilters = nil
|
|
s.addID = false
|
|
s.textCompression = true
|
|
s.interlaceMethod = IM_NONE
|
|
s.backgroundDefined = false
|
|
s.backgroundR = 0
|
|
s.backgroundG = 0
|
|
s.backgroundB = 0
|
|
s.physDefined = false
|
|
s.physX = 0
|
|
s.physY = 0
|
|
s.physUnit = 0
|
|
s.timeDefined = false
|
|
s.textList = @[]
|
|
s.itextList = @[]
|
|
s.unknown = @[]
|
|
result = s
|
|
|
|
proc addText*(state: PNGEncoder, keyword, text: string) =
|
|
state.textList.add PNGKeyText(keyword: keyword, text: text)
|
|
|
|
proc addIText*(state: PNGEncoder, keyword, langtag, transkey, text: string) =
|
|
var itext: PNGIText
|
|
itext.keyword = keyword
|
|
itext.text = text
|
|
itext.languageTag = langtag
|
|
itext.translatedKeyword = transkey
|
|
state.itextList.add itext
|
|
|
|
proc make[T](chunkType: PNGChunkType, estimateSize: int): T =
|
|
result = new(T)
|
|
result.chunkType = chunkType
|
|
if estimateSize > 0: result.data = newStringOfCap(estimateSize)
|
|
else: result.data = ""
|
|
|
|
proc addUnknownChunk*(state: PNGEncoder, chunkType, data: string) =
|
|
assert chunkType.len == 4
|
|
var chunk = make[PNGUnknown](makeChunkType(chunkType), 0)
|
|
chunk.data = data
|
|
state.unknown.add chunk
|
|
|
|
proc makeColorProfile(): PNGColorProfile =
|
|
new(result)
|
|
result.colored = false
|
|
result.key = false
|
|
result.alpha = false
|
|
result.keyR = 0
|
|
result.keyG = 0
|
|
result.keyB = 0
|
|
result.numcolors = 0
|
|
result.bits = 1
|
|
result.palette = @[]
|
|
|
|
proc writeByte(s: PNGChunk, val: int) = s.data.add chr(val)
|
|
proc writeString(s: PNGChunk, val: string) = s.data.add val
|
|
|
|
proc writeInt32(s: PNGChunk, val: int) =
|
|
s.writeByte((val shr 24) and 0xff)
|
|
s.writeByte((val shr 16) and 0xff)
|
|
s.writeByte((val shr 8) and 0xff)
|
|
s.writeByte(val and 0xff)
|
|
|
|
proc writeInt16(s: PNGChunk, val: int) =
|
|
s.writeByte((val shr 8) and 0xff)
|
|
s.writeByte(val and 0xff)
|
|
|
|
proc writeInt32BE(s: Stream, value: int) =
|
|
var val = cast[int32](value)
|
|
var tmp: int32
|
|
bigEndian32(addr(tmp), addr(val))
|
|
s.write(tmp)
|
|
|
|
method writeChunk(chunk: PNGChunk, png: PNG): bool {.base.} = true
|
|
|
|
method writeChunk(chunk: PNGHeader, png: PNG): bool =
|
|
#estimate 13 bytes
|
|
chunk.writeInt32(chunk.width)
|
|
chunk.writeInt32(chunk.height)
|
|
chunk.writeByte(chunk.bitDepth)
|
|
chunk.writeByte(int(chunk.colorType))
|
|
chunk.writeByte(chunk.compressionMethod)
|
|
chunk.writeByte(chunk.filterMethod)
|
|
chunk.writeByte(int(chunk.interlaceMethod))
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGPalette, png: PNG): bool =
|
|
#estimate 3 * palette.len
|
|
for px in chunk.palette:
|
|
chunk.writeByte(int(px.r))
|
|
chunk.writeByte(int(px.g))
|
|
chunk.writeByte(int(px.b))
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGTrans, png: PNG): bool =
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
|
|
if header.colorType == LCT_PALETTE:
|
|
#estimate plte.palette.len
|
|
var plte = PNGPalette(png.getChunk(PLTE))
|
|
#the tail of palette values that all have 255 as alpha, does not have to be encoded
|
|
var amount = plte.palette.len
|
|
for i in countdown(amount-1, 0):
|
|
if plte.palette[i].a == chr(255): dec amount
|
|
else: break
|
|
for i in 0..amount-1: chunk.writeByte(int(plte.palette[i].a))
|
|
elif header.colorType == LCT_GREY:
|
|
#estimate 2 bytes
|
|
if chunk.keyR != -1: chunk.writeInt16(chunk.keyR)
|
|
elif header.colorType == LCT_RGB:
|
|
#estimate 6 bytes
|
|
if chunk.keyR != -1:
|
|
chunk.writeInt16(chunk.keyR)
|
|
chunk.writeInt16(chunk.keyG)
|
|
chunk.writeInt16(chunk.keyB)
|
|
else:
|
|
raise PNGError("tRNS chunk not allowed for other color models")
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGBackground, png: PNG): bool =
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
if header.colorType == LCT_PALETTE:
|
|
#estimate 1 bytes
|
|
chunk.writeByte(chunk.bkgdR)
|
|
if header.colorType in {LCT_GREY, LCT_GREY_ALPHA}:
|
|
#estimate 2 bytes
|
|
chunk.writeInt16(chunk.bkgdR)
|
|
elif header.colorType in {LCT_RGB, LCT_RGBA}:
|
|
#estimate 6 bytes
|
|
chunk.writeInt16(chunk.bkgdR)
|
|
chunk.writeInt16(chunk.bkgdG)
|
|
chunk.writeInt16(chunk.bkgdB)
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGTime, png: PNG): bool =
|
|
#estimate 7 bytes
|
|
chunk.writeInt16(chunk.year)
|
|
chunk.writeByte(chunk.month)
|
|
chunk.writeByte(chunk.day)
|
|
chunk.writeByte(chunk.hour)
|
|
chunk.writeByte(chunk.minute)
|
|
chunk.writeByte(chunk.second)
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGPhys, png: PNG): bool =
|
|
#estimate 9 bytes
|
|
chunk.writeInt32(chunk.physX)
|
|
chunk.writeInt32(chunk.physY)
|
|
chunk.writeByte(chunk.unit)
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGText, png: PNG): bool =
|
|
#estimate chunk.keyword.len + chunk.text.len + 1
|
|
chunk.writeString chunk.keyword
|
|
chunk.writeByte 0 #null separator
|
|
chunk.writeString chunk.text
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGGamma, png: PNG): bool =
|
|
#estimate 4 bytes
|
|
chunk.writeInt32(chunk.gamma)
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGChroma, png: PNG): bool =
|
|
#estimate 8 * 4 bytes
|
|
chunk.writeInt32(chunk.whitePointX)
|
|
chunk.writeInt32(chunk.whitePointY)
|
|
chunk.writeInt32(chunk.redX)
|
|
chunk.writeInt32(chunk.redY)
|
|
chunk.writeInt32(chunk.greenX)
|
|
chunk.writeInt32(chunk.greenY)
|
|
chunk.writeInt32(chunk.blueX)
|
|
chunk.writeInt32(chunk.blueY)
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGStandarRGB, png: PNG): bool =
|
|
#estimate 1 byte
|
|
chunk.writeByte(chunk.renderingIntent)
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGSPalette, png: PNG): bool =
|
|
#estimate chunk.paletteName.len + 2
