mirror of
https://github.com/status-im/nim-stint.git
synced 2025-02-21 11:28:23 +00:00
127 lines
3.7 KiB
Nim
127 lines
3.7 KiB
Nim
# Stint
|
|
# Copyright 2018 Status Research & Development GmbH
|
|
# Licensed under either of
|
|
#
|
|
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
|
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
|
#
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
import ../stint, unittest
|
|
|
|
template chkMul(chk: untyped, a, b, c: string, bits: int) =
|
|
chk (fromHex(Stuint[bits], a) * fromHex(Stuint[bits], b)) == fromHex(Stuint[bits], c)
|
|
|
|
template chkDiv(chk: untyped, a, b, c: string, bits: int) =
|
|
chk (fromHex(Stuint[bits], a) div fromHex(Stuint[bits], b)) == fromHex(Stuint[bits], c)
|
|
|
|
template chkMod(chk: untyped, a, b, c: string, bits: int) =
|
|
chk (fromHex(Stuint[bits], a) mod fromHex(Stuint[bits], b)) == fromHex(Stuint[bits], c)
|
|
|
|
template chkDivMod(chk: untyped, a, b, c, d: string, bits: int) =
|
|
chk (fromHex(Stuint[bits], a) divmod fromHex(Stuint[bits], b)) == (fromHex(Stuint[bits], c), fromHex(Stuint[bits], d))
|
|
|
|
template testMuldiv(chk, tst: untyped) =
|
|
tst "operator `mul`":
|
|
chkMul(chk, "0", "3", "0", 8)
|
|
|
|
#tst "operator `div`":
|
|
#tst "operator `mod`":
|
|
#tst "operator `divmod`":
|
|
|
|
static:
|
|
testMuldiv(doAssert, ctTest)
|
|
|
|
suite "Wider unsigned int muldiv coverage":
|
|
testMuldiv(check, test)
|
|
|
|
suite "Testing unsigned int multiplication implementation":
|
|
test "Multiplication with result fitting in low half":
|
|
|
|
let a = 10000.stuint(64)
|
|
let b = 10000.stuint(64)
|
|
|
|
check: cast[uint64](a*b) == 100_000_000'u64 # need 27-bits
|
|
|
|
test "Multiplication with result overflowing low half":
|
|
|
|
let a = 1_000_000.stuint(64)
|
|
let b = 1_000_000.stuint(64)
|
|
|
|
check: cast[uint64](a*b) == 1_000_000_000_000'u64 # need 40 bits
|
|
|
|
test "Full overflow is handled like native unsigned types":
|
|
|
|
let a = 1_000_000_000.stuint(64)
|
|
let b = 1_000_000_000.stuint(64)
|
|
let c = 1_000.stuint(64)
|
|
|
|
check: cast[uint64](a*b*c) == 1_000_000_000_000_000_000_000'u64 # need 70-bits
|
|
|
|
test "Nim v1.0.2 32 bit type inference rule changed":
|
|
let x = 9975492817.stuint(256)
|
|
let y = 16.stuint(256)
|
|
check x * y == 159607885072.stuint(256)
|
|
|
|
suite "Testing unsigned int division and modulo implementation":
|
|
test "Divmod(100, 13) returns the correct result":
|
|
|
|
let a = 100.stuint(64)
|
|
let b = 13.stuint(64)
|
|
let qr = divmod(a, b)
|
|
|
|
check: cast[uint64](qr.quot) == 7'u64
|
|
check: cast[uint64](qr.rem) == 9'u64
|
|
|
|
test "Divmod(2^64, 3) returns the correct result":
|
|
let a = 1.stuint(128) shl 64
|
|
let b = 3.stuint(128)
|
|
|
|
let qr = divmod(a, b)
|
|
|
|
let q = cast[UintImpl[uint64]](qr.quot)
|
|
let r = cast[UintImpl[uint64]](qr.rem)
|
|
|
|
check: q.lo == 6148914691236517205'u64
|
|
check: q.hi == 0'u64
|
|
check: r.lo == 1'u64
|
|
check: r.hi == 0'u64
|
|
|
|
test "Divmod(1234567891234567890, 10) returns the correct result":
|
|
let a = cast[StUint[64]](1234567891234567890'u64)
|
|
let b = cast[StUint[64]](10'u64)
|
|
|
|
let qr = divmod(a, b)
|
|
|
|
let q = cast[uint64](qr.quot)
|
|
let r = cast[uint64](qr.rem)
|
|
|
|
check: q == 123456789123456789'u64
|
|
check: r == 0'u64
|
|
|
|
suite "Testing specific failures highlighted by property-based testing":
|
|
test "Modulo: 65696211516342324 mod 174261910798982":
|
|
|
|
let u = 65696211516342324'u64
|
|
let v = 174261910798982'u64
|
|
|
|
let a = cast[Stuint[64]](u)
|
|
let b = cast[Stuint[64]](v)
|
|
|
|
let z = u mod v
|
|
let tz = cast[uint64](a mod b)
|
|
|
|
check: z == tz
|
|
|
|
test "Modulo: 15080397990160655 mod 600432699691":
|
|
let u = 15080397990160655'u64
|
|
let v = 600432699691'u64
|
|
|
|
let a = cast[Stuint[64]](u)
|
|
let b = cast[Stuint[64]](v)
|
|
|
|
let z = u mod v
|
|
let tz = cast[uint64](a mod b)
|
|
|
|
check: z == tz
|