mirror of
https://github.com/status-im/nimPNG.git
synced 2025-01-12 21:54:13 +00:00
commit
778fee7b10
365
nimPNG.nim
365
nimPNG.nim
@ -30,6 +30,8 @@ import nimPNG/[buffer, nimz, filters, results]
|
||||
|
||||
import strutils
|
||||
|
||||
export typetraits, results
|
||||
|
||||
const
|
||||
NIM_PNG_VERSION = "0.3.0"
|
||||
|
||||
@ -254,7 +256,7 @@ proc `$`*(tag: PNGChunkType): string =
|
||||
result[2] = chr(uint32(t shr 8) and 0xFF)
|
||||
result[3] = chr(uint32(t) and 0xFF)
|
||||
|
||||
proc `==`(a, b: PNGChunkType): bool = int(a) == int(b)
|
||||
proc `==`*(a, b: PNGChunkType): bool = int(a) == int(b)
|
||||
#proc isAncillary(a: PNGChunkType): bool = (int(a) and (32 shl 24)) != 0
|
||||
#proc isPrivate(a: PNGChunkType): bool = (int(a) and (32 shl 16)) != 0
|
||||
#proc isSafeToCopy(a: PNGChunkType): bool = (int(a) and 32) != 0
|
||||
@ -271,6 +273,18 @@ proc crc32(crc: uint32, buf: string): uint32 =
|
||||
|
||||
result = not crcu32
|
||||
|
||||
template newStorage[T](size: int): T =
|
||||
when T is string:
|
||||
newString(size)
|
||||
else:
|
||||
newSeq[uint8](size)
|
||||
|
||||
template newStorageOfCap[T](size: int): T =
|
||||
when T is string:
|
||||
newStringOfCap(size)
|
||||
else:
|
||||
newSeqOfCap[uint8](size)
|
||||
|
||||
const
|
||||
PNGSignature = signatureMaker()
|
||||
IHDR = makeChunkType("IHDR")
|
||||
@ -381,7 +395,7 @@ proc readByte(s: PNGChunk): int =
|
||||
inc s.pos
|
||||
|
||||
template readEnum(s: PNGChunk, T: type): untyped =
|
||||
let typ = s.readByte.int
|
||||
let typ = readByte(s).int
|
||||
if typ < low(T).int or typ > high(T).int:
|
||||
raise PNGFatal("Wrong " & T.name & " value " & $typ)
|
||||
T(typ)
|
||||
@ -949,7 +963,8 @@ proc parsePNG[T](s: Stream, settings: PNGDecoder): PNG[T] =
|
||||
if not idat.validateChunk(png): raise PNGFatal("bad IDAT")
|
||||
result = png
|
||||
|
||||
proc postProcessScanLines[T](png: PNG; header: PNGHeader, w, h: int; input, output: var openArray[T]) =
|
||||
proc postProcessScanLines[T, A, B](png: PNG[T]; header: PNGHeader, w, h: int; input: var openArray[A],
|
||||
output: var openArray[B]) =
|
||||
# This function converts the filtered-padded-interlaced data
|
||||
# into pure 2D image buffer with the PNG's colorType.
|
||||
# Steps:
|
||||
@ -993,25 +1008,25 @@ proc postProcessScanLines[T](png: PNG; header: PNGHeader, w, h: int; input, outp
|
||||
|
||||
adam7Deinterlace(output, input, w, h, bpp)
|
||||
|
||||
proc postProcessScanLines(png: PNG) =
|
||||
proc postProcessScanLines[T](png: PNG[T]) =
|
||||
var header = PNGHeader(png.getChunk(IHDR))
|
||||
let w = header.width
|
||||
let h = header.height
|
||||
var idat = PNGData(png.getChunk(IDAT))
|
||||
png.pixels = newString(idatRawSize(header.width, header.height, header))
|
||||
png.pixels = newStorage[T](idatRawSize(header.width, header.height, header))
|
||||
|
||||
png.postProcessScanLines(header, w, h,
|
||||
idat.idat.toOpenArray(0, idat.idat.len-1), # input
|
||||
png.pixels.toOpenArray(0, png.pixels.len-1) # output
|
||||
)
|
||||
|
||||
proc postProcessScanLines(png: PNG, ctl: APNGFrameControl, data: var string) =
|
||||
proc postProcessScanLines[T](png: PNG[T], ctl: APNGFrameControl, data: var string) =
|
||||
# we use var string here to avoid realloc
|
||||
# coz we use the input as output too
|
||||
var header = PNGHeader(png.getChunk(IHDR))
|
||||
let w = ctl.width
|
||||
let h = ctl.height
|
||||
png.apngPixels.add newString(idatRawSize(ctl.width, ctl.height, header))
|
||||
png.apngPixels.add newStorage[T](idatRawSize(ctl.width, ctl.height, header))
|
||||
|
||||
png.postProcessScanLines(header, w, h,
|
||||
data.toOpenArray(0, data.len-1), # input
|
||||
@ -1112,9 +1127,9 @@ proc RGBFromRGB16[T](output: var openArray[T], input: openArray[T], numPixels: i
|
||||
for i in 0..<numPixels:
|
||||
let x = i * 3
|
||||
let y = i * 6
|
||||
output[x] = input[y]
|
||||
output[x+1] = input[y+2]
|
||||
output[x+2] = input[y+4]
|
||||
output[x] = T(input[y])
|
||||
output[x+1] = T(input[y+2])
|
||||
output[x+2] = T(input[y+4])
|
||||
|
||||
proc RGBFromPalette8[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
for i in 0..<numPixels:
|
||||
@ -1123,13 +1138,13 @@ proc RGBFromPalette8[T](output: var openArray[T], input: openArray[T], numPixels
|
||||
if index >= mode.paletteSize:
|
||||
# This is an error according to the PNG spec, but most PNG decoders make it black instead.
|
||||
# Done here too, slightly faster due to no error handling needed.
|
||||
output[x] = chr(0)
|
||||
output[x+1] = chr(0)
|
||||
output[x+2] = chr(0)
|
||||
output[x] = T(0)
|
||||
output[x+1] = T(0)
|
||||
output[x+2] = T(0)
|
||||
else:
|
||||
output[x] = mode.palette[index].r
|
||||
output[x+1] = mode.palette[index].g
|
||||
output[x+2] = mode.palette[index].b
|
||||
output[x] = T(mode.palette[index].r)
|
||||
output[x+1] = T(mode.palette[index].g)
|
||||
output[x+2] = T(mode.palette[index].b)
|
||||
|
||||
proc RGBFromPalette124[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
var obp = 0
|
||||
@ -1139,13 +1154,13 @@ proc RGBFromPalette124[T](output: var openArray[T], input: openArray[T], numPixe
|
||||
if index >= mode.paletteSize:
|
||||
# This is an error according to the PNG spec, but most PNG decoders make it black instead.
|
||||
# Done here too, slightly faster due to no error handling needed.
|
||||
output[x] = chr(0)
|
||||
output[x+1] = chr(0)
|
||||
output[x+2] = chr(0)
|
||||
output[x] = T(0)
|
||||
output[x+1] = T(0)
|
||||
output[x+2] = T(0)
|
||||
else:
|
||||
output[x] = mode.palette[index].r
|
||||
output[x+1] = mode.palette[index].g
|
||||
output[x+2] = mode.palette[index].b
|
||||
output[x] = T(mode.palette[index].r)
|
||||
output[x+1] = T(mode.palette[index].g)
|
||||
output[x+2] = T(mode.palette[index].b)
|
||||
|
||||
proc RGBFromGreyAlpha8[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
for i in 0..<numPixels:
|
||||
@ -1185,8 +1200,8 @@ proc RGBAFromGrey8[T](output: var openArray[T], input: openArray[T], numPixels:
|
||||
output[x] = input[i]
|
||||
output[x+1] = input[i]
|
||||
output[x+2] = input[i]
|
||||
if mode.keyDefined and (ord(input[i]) == mode.keyR): output[x+3] = chr(0)
|
||||
else: output[x+3] = chr(255)
|
||||
if mode.keyDefined and (ord(input[i]) == mode.keyR): output[x+3] = T(0)
|
||||
else: output[x+3] = T(255)
|
||||
|
||||
proc RGBAFromGrey16[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
for i in 0..<numPixels:
|
||||
@ -1196,21 +1211,21 @@ proc RGBAFromGrey16[T](output: var openArray[T], input: openArray[T], numPixels:
|
||||
output[x+1] = input[y]
|
||||
output[x+2] = input[y]
|
||||
let keyR = 256 * ord(input[y + 0]) + ord(input[y + 1])
|
||||
if mode.keyDefined and (keyR == mode.keyR): output[x+3] = chr(0)
|
||||
else: output[x+3] = chr(255)
|
||||
if mode.keyDefined and (keyR == mode.keyR): output[x+3] = T(0)
|
||||
else: output[x+3] = T(255)
|
||||
|
||||
proc RGBAFromGrey124[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
var highest = ((1 shl mode.bitDepth) - 1) #highest possible value for this bit depth
|
||||
var obp = 0
|
||||
for i in 0..<numPixels:
|
||||
let val = readBitsFromReversedStream(obp, input, mode.bitDepth)
|
||||
let value = chr((val * 255) div highest)
|
||||
let value = T((val * 255) div highest)
|
||||
let x = i * 4
|
||||
output[x] = value
|
||||
output[x+1] = value
|
||||
output[x+2] = value
|
||||
if mode.keyDefined and (ord(val) == mode.keyR): output[x+3] = chr(0)
|
||||
else: output[x+3] = chr(255)
|
||||
output[x] = T(value)
|
||||
output[x+1] = T(value)
|
||||
output[x+2] = T(value)
|
||||
if mode.keyDefined and (ord(val) == mode.keyR): output[x+3] = T(0)
|
||||
else: output[x+3] = T(255)
|
||||
|
||||
proc RGBAFromRGB8[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
for i in 0..<numPixels:
|
||||
@ -1220,8 +1235,8 @@ proc RGBAFromRGB8[T](output: var openArray[T], input: openArray[T], numPixels: i
|
||||
output[x+1] = input[y+1]
|
||||
output[x+2] = input[y+2]
|
||||
if mode.keyDefined and (mode.keyR == ord(input[y])) and
|
||||
(mode.keyG == ord(input[y+1])) and (mode.keyB == ord(input[y+2])): output[x+3] = chr(0)
|
||||
else: output[x+3] = chr(255)
|
||||
(mode.keyG == ord(input[y+1])) and (mode.keyB == ord(input[y+2])): output[x+3] = T(0)
|
||||
else: output[x+3] = T(255)
|
||||
|
||||
proc RGBAFromRGB16[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
for i in 0..<numPixels:
|
||||
@ -1234,8 +1249,8 @@ proc RGBAFromRGB16[T](output: var openArray[T], input: openArray[T], numPixels:
|
||||
let keyG = 256 * ord(input[y+2]) + ord(input[y+3])
|
||||
let keyB = 256 * ord(input[y+4]) + ord(input[y+5])
|
||||
if mode.keyDefined and (mode.keyR == keyR) and
|
||||
(mode.keyG == keyG) and (mode.keyB == keyB): output[x+3] = chr(0)
|
||||
else: output[x+3] = chr(255)
|
||||
(mode.keyG == keyG) and (mode.keyB == keyB): output[x+3] = T(0)
|
||||
else: output[x+3] = T(255)
|
||||
|
||||
proc RGBAFromPalette8[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
for i in 0..<numPixels:
|
||||
@ -1244,15 +1259,15 @@ proc RGBAFromPalette8[T](output: var openArray[T], input: openArray[T], numPixel
|
||||
if index >= mode.paletteSize:
|
||||
# This is an error according to the PNG spec, but most PNG decoders make it black instead.
|
||||
# Done here too, slightly faster due to no error handling needed.
|
||||
output[x] = chr(0)
|
||||
output[x+1] = chr(0)
|
||||
output[x+2] = chr(0)
|
||||
output[x+3] = chr(0)
|
||||
output[x] = T(0)
|
||||
output[x+1] = T(0)
|
||||
output[x+2] = T(0)
|
||||
output[x+3] = T(0)
|
||||
else:
|
||||
output[x] = mode.palette[index].r
|
||||
output[x+1] = mode.palette[index].g
|
||||
output[x+2] = mode.palette[index].b
|
||||
output[x+3] = mode.palette[index].a
|
||||
output[x] = T(mode.palette[index].r)
|
||||
output[x+1] = T(mode.palette[index].g)
|
||||
output[x+2] = T(mode.palette[index].b)
|
||||
output[x+3] = T(mode.palette[index].a)
|
||||
|
||||
proc RGBAFromPalette124[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
var obp = 0
|
||||
@ -1262,15 +1277,15 @@ proc RGBAFromPalette124[T](output: var openArray[T], input: openArray[T], numPix
|
||||
if index >= mode.paletteSize:
|
||||
# This is an error according to the PNG spec, but most PNG decoders make it black instead.
|
||||
# Done here too, slightly faster due to no error handling needed.
|
||||
output[x] = chr(0)
|
||||
output[x+1] = chr(0)
|
||||
output[x+2] = chr(0)
|
||||
output[x+3] = chr(0)
|
||||
output[x] = T(0)
|
||||
output[x+1] = T(0)
|
||||
output[x+2] = T(0)
|
||||
output[x+3] = T(0)
|
||||
else:
|
||||
output[x] = mode.palette[index].r
|
||||
output[x+1] = mode.palette[index].g
|
||||
output[x+2] = mode.palette[index].b
|
||||
output[x+3] = mode.palette[index].a
|
||||
output[x] = T(mode.palette[index].r)
|
||||
output[x+1] = T(mode.palette[index].g)
|
||||
output[x+2] = T(mode.palette[index].b)
|
||||
output[x+3] = T(mode.palette[index].a)
|
||||
|
||||
proc RGBAFromGreyAlpha8[T](output: var openArray[T], input: openArray[T], numPixels: int, mode: PNGColorMode) =
|
||||
for i in 0..<numPixels:
|
||||
@ -1324,52 +1339,52 @@ proc hash*(c: RGBA8): Hash =
|
||||
result = !$(h)
|
||||
|
||||
proc RGBA8FromGrey8[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
p.r = input[px]
|
||||
p.g = input[px]
|
||||
p.b = input[px]
|
||||
if mode.keyDefined and (ord(p.r) == mode.keyR): p.a = chr(0)
|
||||
else: p.a = chr(255)
|
||||
p.r = char(input[px])
|
||||
p.g = char(input[px])
|
||||
p.b = char(input[px])
|
||||
if mode.keyDefined and (ord(p.r) == mode.keyR): p.a = char(0)
|
||||
else: p.a = char(255)
|
||||
|
||||
proc RGBA8FromGrey16[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let i = px * 2
|
||||
let keyR = 256 * ord(input[i]) + ord(input[i + 1])
|
||||
p.r = input[i]
|
||||
p.g = input[i]
|
||||
p.b = input[i]
|
||||
if mode.keyDefined and (keyR == mode.keyR): p.a = chr(0)
|
||||
else: p.a = chr(255)
|
||||
p.r = char(input[i])
|
||||
p.g = char(input[i])
|
||||
p.b = char(input[i])
|
||||
if mode.keyDefined and (keyR == mode.keyR): p.a = char(0)
|
||||
else: p.a = char(255)
|
||||
|
||||
proc RGBA8FromGrey124[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let highest = ((1 shl mode.bitDepth) - 1) #highest possible value for this bit depth
|
||||
var obp = px * mode.bitDepth
|
||||
let val = readBitsFromReversedStream(obp, input, mode.bitDepth)
|
||||
let value = chr((val * 255) div highest)
|
||||
let value = char((val * 255) div highest)
|
||||
p.r = value
|
||||
p.g = value
|
||||
p.b = value
|
||||
if mode.keyDefined and (ord(val) == mode.keyR): p.a = chr(0)
|
||||
else: p.a = chr(255)
|
||||
if mode.keyDefined and (ord(val) == mode.keyR): p.a = char(0)
|
||||
else: p.a = char(255)
|
||||
|
||||
proc RGBA8FromRGB8[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let y = px * 3
|
||||
p.r = input[y]
|
||||
p.g = input[y+1]
|
||||
p.b = input[y+2]
|
||||
p.r = char(input[y])
|
||||
p.g = char(input[y+1])
|
||||
p.b = char(input[y+2])
|
||||
if mode.keyDefined and (mode.keyR == ord(input[y])) and
|
||||
(mode.keyG == ord(input[y+1])) and (mode.keyB == ord(input[y+2])): p.a = chr(0)
|
||||
else: p.a = chr(255)
|
||||
(mode.keyG == ord(input[y+1])) and (mode.keyB == ord(input[y+2])): p.a = char(0)
|
||||
else: p.a = char(255)
|
||||
|
||||
proc RGBA8FromRGB16[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let y = px * 6
|
||||
p.r = input[y]
|
||||
p.g = input[y+2]
|
||||
p.b = input[y+4]
|
||||
p.r = char(input[y])
|
||||
p.g = char(input[y+2])
|
||||
p.b = char(input[y+4])
|
||||
let keyR = 256 * ord(input[y]) + ord(input[y+1])
|
||||
let keyG = 256 * ord(input[y+2]) + ord(input[y+3])
|
||||
let keyB = 256 * ord(input[y+4]) + ord(input[y+5])
|
||||
if mode.keyDefined and (mode.keyR == keyR) and
|
||||
(mode.keyG == keyG) and (mode.keyB == keyB): p.a = chr(0)
|
||||
else: p.a = chr(255)
|
||||
(mode.keyG == keyG) and (mode.keyB == keyB): p.a = char(0)
|
||||
else: p.a = char(255)
|
||||
|
||||
proc RGBA8FromPalette8[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let index = ord(input[px])
|
||||
@ -1377,10 +1392,10 @@ proc RGBA8FromPalette8[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGC
|
||||
# This is an error according to the PNG spec,
|
||||
# but common PNG decoders make it black instead.
|
||||
# Done here too, slightly faster due to no error handling needed.
|
||||
p.r = chr(0)
|
||||
p.g = chr(0)
|
||||
p.b = chr(0)
|
||||
p.a = chr(255)
|
||||
p.r = char(0)
|
||||
p.g = char(0)
|
||||
p.b = char(0)
|
||||
p.a = char(255)
|
||||
else:
|
||||
p.r = mode.palette[index].r
|
||||
p.g = mode.palette[index].g
|
||||
@ -1394,10 +1409,10 @@ proc RGBA8FromPalette124[T](p: var RGBA8, input: openArray[T], px: int, mode: PN
|
||||
# This is an error according to the PNG spec,
|
||||
# but common PNG decoders make it black instead.
|
||||
# Done here too, slightly faster due to no error handling needed.
|
||||
p.r = chr(0)
|
||||
p.g = chr(0)
|
||||
p.b = chr(0)
|
||||
p.a = chr(255)
|
||||
p.r = char(0)
|
||||
p.g = char(0)
|
||||
p.b = char(0)
|
||||
p.a = char(255)
|
||||
else:
|
||||
p.r = mode.palette[index].r
|
||||
p.g = mode.palette[index].g
|
||||
@ -1406,33 +1421,33 @@ proc RGBA8FromPalette124[T](p: var RGBA8, input: openArray[T], px: int, mode: PN
|
||||
|
||||
proc RGBA8FromGreyAlpha8[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let i = px * 2
|
||||
let val = input[i]
|
||||
let val = char(input[i])
|
||||
p.r = val
|
||||
p.g = val
|
||||
p.b = val
|
||||
p.a = input[i+1]
|
||||
p.a = char(input[i+1])
|
||||
|
||||
proc RGBA8FromGreyAlpha16[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let i = px * 4
|
||||
let val = input[i]
|
||||
let val = char(input[i])
|
||||
p.r = val
|