|
|
#if sampleDepth == 8: estimate += chunk.palette.len * 6
|
|
#else: estimate += chunk.palette.len * 10
|
|
chunk.writeString chunk.paletteName
|
|
chunk.writeByte 0 #null separator
|
|
if chunk.sampleDepth notin {8, 16}: raise PNGError("palette sample depth error")
|
|
chunk.writeByte chunk.sampleDepth
|
|
|
|
if chunk.sampleDepth == 8:
|
|
for p in chunk.palette:
|
|
chunk.writeByte(p.red)
|
|
chunk.writeByte(p.green)
|
|
chunk.writeByte(p.blue)
|
|
chunk.writeByte(p.alpha)
|
|
chunk.writeInt16(p.frequency)
|
|
else: # chunk.sampleDepth == 16:
|
|
for p in chunk.palette:
|
|
chunk.writeInt16(p.red)
|
|
chunk.writeInt16(p.green)
|
|
chunk.writeInt16(p.blue)
|
|
chunk.writeInt16(p.alpha)
|
|
chunk.writeInt16(p.frequency)
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGHist, png: PNG): bool =
|
|
#estimate chunk.histogram.len * 2
|
|
for c in chunk.histogram:
|
|
chunk.writeInt16 c
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGData, png: PNG): bool =
|
|
var nz = nzDeflateInit(chunk.idat)
|
|
chunk.data = zlib_compress(nz)
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGZtxt, png: PNG): bool =
|
|
#estimate chunk.keyword.len + 2
|
|
chunk.writeString chunk.keyword
|
|
chunk.writeByte 0 #null separator
|
|
chunk.writeByte 0 #compression method(0: deflate)
|
|
var nz = nzDeflateInit(chunk.text)
|
|
chunk.writeString zlib_compress(nz)
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGItxt, png: PNG): bool =
|
|
#estimate chunk.keyword.len + 2
|
|
# + chunk.languageTag.len + chunk.translatedKeyword.len
|
|
let state = PNGEncoder(png.settings)
|
|
var compressed: int
|
|
var text: string
|
|
if state.textCompression:
|
|
var nz = nzDeflateInit(chunk.text)
|
|
var zz = zlib_compress(nz)
|
|
if zz.len >= chunk.text.len:
|
|
compressed = 0
|
|
text = chunk.text
|
|
else:
|
|
compressed = 1
|
|
text = zz
|
|
else:
|
|
compressed = 0
|
|
text = chunk.text
|
|
|
|
chunk.writeString chunk.keyword
|
|
chunk.writeByte 0 #null separator
|
|
chunk.writeByte compressed #compression flag(0: uncompressed, 1: compressed)
|
|
chunk.writeByte 0 #compression method(0: deflate)
|
|
chunk.writeString chunk.languageTag
|
|
chunk.writeByte 0 #null separator
|
|
chunk.writeString chunk.translatedKeyword
|
|
chunk.writeByte 0 #null separator
|
|
chunk.writeString text
|
|
result = true
|
|
|
|
method writeChunk(chunk: PNGICCProfile, png: PNG): bool =
|
|
#estimate chunk.profileName.len + 2
|
|
chunk.writeString chunk.profileName
|
|
chunk.writeByte 0 #null separator
|
|
chunk.writeByte 0 #compression method(0: deflate)
|
|
var nz = nzDeflateInit(chunk.profile)
|
|
chunk.writeString zlib_compress(nz)
|
|
result = true
|
|
|
|
proc isGreyscaleType(mode: PNGColorMode): bool =
|
|
result = mode.colorType in {LCT_GREY, LCT_GREY_ALPHA}
|
|
|
|
proc isAlphaType(mode: PNGColorMode): bool =
|
|
result = mode.colorType in {LCT_RGBA, LCT_GREY_ALPHA}
|
|
|
|
#proc isPaletteType(mode: PNGColorMode): bool =
|
|
# result = mode.colorType == LCT_PALETTE
|
|
|
|
proc hasPaletteAlpha(mode: PNGColorMode): bool =
|
|
for p in mode.palette:
|
|
if ord(p.a) < 255: return true
|
|
result = false
|
|
|
|
proc canHaveAlpha(mode: PNGColorMode): bool =
|
|
result = mode.keyDefined or isAlphaType(mode) or hasPaletteAlpha(mode)
|
|
|
|
#Returns how many bits needed to represent given value (max 8 bit)*/
|
|
proc getValueRequiredBits(value: int): int =
|
|
if(value == 0) or (value == 255): return 1
|
|
#The scaling of 2-bit and 4-bit values uses multiples of 85 and 17
|
|
if(value mod 17) == 0:
|
|
if (value mod 85) == 0: return 2
|
|
else: return 4
|
|
result = 8
|
|
|
|
proc differ(p: RGBA16): bool =
|
|
# first and second byte differ
|
|
if (p.r and 255) != ((p.r shr 8) and 255): return true
|
|
if (p.g and 255) != ((p.g shr 8) and 255): return true
|
|
if (p.b and 255) != ((p.b shr 8) and 255): return true
|
|
if (p.a and 255) != ((p.a shr 8) and 255): return true
|
|
result = false
|
|
|
|
proc getColorProfile(input: string, w, h: int, mode: PNGColorMode): PNGColorProfile =
|
|
var prof = makeColorProfile()
|
|
let
|
|
numPixels = w * h
|
|
bpp = getBPP(mode)
|
|
|
|
var
|
|
coloredDone = isGreyscaleType(mode)
|
|
alphaDone = not canHaveAlpha(mode)
|
|
bitsDone = bpp == 1
|
|
numColorsDone = false
|
|
sixteen = false
|
|
maxNumColors = 257
|
|
tree = initTable[RGBA8, int]()
|
|
|
|
if bpp <= 8:
|
|
case bpp
|
|
of 1: maxNumColors = 2
|
|
of 2: maxNumColors = 4
|
|
of 4: maxNumColors = 16
|
|
else: maxNumColors = 256
|
|
|
|
#Check if the 16-bit input is truly 16-bit
|
|
if mode.bitDepth == 16:
|
|
let cvt = getColorRGBA16(mode)
|
|
var p = RGBA16(r:0, g:0, b:0, a:0)
|
|
|
|
for px in 0..numPixels-1:
|
|
cvt(p, cstring(input), px, mode)
|
|
if p.differ():
|
|
sixteen = true
|
|
break
|
|
|
|
if sixteen:
|
|
let cvt = getColorRGBA16(mode)
|
|
var p = RGBA16(r:0, g:0, b:0, a:0)
|
|
prof.bits = 16
|
|
#counting colors no longer useful, palette doesn't support 16-bit
|
|
bitsDone = true
|
|
numColorsDone = true
|
|
|
|
for px in 0..numPixels-1:
|
|
cvt(p, cstring(input), px, mode)
|
|
if not coloredDone and ((p.r != p.g) or (p.r != p.b)):
|
|
prof.colored = true
|
|
coloredDone = true
|
|
|
|
if not alphaDone:
|
|
let matchKey = (int(p.r) == prof.keyR and
|
|
int(p.g) == prof.keyG and int(p.b) == prof.keyB)
|
|
|
|
if(p.a != 65535) and (p.a != 0 or (prof.key and not matchKey)):
|
|
prof.alpha = true
|
|
alphaDone = true
|
|
if prof.bits < 8: prof.bits = 8 #PNG has no alphachannel modes with less than 8-bit per channel
|
|
elif(p.a == 0) and not prof.alpha and not prof.key:
|
|
prof.key = true
|
|
prof.keyR = int(p.r)
|
|
prof.keyG = int(p.g)
|
|
prof.keyB = int(p.b)
|
|
elif(p.a == 65535) and prof.key and matchKey:
|
|
# Color key cannot be used if an opaque pixel also has that RGB color.
|
|
prof.alpha = true
|
|
alphaDone = true
|
|
|
|
if alphaDone and numColorsDone and coloredDone and bitsDone: break
|
|
else: # < 16-bit
|
|
let cvt = getColorRGBA8(mode)
|
|
for px in 0..numPixels-1:
|
|
var p = RGBA8(r:chr(0), g:chr(0), b:chr(0), a:chr(0))
|
|
cvt(p, cstring(input), px, mode)
|
|
if (not bitsDone) and (prof.bits < 8):
|
|
#only r is checked, < 8 bits is only relevant for greyscale
|
|
let bits = getValueRequiredBits(int(p.r))
|
|
if bits > prof.bits: prof.bits = bits
|
|
bitsDone = prof.bits >= bpp
|
|
|
|
if (not coloredDone) and ((p.r != p.g) or (p.r != p.b)):
|
|
prof.colored = true
|
|
coloredDone = true
|
|
if prof.bits < 8: prof.bits = 8 #PNG has no colored modes with less than 8-bit per channel
|
|
|
|
if not alphaDone:
|
|
let matchKey = ((int(p.r) == prof.keyR) and
|
|
(int(p.g) == prof.keyG) and (int(p.b) == prof.keyB))
|
|
|
|
if(p.a != chr(255)) and (p.a != chr(0) or (prof.key and (not matchKey))):
|
|
prof.alpha = true
|
|
alphaDone = true
|
|
if prof.bits < 8: prof.bits = 8 #PNG has no alphachannel modes with less than 8-bit per channel
|
|
elif(p.a == chr(0)) and not prof.alpha and not prof.key:
|
|
prof.key = true
|
|
prof.keyR = int(p.r)
|
|
prof.keyG = int(p.g)
|
|
prof.keyB = int(p.b)
|
|
elif(p.a == chr(255)) and prof.key and matchKey:
|
|
#Color key cannot be used if an opaque pixel also has that RGB color.
|
|
prof.alpha = true
|
|
alphaDone = true
|
|
if prof.bits < 8: prof.bits = 8 #PNG has no alphachannel modes with less than 8-bit per channel
|
|
|
|
if not numColorsDone:
|
|
if not tree.hasKey(p):
|
|
tree[p] = prof.numColors
|
|
if prof.numColors < 256: prof.palette.add p
|
|
inc prof.numColors
|
|
numColorsDone = prof.numColors >= maxNumColors
|
|
if alphaDone and numColorsDone and coloredDone and bitsDone: break
|
|
|
|
# make the profile's key always 16-bit for consistency - repeat each byte twice
|
|
prof.keyR += prof.keyR shl 8
|
|
prof.keyG += prof.keyG shl 8
|
|
prof.keyB += prof.keyB shl 8
|
|
result = prof
|
|
|
|
#Automatically chooses color type that gives smallest amount of bits in the
|
|
#output image, e.g. grey if there are only greyscale pixels, palette if there
|
|
#are less than 256 colors, ...
|
|
#Updates values of mode with a potentially smaller color model. mode_out should
|
|
#contain the user chosen color model, but will be overwritten with the new chosen one.
|
|
proc autoChooseColor(modeOut: PNGColorMode, input: string, w, h: int, modeIn: PNGColorMode) =
|
|
var prof = getColorProfile(input, w, h, modeIn)
|
|
modeOut.keyDefined = false
|
|
|
|
if prof.key and ((w * h) <= 16):
|
|
prof.alpha = true #too few pixels to justify tRNS chunk overhead
|
|
if prof.bits < 8: prof.bits = 8 #PNG has no alphachannel modes with less than 8-bit per channel
|
|
|
|
#grey without alpha, with potentially low bits
|
|
let greyOk = not prof.colored and not prof.alpha
|
|
let n = prof.numColors
|
|
|
|
var paletteBits = 0
|
|
if n <= 2: paletteBits = 1
|
|
elif n <= 4: paletteBits = 2
|
|
elif n <= 16: paletteBits = 4
|
|
else: paletteBits = 8
|
|
var paletteOk = (n <= 256) and ((n * 2) < (w * h)) and prof.bits <= 8
|
|
#don't add palette overhead if image has only a few pixels
|
|
if (w * h) < (n * 2): paletteOk = false
|
|
#grey is less overhead
|
|
if greyOk and (prof.bits <= palettebits): paletteOk = false
|
|
|
|
if paletteOk:
|
|
modeOut.paletteSize = prof.palette.len
|
|
modeOut.palette = prof.palette
|
|
modeOut.colorType = LCT_PALETTE
|
|
modeOut.bitDepth = paletteBits
|
|
|
|
if(modeIn.colorType == LCT_PALETTE) and (modeIn.palettesize >= modeOut.palettesize) and
|
|
(modeIn.bitdepth == modeOut.bitdepth):
|
|
#If input should have same palette colors, keep original to preserve its order and prevent conversion
|
|
modeIn.copyTo(modeOut)
|
|
else: #8-bit or 16-bit per channel
|
|
modeOut.bitDepth = prof.bits
|
|
if prof.alpha:
|
|
if prof.colored: modeOut.colorType = LCT_RGBA
|
|
else: modeOut.colorType = LCT_GREY_ALPHA
|
|
else:
|
|
if prof.colored: modeOut.colorType = LCT_RGB
|
|
else: modeOut.colorType = LCT_GREY
|
|
|
|
if prof.key and not prof.alpha:
|
|
#profile always uses 16-bit, mask converts it
|
|
let mask = (1 shl modeOut.bitDepth) - 1
|
|
modeOut.keyR = prof.keyR and mask
|
|
modeOut.keyG = prof.keyG and mask
|
|
modeOut.keyB = prof.keyB and mask
|
|
modeOut.keyDefined = true
|
|
|
|
proc addPaddingBits(output: var cstring, input: cstring, olinebits, ilinebits, h: int) =
|
|
#The opposite of the removePaddingBits function
|
|
#olinebits must be >= ilinebits
|
|
|
|
let diff = olinebits - ilinebits
|
|
var
|
|
obp = 0
|
|
ibp = 0 #bit pointers
|
|
|
|
for y in 0..h-1:
|
|
for x in 0..ilinebits-1:
|
|
let bit = readBitFromReversedStream(ibp, input)
|
|
setBitOfReversedStream(obp, output, bit)
|
|
for x in 0..diff-1: setBitOfReversedStream(obp, output, 0)
|
|
|
|
proc filterScanLine(output: var cstring, scanLine, prevLine: cstring, len, byteWidth: int, filterType: PNGFilter0) =
|
|
case filterType
|
|
of FLT_NONE:
|
|
for i in 0..len-1: output[i] = scanLine[i]
|
|
of FLT_SUB:
|
|
for i in 0..byteWidth-1: output[i] = scanLine[i]
|
|
for i in byteWidth..len-1:
|
|
output[i] = chr(scanLine[i].uint - scanLine[i - byteWidth].uint)
|
|
of FLT_UP:
|
|
if prevLine != nil:
|
|
for i in 0..len-1:
|
|
output[i] = chr(scanLine[i].uint - prevLine[i].uint)
|
|
else:
|
|
for i in 0..len-1: output[i] = scanLine[i]
|
|
of FLT_AVERAGE:
|
|
if prevLine != nil:
|
|
for i in 0..byteWidth-1:
|
|
output[i] = chr(scanLine[i].uint - (prevLine[i].uint div 2))
|
|
for i in byteWidth..len-1:
|
|
output[i] = chr(scanLine[i].uint - ((scanLine[i - byteWidth].uint + prevLine[i].uint) div 2))
|
|
else:
|
|
for i in 0..byteWidth-1: output[i] = scanLine[i]
|
|
for i in byteWidth..len-1:
|
|
output[i] = chr(scanLine[i].uint - (scanLine[i - byteWidth].uint div 2))
|
|
of FLT_PAETH:
|
|
if prevLine != nil:
|
|
#paethPredictor(0, prevLine[i], 0) is always prevLine[i]
|
|
for i in 0..byteWidth-1:
|
|
output[i] = chr(scanLine[i].uint - prevLine[i].uint)
|
|
for i in byteWidth..len-1:
|
|
output[i] = chr(scanLine[i].uint - paethPredictor(ord(scanLine[i - byteWidth]), ord(prevLine[i]), ord(prevLine[i - byteWidth])).uint)
|
|
else:
|
|
for i in 0..byteWidth-1: output[i] = scanLine[i]
|
|
#paethPredictor(scanLine[i - byteWidth], 0, 0) is always scanLine[i - byteWidth]
|
|
for i in byteWidth..len-1:
|
|
output[i] = chr(scanLine[i].uint - scanLine[i - byteWidth].uint)
|
|
else:
|
|
raise PNGError("unsupported filter type")
|
|
|
|
proc filterZero(output: var cstring, input: cstring, w, h, bpp: int) =
|
|
#the width of a scanline in bytes, not including the filter type
|
|
let lineBytes = (w * bpp + 7) div 8
|
|
#byteWidth is used for filtering, is 1 when bpp < 8, number of bytes per pixel otherwise
|
|
let byteWidth = (bpp + 7) div 8
|
|
var prevLine: cstring = nil
|
|
var inp = input
|
|
|
|
for y in 0..h-1:
|
|
let outindex = (1 + lineBytes) * y #the extra filterbyte added to each row
|
|
let inindex = lineBytes * y
|
|
output[outindex] = chr(int(FLT_NONE)) #filter type byte
|
|
var outp: cstring = addr(output[outindex + 1])
|
|
let scanLine: cstring = addr(inp[inindex])
|
|
filterScanLine(outp, scanLine, prevLine, lineBytes, byteWidth, FLT_NONE)
|
|
prevLine = addr(inp[inindex])
|
|
|
|
proc filterMinsum(output: var cstring, input: cstring, w, h, bpp: int) =
|
|
let lineBytes = (w * bpp + 7) div 8
|
|
let byteWidth = (bpp + 7) div 8
|
|
|
|
#adaptive filtering
|
|
var sum = [0, 0, 0, 0, 0]
|
|
var smallest = 0
|
|
|
|
#five filtering attempts, one for each filter type
|
|
var attempt: array[0..4, string]
|
|
var bestType = 0
|
|
var inp = input
|
|
var prevLine: cstring = nil
|
|
|
|
for i in 0..attempt.high:
|
|
attempt[i] = newString(lineBytes)
|
|
|
|
for y in 0..h-1:
|
|
#try the 5 filter types
|
|
for fType in 0..4:
|
|
var outp = cstring(attempt[fType])
|
|
filterScanLine(outp, addr(inp[y * lineBytes]), prevLine, lineBytes, byteWidth, PNGFilter0(fType))
|
|
#calculate the sum of the result
|
|
sum[fType] = 0
|
|
if fType == 0:
|
|
for x in 0..lineBytes-1:
|
|
sum[fType] += ord(attempt[fType][x])
|
|
else:
|
|
for x in 0..lineBytes-1:
|
|
#For differences, each byte should be treated as signed, values above 127 are negative
|
|
#(converted to signed char). Filtertype 0 isn't a difference though, so use unsigned there.
|
|
#This means filtertype 0 is almost never chosen, but that is justified.