||||
p.g = val
|
||||
p.b = val
|
||||
p.a = input[i+2]
|
||||
p.a = char(input[i+2])
|
||||
|
||||
proc RGBA8FromRGBA8[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let i = px * 4
|
||||
p.r = input[i]
|
||||
p.g = input[i+1]
|
||||
p.b = input[i+2]
|
||||
p.a = input[i+3]
|
||||
p.r = char(input[i])
|
||||
p.g = char(input[i+1])
|
||||
p.b = char(input[i+2])
|
||||
p.a = char(input[i+3])
|
||||
|
||||
proc RGBA8FromRGBA16[T](p: var RGBA8, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let i = px * 8
|
||||
p.r = input[i]
|
||||
p.g = input[i+2]
|
||||
p.b = input[i+4]
|
||||
p.a = input[i+6]
|
||||
p.r = chaR(input[i])
|
||||
p.g = chaR(input[i+2])
|
||||
p.b = chaR(input[i+4])
|
||||
p.a = chaR(input[i+6])
|
||||
|
||||
proc RGBA16FromGrey[T](p: var RGBA16, input: openArray[T], px: int, mode: PNGColorMode) =
|
||||
let i = px * 2
|
||||
@ -1468,12 +1483,12 @@ proc RGBA16FromRGBA[T](p: var RGBA16, input: openArray[T], px: int, mode: PNGCol
|
||||
p.a = 256'u16 * uint16(input[i+6]) + uint16(input[i+7])
|
||||
|
||||
proc RGBA8ToGrey8[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
output[px] = p.r
|
||||
output[px] = T(p.r)
|
||||
|
||||
proc RGBA8ToGrey16[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
let i = px * 2
|
||||
output[i] = p.r
|
||||
output[i+1] = p.r
|
||||
output[i] = T(p.r)
|
||||
output[i+1] = T(p.r)
|
||||
|
||||
proc RGBA8ToGrey124[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
# take the most significant bits of grey
|
||||
@ -1482,18 +1497,18 @@ proc RGBA8ToGrey124[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGCol
|
||||
|
||||
proc RGBA8ToRGB8[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
let i = px * 3
|
||||
output[i] = p.r
|
||||
output[i+1] = p.g
|
||||
output[i+2] = p.b
|
||||
output[i] = T(p.r)
|
||||
output[i+1] = T(p.g)
|
||||
output[i+2] = T(p.b)
|
||||
|
||||
proc RGBA8ToRGB16[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
let i = px * 6
|
||||
output[i] = p.r
|
||||
output[i+2] = p.g
|
||||
output[i+4] = p.b
|
||||
output[i+1] = p.r
|
||||
output[i+3] = p.g
|
||||
output[i+5] = p.b
|
||||
output[i] = T(p.r)
|
||||
output[i+2] = T(p.g)
|
||||
output[i+4] = T(p.b)
|
||||
output[i+1] = T(p.r)
|
||||
output[i+3] = T(p.g)
|
||||
output[i+5] = T(p.b)
|
||||
|
||||
proc RGBA8ToPalette8[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
output[px] = T(ct[p])
|
||||
@ -1503,37 +1518,37 @@ proc RGBA8ToPalette124[T](p: RGBA8, output: var openArray[T], px: int, mode: PNG
|
||||
|
||||
proc RGBA8ToGreyAlpha8[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
let i = px * 2
|
||||
output[i] = p.r
|
||||
output[i+1] = p.a
|
||||
output[i] = T(p.r)
|
||||
output[i+1] = T(p.a)
|
||||
|
||||
proc RGBA8ToGreyAlpha16[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
let i = px * 4
|
||||
output[i] = p.r
|
||||
output[i+1] = p.r
|
||||
output[i+2] = p.a
|
||||
output[i+3] = p.a
|
||||
output[i] = T(p.r)
|
||||
output[i+1] = T(p.r)
|
||||
output[i+2] = T(p.a)
|
||||
output[i+3] = T(p.a)
|
||||
|
||||
proc RGBA8ToRGBA8[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
let i = px * 4
|
||||
output[i] = p.r
|
||||
output[i+1] = p.g
|
||||
output[i+2] = p.b
|
||||
output[i+3] = p.a
|
||||
output[i] = T(p.r)
|
||||
output[i+1] = T(p.g)
|
||||
output[i+2] = T(p.b)
|
||||
output[i+3] = T(p.a)
|
||||
|
||||
proc RGBA8ToRGBA16[T](p: RGBA8, output: var openArray[T], px: int, mode: PNGColorMode, ct: ColorTree8) =
|
||||
let i = px * 8
|
||||
output[i] = p.r
|
||||
output[i+2] = p.g
|
||||
output[i+4] = p.b
|
||||
output[i+6] = p.a
|
||||
output[i+1] = p.r
|
||||
output[i+3] = p.g
|
||||
output[i+5] = p.b
|
||||
output[i+7] = p.a
|
||||
output[i] = T(p.r)
|
||||
output[i+2] = T(p.g)
|
||||
output[i+4] = T(p.b)
|
||||
output[i+6] = T(p.a)
|
||||
output[i+1] = T(p.r)
|
||||
output[i+3] = T(p.g)
|
||||
output[i+5] = T(p.b)
|
||||
output[i+7] = T(p.a)
|
||||
|
||||
proc RGBA16ToGrey[T](p: RGBA16, output: var openArray[T], px: int, mode: PNGColorMode) =
|
||||
let i = px * 2
|
||||
output[i] = T((p.r shr 8) and 255)
|
||||
output[i] = T((p.r shr 8) and 255)
|
||||
output[i+1] = T(p.r and 255)
|
||||
|
||||
proc RGBA16ToRGB[T](p: RGBA16, output: var openArray[T], px: int, mode: PNGColorMode) =
|
||||
@ -1691,7 +1706,7 @@ proc convertImpl*[T](output: var openArray[T], input: openArray[T], modeOut, mod
|
||||
let cvt = getColorRGBA8[T](modeIn)
|
||||
let pxl = getPixelRGBA8[T](modeOut)
|
||||
for px in 0..<numPixels:
|
||||
var p = RGBA8(r:chr(0), g:chr(0), b:chr(0), a:chr(0))
|
||||
var p = RGBA8(r:char(0), g:char(0), b:char(0), a:char(0))
|
||||
cvt(p, input, px, modeIn)
|
||||
pxl(p, output, px, modeOut, tree)
|
||||
|
||||
@ -1710,10 +1725,7 @@ proc convert*[T](png: PNG[T], colorType: PNGColorType, bitDepth: int): PNGResult
|
||||
new(result)
|
||||
result.width = header.width
|
||||
result.height = header.height
|
||||
when T is string:
|
||||
result.data = newString(size)
|
||||
else:
|
||||
result.data = newSeq[uint8](size)
|
||||
result.data = newStorage[T](size)
|
||||
|
||||
if modeOut == modeIn:
|
||||
result.data = png.pixels
|
||||
@ -1723,7 +1735,7 @@ proc convert*[T](png: PNG[T], colorType: PNGColorType, bitDepth: int): PNGResult
|
||||
png.pixels.toOpenArray(0, png.pixels.len-1),
|
||||
modeOut, modeIn, numPixels)
|
||||
|
||||
proc convert*[T](png: PNG[T], colorType: PNGColorType, bitDepth: int, ctl: APNGFrameControl, data: string): APNGFrame[T] =
|
||||
proc convert*[T](png: PNG[T], colorType: PNGColorType, bitDepth: int, ctl: APNGFrameControl, data: T): APNGFrame[T] =