|
|
let s = ord(attempt[fType][x])
|
|
if s < 128: sum[fType] += s
|
|
else: sum[fType] += (255 - s)
|
|
|
|
#check if this is smallest sum (or if type == 0 it's the first case so always store the values)*/
|
|
if(fType == 0) or (sum[fType] < smallest):
|
|
bestType = fType
|
|
smallest = sum[fType]
|
|
|
|
prevLine = addr(inp[y * lineBytes])
|
|
#now fill the out values
|
|
#the first byte of a scanline will be the filter type
|
|
output[y * (lineBytes + 1)] = chr(bestType)
|
|
for x in 0..lineBytes-1:
|
|
output[y * (lineBytes + 1) + 1 + x] = attempt[bestType][x]
|
|
|
|
proc filterEntropy(output: var cstring, input: cstring, w, h, bpp: int) =
|
|
let lineBytes = (w * bpp + 7) div 8
|
|
let byteWidth = (bpp + 7) div 8
|
|
var inp = input
|
|
var prevLine: cstring = nil
|
|
|
|
var sum: array[0..4, float]
|
|
var smallest = 0.0
|
|
var bestType = 0
|
|
var attempt: array[0..4, string]
|
|
var count: array[0..255, int]
|
|
|
|
for i in 0..attempt.high:
|
|
attempt[i] = newString(lineBytes)
|
|
|
|
for y in 0..h-1:
|
|
#try the 5 filter types
|
|
for fType in 0..4:
|
|
var outp = cstring(attempt[fType])
|
|
filterScanLine(outp, addr(inp[y * lineBytes]), prevLine, lineBytes, byteWidth, PNGFilter0(fType))
|
|
for x in 0..255: count[x] = 0
|
|
for x in 0..lineBytes-1:
|
|
inc count[ord(attempt[fType][x])]
|
|
inc count[fType] #the filter type itself is part of the scanline
|
|
sum[fType] = 0
|
|
for x in 0..255:
|
|
let p = float(count[x]) / float(lineBytes + 1)
|
|
if count[x] != 0: sum[fType] += log2(1 / p) * p
|
|
|
|
#check if this is smallest sum (or if type == 0 it's the first case so always store the values)
|
|
if (fType == 0) or (sum[fType] < smallest):
|
|
bestType = fType
|
|
smallest = sum[fType]
|
|
|
|
prevLine = addr(inp[y * lineBytes])
|
|
#now fill the out values*/
|
|
#the first byte of a scanline will be the filter type
|
|
output[y * (lineBytes + 1)] = chr(bestType)
|
|
for x in 0..lineBytes-1:
|
|
output[y * (lineBytes + 1) + 1 + x] = attempt[bestType][x]
|
|
|
|
proc filterPredefined(output: var cstring, input: cstring, w, h, bpp: int, state: PNGEncoder) =
|
|
let lineBytes = (w * bpp + 7) div 8
|
|
let byteWidth = (bpp + 7) div 8
|
|
var inp = input
|
|
var prevLine: cstring = nil
|
|
|
|
for y in 0..h-1:
|
|
let outindex = (1 + lineBytes) * y #the extra filterbyte added to each row
|
|
let inindex = lineBytes * y
|
|
let fType = ord(state.predefinedFilters[y])
|
|
output[outindex] = chr(fType) #filter type byte
|
|
var outp: cstring = addr(output[outindex + 1])
|
|
filterScanLine(outp, addr(inp[inindex]), prevLine, lineBytes, byteWidth, PNGFilter0(fType))
|
|
prevLine = addr(inp[inindex])
|
|
|
|
proc filterBruteForce(output: var cstring, input: cstring, w, h, bpp: int) =
|
|
let lineBytes = (w * bpp + 7) div 8
|
|
let byteWidth = (bpp + 7) div 8
|
|
var inp = input
|
|
var prevLine: cstring = nil
|
|
|
|
#brute force filter chooser.
|
|
#deflate the scanline after every filter attempt to see which one deflates best.
|
|
#This is very slow and gives only slightly smaller, sometimes even larger, result*/
|
|
|
|
var size: array[0..4, int]
|
|
var attempt: array[0..4, string] #five filtering attempts, one for each filter type
|
|
var smallest = 0
|
|
var bestType = 0
|
|
|
|
#use fixed tree on the attempts so that the tree is not adapted to the filtertype on purpose,
|
|
#to simulate the true case where the tree is the same for the whole image. Sometimes it gives
|
|
#better result with dynamic tree anyway. Using the fixed tree sometimes gives worse, but in rare
|
|
#cases better compression. It does make this a bit less slow, so it's worth doing this.
|
|
|
|
for i in 0..attempt.high:
|
|
attempt[i] = newString(lineBytes)
|
|
|
|
for y in 0..h-1:
|
|
#try the 5 filter types
|
|
for fType in 0..4:
|
|
#let testSize = attempt[fType].len
|
|
var outp = cstring(attempt[fType])
|
|
filterScanline(outp, addr(inp[y * lineBytes]), prevLine, lineBytes, byteWidth, PNGFilter0(fType))
|
|
size[fType] = 0
|
|
|
|
var nz = nzDeflateInit(attempt[fType])
|
|
let data = zlib_compress(nz)
|
|
size[fType] = data.len
|
|
|
|
#check if this is smallest size (or if type == 0 it's the first case so always store the values)
|
|
if(fType == 0) or (size[fType] < smallest):
|
|
bestType = fType
|
|
smallest = size[fType]
|
|
|
|
prevLine = addr(inp[y * lineBytes])
|
|
output[y * (lineBytes + 1)] = chr(bestType) #the first byte of a scanline will be the filter type
|
|
for x in 0..lineBytes-1:
|
|
output[y * (lineBytes + 1) + 1 + x] = attempt[bestType][x]
|
|
|
|
proc filter(output: var cstring, input: cstring, w, h: int, modeOut: PNGColorMode, state: PNGEncoder) =
|
|
#For PNG filter method 0
|
|
#out must be a buffer with as size: h + (w * h * bpp + 7) / 8, because there are
|
|
#the scanlines with 1 extra byte per scanline
|
|
|
|
let bpp = getBPP(modeOut)
|
|
var strategy = state.filterStrategy
|
|
|
|
#There is a heuristic called the minimum sum of absolute differences heuristic, suggested by the PNG standard:
|
|
# * If the image type is Palette, or the bit depth is smaller than 8, then do not filter the image (i.e.
|
|
# use fixed filtering, with the filter None).
|
|
# * (The other case) If the image type is Grayscale or RGB (with or without Alpha), and the bit depth is
|
|
# not smaller than 8, then use adaptive filtering heuristic as follows: independently for each row, apply
|
|
# all five filters and select the filter that produces the smallest sum of absolute values per row.
|
|
#This heuristic is used if filter strategy is LFS_MINSUM and filter_palette_zero is true.
|
|
|
|
#If filter_palette_zero is true and filter_strategy is not LFS_MINSUM, the above heuristic is followed,
|
|
#but for "the other case", whatever strategy filter_strategy is set to instead of the minimum sum
|
|
#heuristic is used.
|
|
if state.filterPaletteZero and
|
|
(modeOut.colorType == LCT_PALETTE or modeOut.bitDepth < 8): strategy = LFS_ZERO
|
|
|
|
if bpp == 0:
|
|
raise PNGError("invalid color type")
|
|
|
|
case strategy
|
|
of LFS_ZERO: filterZero(output, input, w, h, bpp)
|
|
of LFS_MINSUM: filterMinsum(output, input, w, h, bpp)
|
|
of LFS_ENTROPY: filterEntropy(output, input, w, h, bpp)
|
|
of LFS_BRUTE_FORCE: filterBruteForce(output, input, w, h, bpp)
|
|
of LFS_PREDEFINED: filterPredefined(output, input, w, h, bpp, state)
|
|
|
|
#input: non-interlaced image with size w*h
|
|
#output: the same pixels, but re-ordered according to PNG's Adam7 interlacing, with
|
|
# no padding bits between scanlines, but between reduced images so that each
|
|
# reduced image starts at a byte.
|
|
#bpp: bits per pixel
|
|
#there are no padding bits, not between scanlines, not between reduced images
|
|
#in has the following size in bits: w * h * bpp.
|
|
#output is possibly bigger due to padding bits between reduced images
|
|
#NOTE: comments about padding bits are only relevant if bpp < 8
|
|
proc Adam7Interlace(output: var cstring, input: cstring, w, h, bpp: int) =
|
|
var pass: PNGPass
|
|
Adam7PassValues(pass, w, h, bpp)
|
|
|
|
if bpp >= 8:
|
|
for i in 0..6:
|
|
let byteWidth = bpp div 8
|
|
for y in 0..pass.h[i]-1:
|
|
for x in 0..pass.w[i]-1:
|
|
let inStart = ((ADAM7_IY[i] + y * ADAM7_DY[i]) * w + ADAM7_IX[i] + x * ADAM7_DX[i]) * byteWidth
|
|
let outStart = pass.start[i] + (y * pass.w[i] + x) * byteWidth
|
|
for b in 0..byteWidth-1:
|
|
output[outStart + b] = input[inStart + b]
|
|
else: #bpp < 8: Adam7 with pixels < 8 bit is a bit trickier: with bit pointers
|
|
for i in 0..6:
|
|
let ilinebits = bpp * pass.w[i]
|
|
let olinebits = bpp * w
|
|
var obp, ibp: int #bit pointers (for out and in buffer)
|
|
for y in 0..pass.h[i]-1:
|
|
for x in 0..pass.w[i]-1:
|
|
ibp = (ADAM7_IY[i] + y * ADAM7_DY[i]) * olinebits + (ADAM7_IX[i] + x * ADAM7_DX[i]) * bpp
|
|
obp = (8 * pass.start[i]) + (y * ilinebits + x * bpp)
|
|
for b in 0..bpp-1:
|
|
let bit = readBitFromReversedStream(ibp, input)
|
|
setBitOfReversedStream(obp, output, bit)
|
|
|
|
proc preProcessScanLines(png: PNG, input: cstring, w, h: int, modeOut: PNGColorMode, state: PNGEncoder) =
|
|
#This function converts the pure 2D image with the PNG's colorType, into filtered-padded-interlaced data. Steps:
|
|
# if no Adam7: 1) add padding bits (= posible extra bits per scanLine if bpp < 8) 2) filter
|
|
# if adam7: 1) Adam7_interlace 2) 7x add padding bits 3) 7x filter
|
|
let bpp = getBPP(modeOut)
|
|
|
|
if state.interlaceMethod == IM_NONE:
|
|
#image size plus an extra byte per scanLine + possible padding bits
|
|
let scanLen = (w * bpp + 7) div 8
|
|
let outSize = h + (h * scanLen)
|
|
png.pixels = newString(outSize)
|
|
var output = cstring(png.pixels)
|
|
#non multiple of 8 bits per scanLine, padding bits needed per scanLine
|
|
if(bpp < 8) and ((w * bpp) != (scanLen * 8)):
|
|
var padded = newString(h * scanLen)
|
|
var padding = cstring(padded)
|
|
addPaddingBits(padding, input, scanLen * 8, w * bpp, h)
|
|
|
|
filter(output, padding, w, h, modeOut, state)
|
|
else:
|
|
#we can immediatly filter into the out buffer, no other steps needed
|
|
filter(output, input, w, h, modeOut, state)
|
|
|
|
else: #interlaceMethod is 1 (Adam7)
|
|
var pass: PNGPass
|
|
Adam7PassValues(pass, w, h, bpp)
|
|
let outSize = pass.filterStart[7]
|
|
png.pixels = newString(outSize)
|
|
var adam7buf = newString(pass.start[7])
|
|
var adam7 = cstring(adam7buf)
|
|
var output = cstring(png.pixels)
|
|
|
|
Adam7Interlace(adam7, input, w, h, bpp)
|
|
for i in 0..6:
|
|
if bpp < 8:
|
|
var padded = newString(pass.paddedStart[i + 1] - pass.paddedStart[i])
|
|
var padding = cstring(padded)
|
|
addPaddingBits(padding, addr(adam7[pass.start[i]]), ((pass.w[i] * bpp + 7) div 8) * 8, pass.w[i] * bpp, pass.h[i])
|
|
var outp:cstring = addr(output[pass.filterStart[i]])
|
|
filter(outp, padding, pass.w[i], pass.h[i], modeOut, state)
|
|
else:
|
|
var outp:cstring = addr(output[pass.filterStart[i]])
|
|
filter(outp, addr(adam7[pass.paddedStart[i]]), pass.w[i], pass.h[i], modeOut, state)
|
|
|
|
#palette must have 4 * palettesize bytes allocated, and given in format RGBARGBARGBARGBA...
|
|
#returns 0 if the palette is opaque,
|
|
#returns 1 if the palette has a single color with alpha 0 ==> color key
|
|
#returns 2 if the palette is semi-translucent.