|
||||
let modeIn = png.getColorMode()
|
||||
let modeOut = newColorMode(colorType, bitDepth)
|
||||
let size = getRawSize(ctl.width, ctl.height, modeOut)
|
||||
@ -1731,10 +1743,7 @@ proc convert*[T](png: PNG[T], colorType: PNGColorType, bitDepth: int, ctl: APNGF
|
||||
|
||||
new(result)
|
||||
result.ctl = ctl
|
||||
when T is string:
|
||||
result.data = newString(size)
|
||||
else:
|
||||
result.data = newSeq[uint8](size)
|
||||
result.data = newStorage[T](size)
|
||||
|
||||
if modeOut == modeIn:
|
||||
result.data = data
|
||||
@ -1744,10 +1753,10 @@ proc convert*[T](png: PNG[T], colorType: PNGColorType, bitDepth: int, ctl: APNGF
|
||||
data.toOpenArray(0, data.len-1),
|
||||
modeOut, modeIn, numPixels)
|
||||
|
||||
proc toString(chunk: APNGFrameData): string =
|
||||
proc toStorage[T](chunk: APNGFrameData): T =
|
||||
let fdatLen = chunk.data.len - chunk.frameDataPos
|
||||
let fdatAddr = chunk.data[chunk.frameDataPos].addr
|
||||
result = newString(fdatLen)
|
||||
result = newStorage[T](fdatLen)
|
||||
copyMem(result[0].addr, fdatAddr, fdatLen)
|
||||
|
||||
type
|
||||
@ -1768,7 +1777,10 @@ proc processingAPNG[T](apng: APNG[T], colorType: PNGColorType, bitDepth: int) =
|
||||
if apng.png.firstFrameIsDefaultImage:
|
||||
start = 1
|
||||
# IDAT already processed, so we add a dummy here
|
||||
frameData.add ""
|
||||
when T is string:
|
||||
frameData.add ""
|
||||
else:
|
||||
frameData.add @[]
|
||||
|
||||
for x in apng.png.apngChunks:
|
||||
if x.chunkType == fcTL:
|
||||
@ -1778,9 +1790,9 @@ proc processingAPNG[T](apng: APNG[T], colorType: PNGColorType, bitDepth: int) =
|
||||
else:
|
||||
let y = APNGFrameData(x)
|
||||
if lastChunkType == fdAT:
|
||||
frameData[^1].add y.toString()
|
||||
frameData[^1].add toStorage[T](y)
|
||||
else:
|
||||
frameData.add y.toString()
|
||||
frameData.add toStorage[T](y)
|
||||
lastChunkType = fdAT
|
||||
|
||||
if actl.numFrames == 0 or actl.numFrames != numFrames or actl.numFrames != frameData.len:
|
||||
@ -1806,7 +1818,10 @@ proc processingAPNG[T](apng: APNG[T], colorType: PNGColorType, bitDepth: int) =
|
||||
|
||||
for i in start..<numFrames:
|
||||
let ctl = frameControl[i]
|
||||
var nz = nzInflateInit(frameData[i])
|
||||
when T is string:
|
||||
var nz = nzInflateInit(frameData[i])
|
||||
else:
|
||||
var nz = nzInflateInit(cast[string](frameData[i]))
|
||||
nz.ignoreAdler32 = PNGDecoder(apng.png.settings).ignoreAdler32
|
||||
var idat = zlib_decompress(nz)
|
||||
apng.png.postProcessScanLines(ctl, idat)
|
||||
@ -1860,7 +1875,7 @@ when not defined(js):
|
||||
if s == nil:
|
||||
result.err("cannot open input stream")
|
||||
return
|
||||
result.ok(s.decodePNG(colorType, bitDepth, settings))
|
||||
result.ok(decodePNG(T, s, colorType, bitDepth, settings))
|
||||
s.close()
|
||||
except PNGError, IOError, NZError:
|
||||
result.err(getCurrentExceptionMsg())
|
||||
@ -1880,7 +1895,7 @@ proc decodePNG32Impl*[T](input: T, settings = PNGDecoder(nil)): PNGRes[T] =
|
||||
if s == nil:
|
||||
result.err("cannot open input stream")
|
||||
return
|
||||
result.ok(s.decodePNG(LCT_RGBA, 8, settings))
|
||||
result.ok(decodePNG(T, s, LCT_RGBA, 8, settings))
|
||||
except PNGError, IOError, NZError:
|
||||
result.err(getCurrentExceptionMsg())
|
||||
|
||||
@ -1893,7 +1908,7 @@ proc decodePNG24Impl*[T](input: T, settings = PNGDecoder(nil)): PNGRes[T] =
|
||||
if s == nil:
|
||||
result.err("cannot open input stream")
|
||||
return
|
||||
result.ok(s.decodePNG(LCT_RGB, 8, settings))
|
||||
result.ok(decodePNG(T, s, LCT_RGB, 8, settings))
|
||||
except PNGError, IOError, NZError:
|
||||
result.err(getCurrentExceptionMsg())
|
||||
|
||||
@ -1933,12 +1948,16 @@ proc decodePNG24Legacy*(input: string, settings = PNGDecoder(nil)): PNGResult[st
|
||||
template decodePNG32*[T](input: T, settings = PNGDecoder(nil)): untyped =
|
||||
when T is string:
|
||||
decodePNG32Legacy(input, settings)
|
||||
elif T is openArray:
|
||||
decodePNG32Impl(@(input), settings)
|
||||
else:
|
||||
decodePNG32Impl(input, settings)
|
||||
|
||||
template decodePNG24*[T](input: T, settings = PNGDecoder(nil)): untyped =
|
||||
when T is string:
|
||||
decodePNG24Legacy(input, settings)
|
||||
elif T is openArray:
|
||||
decodePNG24Impl(@(input), settings)
|
||||
else:
|
||||
decodePNG24Impl(input, settings)
|
||||
|
||||
@ -2325,7 +2344,7 @@ proc writeChunk(chunk: APNGFrameControl, png: PNG): bool =
|
||||
|
||||
proc writeChunk(chunk: APNGFrameData, png: PNG): bool =
|
||||
chunk.writeInt32(chunk.sequenceNumber)
|
||||
var nz = nzDeflateInit(png.apngPixels[chunk.frameDataPos])
|
||||
var nz = nzDeflateInit(cast[string](png.apngPixels[chunk.frameDataPos]))
|
||||
chunk.writeString zlib_compress(nz)
|
||||
result = true
|
||||
|
||||
@ -2384,7 +2403,7 @@ proc differ(p: RGBA16): bool =
|
||||
if (p.a and 255) != ((p.a shr 8) and 255): return true
|
||||
result = false
|
||||
|
||||
proc calculateColorProfile(input: string, w, h: int, mode: PNGColorMode, prof: PNGColorProfile, tree: var Table[RGBA8, int]) =
|
||||
proc calculateColorProfile[T](input: openArray[T], w, h: int, mode: PNGColorMode, prof: PNGColorProfile, tree: var Table[RGBA8, int]) =
|
||||
let
|
||||
numPixels = w * h
|
||||
bpp = getBPP(mode)
|
||||
@ -2406,7 +2425,7 @@ proc calculateColorProfile(input: string, w, h: int, mode: PNGColorMode, prof: P
|
||||
|
||||
#Check if the 16-bit input is truly 16-bit
|
||||
if mode.bitDepth == 16:
|
||||
let cvt = getColorRGBA16[char](mode)
|
||||
let cvt = getColorRGBA16[T](mode)
|
||||
var p = RGBA16(r:0, g:0, b:0, a:0)