|
|
proc getPaletteTranslucency(modeOut: PNGColorMode): int =
|
|
var key = 0
|
|
#the value of the color with alpha 0, so long as color keying is possible
|
|
var p: RGBA8
|
|
var i = 0
|
|
while i < modeOut.paletteSize:
|
|
let x = modeOut.palette[i]
|
|
if (key == 0) and (x.a == chr(0)):
|
|
p = x
|
|
key = 1
|
|
i = -1 #restart from beginning, to detect earlier opaque colors with key's value
|
|
elif x.a != chr(255): return 2
|
|
#when key, no opaque RGB may have key's RGB*/
|
|
elif(key != 0) and (p.r == x.r) and (p.g == x.g) and (p.b == x.g): return 2
|
|
inc i
|
|
|
|
result = key
|
|
|
|
proc addChunkIHDR(png: PNG, w,h: int, modeOut: PNGColorMode, state: PNGEncoder) =
|
|
var chunk = make[PNGHeader](IHDR, 13)
|
|
chunk.width = w
|
|
chunk.height = h
|
|
chunk.bitDepth = modeOut.bitDepth
|
|
chunk.colorType = modeOut.colorType
|
|
chunk.compressionMethod = 0
|
|
chunk.filterMethod = 0
|
|
chunk.interlaceMethod = state.interlaceMethod
|
|
png.chunks.add chunk
|
|
|
|
proc addChunkPLTE(png: PNG, modeOut: PNGColorMode) =
|
|
if modeOut.paletteSize == 0: return
|
|
var chunk = make[PNGPalette](PLTE, 3 * modeOut.paletteSize)
|
|
chunk.palette = modeOut.palette
|
|
png.chunks.add chunk
|
|
|
|
proc addChunktRNS(png: PNG, modeOut: PNGColorMode) =
|
|
var chunk = make[PNGTrans](tRNS, 2)
|
|
|
|
if modeOut.colorType == LCT_PALETTE:
|
|
var plte = png.getChunk(PLTE)
|
|
doAssert plte != nil
|
|
elif modeOut.colorType == LCT_GREY:
|
|
if modeOut.keyDefined:
|
|
chunk.keyR = modeOut.keyR
|
|
else:
|
|
chunk.keyR = -1
|
|
elif modeOut.colorType == LCT_RGB:
|
|
if modeOut.keyDefined:
|
|
chunk.keyR = modeOut.keyR
|
|
chunk.keyG = modeOut.keyG
|
|
chunk.keyB = modeOut.keyB
|
|
else:
|
|
chunk.keyR = -1
|
|
png.chunks.add chunk
|
|
|
|
proc addChunkbKGD(png: PNG, modeOut: PNGColorMode, state: PNGEncoder) =
|
|
var chunk = make[PNGBackground](bKGD, 6)
|
|
if modeOut.colorType == LCT_PALETTE:
|
|
#estimate 1 bytes
|
|
chunk.bkgdR = state.backgroundR
|
|
if modeOut.colorType in {LCT_GREY, LCT_GREY_ALPHA}:
|
|
#estimate 2 bytes
|
|
chunk.bkgdR = state.backgroundR
|
|
elif modeOut.colorType in {LCT_RGB, LCT_RGBA}:
|
|
#estimate 6 bytes
|
|
chunk.bkgdR = state.backgroundR
|
|
chunk.bkgdG = state.backgroundG
|
|
chunk.bkgdB = state.backgroundB
|
|
png.chunks.add chunk
|
|
|
|
proc addChunkpHYs(png: PNG, state: PNGEncoder) =
|
|
var chunk = make[PNGPhys](pHYs, 9)
|
|
chunk.physX = state.physX
|
|
chunk.physY = state.physY
|
|
chunk.unit = state.physUnit
|
|
png.chunks.add chunk
|
|
|
|
proc addChunkIDAT(png: PNG, state: PNGEncoder) =
|
|
var chunk = make[PNGData](IDAT, 0)
|
|
chunk.idat = png.pixels
|
|
png.chunks.add chunk
|
|
|
|
proc addChunktIME(png: PNG, state: PNGEncoder) =
|
|
var chunk = make[PNGTime](tIME, 0)
|
|
chunk.year = state.year
|
|
chunk.month = state.month
|
|
chunk.day = state.day
|
|
chunk.hour = state.hour
|
|
chunk.minute = state.minute
|
|
chunk.second = state.second
|
|
png.chunks.add chunk
|
|
|
|
proc addChunktEXt(png: PNG, txt: PNGKeyText) =
|
|
var chunk = make[PNGText](tEXt, txt.keyword.len + txt.text.len + 1)
|
|
chunk.keyword = txt.keyword
|
|
chunk.text = txt.text
|
|
png.chunks.add chunk
|
|
|
|
proc addChunkzTXt(png: PNG, txt: PNGKeyText) =
|
|
var chunk = make[PNGZtxt](zTXt, txt.keyword.len + txt.text.len + 1)
|
|
chunk.keyword = txt.keyword
|
|
chunk.text = txt.text
|
|
png.chunks.add chunk
|
|
|
|
proc addChunkiTXt(png: PNG, txt: PNGIText) =
|
|
var chunk = make[PNGItxt](iTXt, txt.keyword.len + txt.text.len + 1)
|
|
chunk.keyword = txt.keyword
|
|
chunk.translatedKeyword = txt.translatedKeyword
|
|
chunk.languageTag = txt.languageTag
|
|
chunk.text = txt.text
|
|
png.chunks.add chunk
|
|
|
|
proc addChunkIEND(png: PNG) =
|
|
var chunk = make[PNGEnd](IEND, 0)
|
|
png.chunks.add chunk
|
|
|
|
proc encodePNG*(input: string, w, h: int, settings = PNGEncoder(nil)): PNG =
|
|
var png: PNG
|
|
new(png)
|
|
png.chunks = @[]
|
|
|
|
if settings == nil: png.settings = makePNGEncoder()
|
|
else: png.settings = settings
|
|
|
|
let state = PNGEncoder(png.settings)
|
|
var modeIn = newColorMode(state.modeIn)
|
|
var modeOut = newColorMode(state.modeOut)
|
|
|
|
if not bitDepthAllowed(modeIn.colorType, modeIn.bitDepth):
|
|
raise PNGError("modeIn colorType and bitDepth combination not allowed")
|
|
|
|
if not bitDepthAllowed(modeOut.colorType, modeOut.bitDepth):
|
|
raise PNGError("modeOut colorType and bitDepth combination not allowed")
|
|
|
|
if(modeOut.colorType == LCT_PALETTE or state.forcePalette) and
|
|
(modeOut.paletteSize == 0 or modeOut.paletteSize > 256):
|
|
raise PNGError("invalid palette size, it is only allowed to be 1-256")
|
|
|
|
let inputSize = getRawSize(w, h, modeIn)
|
|
if input.len < inputSize:
|
|
raise PNGError("not enough input to encode")
|
|
|
|
if state.autoConvert:
|
|
autoChooseColor(modeOut, input, w, h, modeIn)
|
|
|
|
if state.interlaceMethod notin {IM_NONE, IM_INTERLACED}:
|
|
raise PNGError("unexisting interlace mode")
|
|
|
|
if not bitDepthAllowed(modeOut.colorType, modeOut.bitDepth):
|
|
raise PNGError("colorType and bitDepth combination not allowed")
|
|
|
|
if modeIn != modeOut:
|
|