|
||||
for px in 0..<numPixels:
|
||||
cvt(p, input.toOpenArray(0, input.len-1), px, mode)
|
||||
@ -2415,7 +2434,7 @@ proc calculateColorProfile(input: string, w, h: int, mode: PNGColorMode, prof: P
|
||||
break
|
||||
|
||||
if sixteen:
|
||||
let cvt = getColorRGBA16[char](mode)
|
||||
let cvt = getColorRGBA16[T](mode)
|
||||
var p = RGBA16(r:0, g:0, b:0, a:0)
|
||||
prof.bits = 16
|
||||
#counting colors no longer useful, palette doesn't support 16-bit
|
||||
@ -2448,7 +2467,7 @@ proc calculateColorProfile(input: string, w, h: int, mode: PNGColorMode, prof: P
|
||||
|
||||
if alphaDone and numColorsDone and coloredDone and bitsDone: break
|
||||
else: # < 16-bit
|
||||
let cvt = getColorRGBA8[char](mode)
|
||||
let cvt = getColorRGBA8[T](mode)
|
||||
for px in 0..<numPixels:
|
||||
var p = RGBA8(r:chr(0), g:chr(0), b:chr(0), a:chr(0))
|
||||
cvt(p, input.toOpenArray(0, input.len-1), px, mode)
|
||||
@ -2500,12 +2519,13 @@ proc getColorProfile(png: PNG, mode: PNGColorMode): PNGColorProfile =
|
||||
prof = makeColorProfile()
|
||||
tree = initTable[RGBA8, int]()
|
||||
|
||||
calculateColorProfile(png.pixels, png.width, png.height, mode, prof, tree)
|
||||
calculateColorProfile(png.pixels.toOpenArray(0, png.pixels.len-1), png.width, png.height, mode, prof, tree)
|
||||
|
||||
if png.isAPNG:
|
||||
for i in 1..<png.apngChunks.len:
|
||||
var ctl = APNGFrameControl(png.apngChunks[i])
|
||||
calculateColorProfile(png.apngPixels[i], ctl.width, ctl.height, mode, prof, tree)
|
||||
let len = png.apngPixels[i].len
|
||||
calculateColorProfile(png.apngPixels[i].toOpenArray(0, len-1), ctl.width, ctl.height, mode, prof, tree)
|
||||
|
||||
result = prof
|
||||
|
||||
@ -2598,7 +2618,7 @@ proc filter[T](output: var openArray[T], input: openArray[T], w, h: int, modeOut
|
||||
of LFS_BRUTE_FORCE: filterBruteForce(output, input, w, h, bpp)
|
||||
of LFS_PREDEFINED: filterPredefined(output, input, w, h, bpp, state.predefinedFilters)
|
||||
|
||||
proc preProcessScanLines[T](png: PNG, input: openArray[T], frameNo, w, h: int, modeOut: PNGColorMode, state: PNGEncoder) =
|
||||
proc preProcessScanLines[T, B](png: PNG[T], input: openArray[B], frameNo, w, h: int, modeOut: PNGColorMode, state: PNGEncoder) =
|
||||
# This function converts the pure 2D image with the PNG's colorType, into filtered-padded-interlaced data. Steps:
|
||||
# if no Adam7: 1) add padding bits (= posible extra bits per scanLine if bpp < 8) 2) filter
|
||||
# if adam7: 1) Adam7_interlace 2) 7x add padding bits 3) 7x filter
|
||||
@ -2608,11 +2628,11 @@ proc preProcessScanLines[T](png: PNG, input: openArray[T], frameNo, w, h: int, m
|
||||
# image size plus an extra byte per scanLine + possible padding bits
|
||||
let scanLen = (w * bpp + 7) div 8
|
||||
let outSize = h + (h * scanLen)
|
||||
var output = newString(outSize)
|
||||
var output = newStorage[T](outSize)
|
||||
|
||||
# non multiple of 8 bits per scanLine, padding bits needed per scanLine
|
||||
if(bpp < 8) and ((w * bpp) != (scanLen * 8)):
|
||||
var padded = newString(h * scanLen)
|
||||
var padded = newStorage[T](h * scanLen)
|
||||
addPaddingBits(padded.toOpenArray(0, padded.len-1), input, scanLen * 8, w * bpp, h)
|
||||
|
||||
filter(output.toOpenArray(0, output.len-1),
|
||||
@ -2630,14 +2650,14 @@ proc preProcessScanLines[T](png: PNG, input: openArray[T], frameNo, w, h: int, m
|
||||
adam7PassValues(pass, w, h, bpp)
|
||||
let outSize = pass.filterStart[7]
|
||||
|
||||
var output = newString(outSize)
|
||||
var adam7 = newString(pass.start[7])
|
||||
var output = newStorage[T](outSize)
|
||||
var adam7 = newStorage[T](pass.start[7])
|
||||
|
||||
adam7Interlace(adam7.toOpenArray(0, adam7.len-1),
|
||||
input, w, h, bpp)
|
||||
for i in 0..6:
|
||||
if bpp < 8:
|
||||
var padding = newString(pass.paddedStart[i + 1] - pass.paddedStart[i])
|
||||
var padding = newStorage[T](pass.paddedStart[i + 1] - pass.paddedStart[i])
|
||||
|
||||
addPaddingBits(padding.toOpenArray(0, padding.len-1),
|
||||
adam7.toOpenArray(pass.start[i], adam7.len-1),
|
||||
@ -2736,7 +2756,7 @@ proc addChunkpHYs(png: PNG, state: PNGEncoder) =
|
||||
|
||||
proc addChunkIDAT(png: PNG, state: PNGEncoder) =
|
||||
var chunk = make[PNGData](IDAT, 0)
|
||||
chunk.idat = png.pixels
|
||||
chunk.idat = cast[string](png.pixels)
|
||||
png.chunks.add chunk
|
||||
|
||||
proc addChunktIME(png: PNG, state: PNGEncoder) =
|
||||
@ -2779,7 +2799,7 @@ proc addChunkacTL(png: PNG, numFrames, numPlays: int) =
|
||||
chunk.numPlays = numPlays
|
||||
png.chunks.add chunk
|
||||
|
||||
proc addChunkfcTL(png: PNG, chunk: APNGFrameControl, sequenceNumber: int) =
|
||||
proc addChunkfcTL[T](png: PNG[T], chunk: APNGFrameControl, sequenceNumber: int) =
|
||||
chunk.chunkType = fcTL
|
||||
if chunk.data == "":
|
||||
chunk.data = newStringOfCap(26)
|
||||
@ -2799,7 +2819,7 @@ proc frameConvert[T](png: PNG[T], modeIn, modeOut: PNGColorMode, w, h, frameNo:
|
||||
let size = (w * h * getBPP(modeOut) + 7) div 8
|
||||
let numPixels = w * h
|
||||
|
||||
var converted = newString(size)
|
||||
var converted = newStorage[T](size)
|
||||
# although in preProcessScanLines png.pixels is reinitialized, it is ok
|
||||
# because initBuffer(png.pixels) share the ownership
|
||||
convertImpl(converted.toOpenArray(0, converted.len-1),
|
||||
@ -2843,7 +2863,8 @@ proc encoderCore[T](png: PNG[T]) =
|
||||
if not bitDepthAllowed(modeOut.colorType, modeOut.bitDepth):
|
||||
raise PNGFatal("colorType and bitDepth combination not allowed")
|
||||
|
||||
if not png.isAPNG: png.apngPixels = @[""]
|
||||
if not png.isAPNG: png.apngPixels = @[newStorage[T](0)]
|
||||
|
||||
shallowCopy(png.apngPixels[0], png.pixels)
|
||||
frameConvert[T](png, modeIn, modeOut, png.width, png.height, 0, state)
|
||||
shallowCopy(png.pixels, png.apngPixels[0])
|
||||
@ -2941,11 +2962,17 @@ proc encodePNG*[T](input: T, colorType: PNGColorType, bitDepth, w, h: int, setti
|
||||
state.modeIn.bitDepth = bitDepth
|
||||
result = encodePNG(input, w, h, state)
|
||||
|
||||
proc encodePNG32*[T](input: T, w, h: int): PNG[T] =
|
||||
result = encodePNG(input, LCT_RGBA, 8, w, h)
|
||||
template encodePNG32*[T](input: T, w, h: int): auto =
|
||||
when T is openArray:
|
||||
encodePNG(@(input), LCT_RGBA, 8, w, h)
|
||||
else:
|
||||
encodePNG(input, LCT_RGBA, 8, w, h)
|
||||
|
||||
proc encodePNG24*[T](input: T, w, h: int): PNG[T] =
|
||||
result = encodePNG(input, LCT_RGB, 8, w, h)
|
||||
template encodePNG24*[T](input: T, w, h: int): auto =
|
||||
when T is openArray:
|
||||
encodePNG(@(input), LCT_RGB, 8, w, h)
|
||||
else:
|
||||
encodePNG(input, LCT_RGB, 8, w, h)
|
||||
|
||||
proc writeChunks*[T](png: PNG[T], s: Stream) =
|
||||
s.write PNGSignature
|
||||
@ -3094,18 +3121,24 @@ when not defined(js):
|
||||
template savePNG*[T](fileName: string, input: T, colorType: PNGColorType, bitDepth, w, h: int): untyped =
|
||||
when T is string:
|
||||
savePNGLegacy(fileName, input, colorType, bitDepth, w , h)
|
||||
elif T is openArray:
|
||||
savePNGImpl(fileName, @(input), colorType, bitDepth, w , h)
|
||||
else:
|
||||
savePNGImpl(fileName, input, colorType, bitDepth, w , h)
|
||||
|
||||
template savePNG32*[T](fileName: string, input: T, w, h: int): untyped =
|
||||
when T is string:
|
||||
savePNG32Legacy(fileName, input, w, h)
|
||||
elif T is openArray:
|
||||
savePNG32Impl(fileName, @(input), w, h)
|
||||
else:
|
||||
savePNG32Impl(fileName, input, w, h)
|
||||
|
||||
template savePNG24*[T](fileName: string, input: T, w, h: int): untyped =
|
||||
when T is string:
|
||||
savePNG24Legacy(fileName, input, w, h)
|
||||
elif T is openArray:
|
||||
savePNG24Impl(fileName, @(input), w, h)
|
||||
else:
|
||||
savePNG24Impl(fileName, input, w, h)
|
||||
|
||||
|
@ -299,7 +299,7 @@ proc filterBruteForce*[T](output: var openArray[T], input: openArray[T], w, h, b
|
||||
for x in 0..lineTs-1:
|
||||
output[y * (lineTs + 1) + 1 + x] = attempt[bestType][x]
|
||||
|
||||
proc unfilterScanline*[T](output: var openArray[T], input: openArray[T], byteWidth, len: int, filterType: PNGFilter) =
|
||||
proc unfilterScanline*[A, B](output: var openArray[A], input: openArray[B], byteWidth, len: int, filterType: PNGFilter) =
|
||||
# When the pixels are smaller than 1 T, the filter works T per T (byteWidth = 1)
|
||||
# the incoming inputs do NOT include the filtertype T, that one is given in the parameter filterType instead
|
||||
# output and input MAY be the same memory address! output must be disjoint.
|
||||
@ -310,28 +310,28 @@ proc unfilterScanline*[T](output: var openArray[T], input: openArray[T], byteWid
|
||||
case filterType
|
||||
of FLT_NONE:
|
||||
for i in 0..<len:
|
||||
output[i] = input[i]
|
||||
output[i] = A(input[i])
|
||||
of FLT_SUB:
|
||||
for i in 0..<byteWidth:
|
||||
output[i] = input[i]
|
||||
output[i] = A(input[i])
|
||||
for i in byteWidth..<len:
|
||||
output[i] = T((currPix(i) + prevPix(i)) and 0xFF)
|
||||
output[i] = A((currPix(i) + prevPix(i)) and 0xFF)
|
||||
of FLT_UP:
|
||||
for i in 0..<len:
|
||||
output[i] = input[i]
|
||||
output[i] = A(input[i])
|
||||
of FLT_AVERAGE:
|
||||
for i in 0..<byteWidth:
|
||||
output[i] = input[i]
|
||||
output[i] = A(input[i])
|
||||
for i in byteWidth..<len:
|
||||
output[i] = T((currPix(i) + (prevPix(i) div 2)) and 0xFF)
|
||||
output[i] = A((currPix(i) + (prevPix(i) div 2)) and 0xFF)
|
||||
of FLT_PAETH:
|
||||
for i in 0..<byteWidth:
|
||||
output[i] = input[i]
|
||||
output[i] = A(input[i])
|
||||
for i in byteWidth..<len:
|
||||
# paethPredictor(prevPix, 0, 0) is always prevPix
|
||||
output[i] = T((currPix(i) + prevPix(i)) and 0xFF)
|
||||
output[i] = A((currPix(i) + prevPix(i)) and 0xFF)
|
||||
|
||||
proc unfilterScanline*[T](output: var openArray[T], input, prevLine: openArray[T], byteWidth, len: int, filterType: PNGFilter) =
|
||||
proc unfilterScanline*[A, B](output: var openArray[A], input: openArray[B], prevLine: openArray[A], byteWidth, len: int, filterType: PNGFilter) =
|
||||
# For PNG filter method 0
|
||||
# unfilter a PNG image input by input. when the pixels are smaller than 1 T,
|
||||
# the filter works T per T (byteWidth = 1)
|
||||
@ -349,28 +349,28 @@ proc unfilterScanline*[T](output: var openArray[T], input, prevLine: openArray[T
|
||||
case filterType
|
||||
of FLT_NONE:
|
||||
for i in 0..<len:
|
||||
output[i] = input[i]
|
||||
output[i] = A(input[i])
|
||||
of FLT_SUB:
|
||||
for i in 0..<byteWidth:
|
||||
output[i] = input[i]
|
||||
output[i] = A(input[i])
|
||||
for i in byteWidth..<len:
|
||||
output[i] = T((currPix(i) + prevPix(i)) and 0xFF)
|
||||
output[i] = A((currPix(i) + prevPix(i)) and 0xFF)
|
||||
of FLT_UP:
|
||||
for i in 0..<len:
|
||||
output[i] = T((currPix(i) + upPix(i)) and 0xFF)
|
||||
output[i] = A((currPix(i) + upPix(i)) and 0xFF)
|
||||
of FLT_AVERAGE:
|
||||
for i in 0..<byteWidth:
|
||||
output[i] = T((currPix(i) + upPix(i) div 2) and 0xFF)
|
||||
output[i] = A((currPix(i) + upPix(i) div 2) and 0xFF)
|
||||
for i in byteWidth..<len:
|
||||
output[i] = T((currPix(i) + ((prevPix(i) + upPix(i)) div 2)) and 0xFF)
|
||||