let size = (w * h * getBPP(modeOut) + 7) div 8
|
|
let numPixels = w * h
|
|
|
|
var converted = newString(size)
|
|
var output = cstring(converted)
|
|
convert(output, cstring(input), modeOut, modeIn, numPixels)
|
|
preProcessScanLines(png, cstring(converted), w, h, modeOut, state)
|
|
else:
|
|
preProcessScanLines(png, cstring(input), w, h, modeOut, state)
|
|
|
|
png.addChunkIHDR(w, h, modeOut, state)
|
|
#unknown chunks between IHDR and PLTE
|
|
if state.unknown.len > 0:
|
|
png.chunks.add state.unknown[0]
|
|
|
|
if modeOut.colorType == LCT_PALETTE: png.addChunkPLTE(modeOut)
|
|
if state.forcePalette and modeOut.colorType in {LCT_RGB, LCT_RGBA}: png.addChunkPLTE(modeOut)
|
|
|
|
if(modeOut.colorType == LCT_PALETTE) and (getPaletteTranslucency(modeOut) != 0):
|
|
png.addChunktRNS(modeOut)
|
|
|
|
if modeOut.colorType in {LCT_GREY, LCT_RGB} and modeOut.keyDefined:
|
|
png.addChunktRNS(modeOut)
|
|
|
|
#bKGD (must come between PLTE and the IDAt chunks
|
|
if state.backgroundDefined: png.addChunkbKGD(modeOut, state)
|
|
|
|
#pHYs (must come before the IDAT chunks)
|
|
if state.physDefined: png.addChunkpHYs(state)
|
|
|
|
#unknown chunks between PLTE and IDAT
|
|
if state.unknown.len > 1:
|
|
png.chunks.add state.unknown[1]
|
|
|
|
#IDAT (multiple IDAT chunks must be consecutive)
|
|
png.addChunkIDAT(state)
|
|
|
|
if state.timeDefined: png.addChunktIME(state)
|
|
|
|
for txt in state.textList:
|
|
if state.textCompression: png.addChunkzTXt(txt)
|
|
else: png.addChunktEXt(txt)
|
|
|
|
if state.addID:
|
|
var txt = PNGKeyText(keyword: "nimPNG", text: NIM_PNG_VERSION)
|
|
png.addChunktEXt(txt)
|
|
|
|
for txt in state.itextList:
|
|
png.addChunkiTXt(txt)
|
|
|
|
#unknown chunks between IDAT and IEND
|
|
if state.unknown.len > 2:
|
|
png.chunks.add state.unknown[2]
|
|
|
|
png.addChunkIEND()
|
|
result = png
|
|
|
|
proc encodePNG*(input: string, colorType: PNGcolorType, bitDepth, w, h: int, settings = PNGEncoder(nil)): PNG =
|
|
if not bitDepthAllowed(colorType, bitDepth):
|
|
raise PNGError("colorType and bitDepth combination not allowed")
|
|
|
|
var state: PNGEncoder
|
|
if settings == nil: state = makePNGEncoder()
|
|
else: state = settings
|
|
|
|
state.modeIn.colorType = colorType
|
|
state.modeIn.bitDepth = bitDepth
|
|
result = encodePNG(input, w, h, state)
|
|
|
|
proc encodePNG32*(input: string, w, h: int): PNG =
|
|
result = encodePNG(input, LCT_RGBA, 8, w, h)
|
|
|
|
proc encodePNG24*(input: string, w, h: int): PNG =
|
|
result = encodePNG(input, LCT_RGB, 8, w, h)
|
|
|
|
proc writeChunks*(png: PNG, s: Stream) =
|
|
s.write PNGSignature
|
|
|
|
for chunk in png.chunks:
|
|
if not chunk.validateChunk(png): raise PNGError("combine chunk validation error")
|
|
if not chunk.writeChunk(png): raise PNGError("combine chunk write error")
|
|
chunk.length = chunk.data.len
|
|
chunk.crc = crc32(crc32(0, $chunk.chunkType), chunk.data)
|
|
|
|
s.writeInt32BE chunk.length
|
|
s.writeInt32BE int(chunk.chunkType)
|
|
s.write chunk.data
|
|
s.writeInt32BE cast[int](chunk.crc)
|
|
|
|
proc savePNG*(fileName, input: string, colorType: PNGcolorType, bitDepth, w, h: int): bool =
|
|
try:
|
|
var png = encodePNG(input, colorType, bitDepth, w, h)
|
|
var s = newFileStream(fileName, fmWrite)
|
|
png.writeChunks s
|
|
s.close()
|
|
result = true
|
|
except:
|
|
debugEcho getCurrentExceptionMsg()
|
|
result = false
|
|
|
|
proc savePNG32*(fileName, input: string, w, h: int): bool =
|
|
result = savePNG(fileName, input, LCT_RGBA, 8, w, h)
|
|
|
|
proc savePNG24*(fileName, input: string, w, h: int): bool =
|
|
result = savePNG(fileName, input, LCT_RGB, 8, w, h)
|
|
|
|
proc getFilterTypesInterlaced(png: PNG): seq[string] =
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
var idat = PNGData(png.getChunk(IDAT))
|
|
|
|
if header.interlaceMethod == IM_NONE:
|
|
result = newSeq[string](1)
|
|
result[0] = ""
|
|
|
|
#A line is 1 filter byte + all pixels
|
|
let lineBytes = 1 + idatRawSize(header.width, 1, header)
|
|
var i = 0
|
|
while i < idat.idat.len:
|
|
result[0].add idat.idat[i]
|
|
inc(i, lineBytes)
|
|
else:
|
|
result = newSeq[string](7)
|
|
for j in 0..6:
|
|
result[j] = ""
|
|
var w2 = (header.width - ADAM7_IX[j] + ADAM7_DX[j] - 1) div ADAM7_DX[j]
|
|
var h2 = (header.height - ADAM7_IY[j] + ADAM7_DY[j] - 1) div ADAM7_DY[j]
|
|
if(ADAM7_IX[j] >= header.width) or (ADAM7_IY[j] >= header.height):
|
|
w2 = 0
|
|
h2 = 0
|
|
|
|
let lineBytes = 1 + idatRawSize(w2, 1, header)
|
|
var pos = 0
|
|
for i in 0..h2-1:
|
|
result[j].add idat.idat[pos]
|
|
inc(pos, linebytes)
|
|
|
|
proc getFilterTypes*(png: PNG): string =
|
|
var passes = getFilterTypesInterlaced(png)
|
|
|
|
if passes.len == 1:
|
|
result = passes[0]
|
|
else:
|
|
var header = PNGHeader(png.getChunk(IHDR))
|
|
#Interlaced. Simplify it: put pass 6 and 7 alternating in the one vector so
|
|
#that one filter per scanline of the uninterlaced image is given, with that
|
|
#filter corresponding the closest to what it would be for non-interlaced image.
|
|
result = ""
|
|
for i in 0..header.height-1:
|
|
if (i mod 2) == 0: result.add passes[5][i div 2]
|
|
else: result.add passes[6][i div 2]
|