output[i] = A((currPix(i) + ((prevPix(i) + upPix(i)) div 2)) and 0xFF)
|
||||
of FLT_PAETH:
|
||||
for i in 0..<byteWidth:
|
||||
# paethPredictor(0, upPix, 0) is always upPix
|
||||
output[i] = T((currPix(i) + upPix(i)) and 0xFF)
|
||||
output[i] = A((currPix(i) + upPix(i)) and 0xFF)
|
||||
for i in byteWidth..<len:
|
||||
output[i] = T((currPix(i) + paethPredictor(prevPixI(i), upPixI(i), prevUpPix(i))) and 0xFF)
|
||||
output[i] = A((currPix(i) + paethPredictor(prevPixI(i), upPixI(i), prevUpPix(i))) and 0xFF)
|
||||
|
||||
proc unfilter*[T](output: var openArray[T], input: openArray[T], w, h, bpp: int) =
|
||||
proc unfilter*[A, B](output: var openArray[A], input: openArray[B], w, h, bpp: int) =
|
||||
# For PNG filter method 0
|
||||
# this function unfilters a single image (e.g. without interlacing this is called once, with Adam7 seven times)
|
||||
# output must have enough Ts allocated already, input must have the scanLines + 1 filtertype T per scanLine
|
||||
@ -430,7 +430,7 @@ proc setBitOfReversedStream*[T](bitptr: var int, bitstream: var openArray[T], bi
|
||||
else: bitstream[bitptr shr 3] |= cast[T](1 shl (7 - (bitptr and 0x7)))
|
||||
inc bitptr
|
||||
|
||||
proc removePaddingBits*[T](output: var openArray[T], input: openArray[T], olinebits, ilinebits, h: int) =
|
||||
proc removePaddingBits*[A, B](output: var openArray[A], input: openArray[B], olinebits, ilinebits, h: int) =
|
||||
# After filtering there are still padding bits if scanLines have non multiple of 8 bit amounts. They need
|
||||
# to be removed (except at last scanLine of (Adam7-reduced) image) before working with pure image buffers
|
||||
# for the Adam7 code, the color convert code and the output to the user.
|
||||
@ -495,7 +495,7 @@ proc adam7PassValues*(pass: var PNGPass, w, h, bpp: int) =
|
||||
# output must be big enough AND must be 0 everywhere if bpp < 8 in the current implementation
|
||||
# (because that's likely a little bit faster)
|
||||
# NOTE: comments about padding bits are only relevant if bpp < 8
|
||||
proc adam7Deinterlace*[T](output: var openArray[T], input: openArray[T], w, h, bpp: int) =
|
||||
proc adam7Deinterlace*[A, B](output: var openArray[A], input: openArray[B], w, h, bpp: int) =
|
||||
var pass: PNGPass
|
||||
adam7PassValues(pass, w, h, bpp)
|
||||
|
||||
@ -507,7 +507,7 @@ proc adam7Deinterlace*[T](output: var openArray[T], input: openArray[T], w, h, b
|
||||
let inStart = pass.start[i] + (y * pass.w[i] + x) * byteWidth
|
||||
let outStart = ((ADAM7_IY[i] + y * ADAM7_DY[i]) * w + ADAM7_IX[i] + x * ADAM7_DX[i]) * byteWidth
|
||||
for b in 0..<byteWidth:
|
||||
output[outStart + b] = input[inStart + b]
|
||||
output[outStart + b] = A(input[inStart + b])
|
||||
else: # bpp < 8: Adam7 with pixels < 8 bit is a bit trickier: with bit pointers
|
||||
for i in 0..6:
|
||||
let ilinebits = bpp * pass.w[i]
|
||||
|
@ -4,4 +4,5 @@ import
|
||||
test_suite,
|
||||
test_nimz,
|
||||
test_filters,
|
||||
test_crash
|
||||
test_crash,
|
||||
test_api
|
||||
|
BIN
tests/misc/sample24.png
Normal file
BIN
tests/misc/sample24.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 535 KiB |
BIN
tests/misc/sample32.png
Normal file
BIN
tests/misc/sample32.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 624 KiB |
57
tests/test_api.nim
Normal file
57
tests/test_api.nim
Normal file
@ -0,0 +1,57 @@
|
||||
import ../nimPNG, unittest, os
|
||||
|
||||
proc main() =
|
||||
const subject = "tests" / "misc" / "sample.png"
|
||||
|
||||
const subject24 = "tests" / "misc" / "sample24.png"
|
||||
const subject32 = "tests" / "misc" / "sample32.png"
|
||||
|
||||
let data = cast[string](readFile(subject))
|
||||
suite "test API":
|
||||
test "decodePNG/encodePNG/savePNG string":
|
||||
let png1 = decodePNG24(data)
|
||||
let png2 = decodePNG32(data)
|
||||
|
||||
let im1 = encodePNG24(png1.data, png1.width, png1.height)
|
||||
let im2 = encodePNG32(png2.data, png2.width, png2.height)
|
||||
|
||||
check savePNG24(subject24, png1.data, png1.width, png1.height) == true
|
||||
check savePNG32(subject32, png2.data, png2.width, png2.height) == true
|
||||
|
||||
test "decodePNG/encodePNG/savePNG seq[uint8]":
|
||||
let res1 = decodePNG24(cast[seq[uint8]](data))
|
||||
let res2 = decodePNG32(cast[seq[uint8]](data))
|
||||
check res1.isOk() == true
|
||||
check res2.isOk() == true
|
||||
|
||||
let png1 = res1.get()
|
||||
let png2 = res2.get()
|
||||
|
||||
let im1 = encodePNG24(png1.data, png1.width, png1.height)
|
||||
let im2 = encodePNG32(png2.data, png2.width, png2.height)
|
||||
|
||||
check savePNG24(subject24, png1.data, png1.width, png1.height).isOk() == true
|
||||
check savePNG32(subject32, png2.data, png2.width, png2.height).isOk() == true
|
||||
|
||||
test "decodePNG openArray[uint8]":
|
||||
let res1 = decodePNG24(data.toOpenArrayByte(0, data.len-1))
|
||||
let res2 = decodePNG32(data.toOpenArrayByte(0, data.len-1))
|
||||
|
||||
check res1.isOk() == true
|
||||
check res2.isOk() == true
|
||||
|
||||
let png1 = res1.get()
|
||||
let png2 = res2.get()
|
||||
|
||||
let im1 = encodePNG24(png1.data.toOpenArray(0, png1.data.len-1), png1.width, png1.height)
|
||||
let im2 = encodePNG32(png2.data.toOpenArray(0, png2.data.len-1), png2.width, png2.height)
|
||||
|
||||
test "loadPNG string":
|
||||
let png1 = loadPNG32(string, subject)
|
||||
let png2 = loadPNG24(string, subject)
|
||||
|
||||
test "loadPNG string":
|
||||
let png1 = loadPNG32(seq[uint8], subject)
|
||||
let png2 = loadPNG24(seq[uint8], subject)
|
||||
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user