nim-stint/tests/test_int_muldiv.nim
Jacek Sieka 5c5e01cef0
fix compile-time hash, port to unittest2 (#145)
* enable compile-time testing for most of the test suite (some parts
that were skipping things turned out to be bugs)
* port to unittest2 and use its recent compile-time testing support
2024-11-25 14:17:39 +01:00

232 lines
7.7 KiB
Nim

# Stint
# Copyright 2018-2023 Status Research & Development GmbH
# Licensed under either of
#
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
#
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import ../stint, unittest2
template chkMul(a, b, c: string, bits: int) =
check (fromHex(StInt[bits], a) * fromHex(StInt[bits], b)) == fromHex(StInt[bits], c)
template chkDiv(a, b, c: string, bits: int) =
check (fromHex(StInt[bits], a) div fromHex(StInt[bits], b)) == fromHex(StInt[bits], c)
template chkMod(a, b, c: string, bits: int) =
check (fromHex(StInt[bits], a) mod fromHex(StInt[bits], b)) == fromHex(StInt[bits], c)
template chkMod(a, b, c: int, bits: int) =
check (stint(a, bits) mod stint(b, bits)) == stint(c, bits)
template chkDivMod(a, b, c, d: string, bits: int) =
check divmod(fromHex(StInt[bits], a), fromHex(StInt[bits], b)) == (fromHex(StInt[bits], c), fromHex(StInt[bits], d))
suite "Wider signed int muldiv coverage":
test "operator `mul`":
chkMul("0", "3", "0", 128)
chkMul("1", "3", "3", 128)
chkMul("F0", "3", "2D0", 128)
chkMul("F000", "3", "2D000", 128)
chkMul("F0000000", "3", "2D0000000", 128)
chkMul("F000000000000000", "3", "2D000000000000000", 128)
chkMul("F0000000000000000000000000000000", "3", "D0000000000000000000000000000000", 128)
chkMul("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "1", 128)
test "operator `div`":
chkDiv("0", "3", "0", 64)
chkDiv("1", "3", "0", 64)
chkDiv("3", "3", "1", 64)
chkDiv("3", "1", "3", 64)
chkDiv("FF", "3", "55", 64)
chkDiv("0F", "FF", "0", 64)
chkDiv("FF", "FF", "1", 64)
chkDiv("FFFF", "3", "5555", 64)
chkDiv("0F", "FFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFF1", 64)
chkDiv("FFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFF", "1", 64)
chkDiv("0", "3", "0", 128)
chkDiv("1", "3", "0", 128)
chkDiv("3", "3", "1", 128)
chkDiv("3", "1", "3", 128)
chkDiv("FF", "3", "55", 128)
chkDiv("0F", "FF", "0", 128)
chkDiv("FF", "FF", "1", 128)
chkDiv("FFFF", "3", "5555", 128)
chkDiv("0F", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1", 128)
chkDiv("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "1", 128)
test "operator `mod`":
chkMod("0", "3", "0", 64)
chkMod("1", "3", "1", 64)
chkMod("3", "3", "0", 64)
chkMod("3", "1", "0", 64)
chkMod("FFFFFFFFFFFFFFFF", "3", "FFFFFFFFFFFFFFFF", 64)
chkMod("FFFFFFFFFFFFFFFF", "4", "FFFFFFFFFFFFFFFF", 64)
chkMod("FFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFF", "0", 64)
chkMod("0F", "FFFFFFFFFFFFFFFC", "3", 64)
chkMod("0", "3", "0", 128)
chkMod("1", "3", "1", 128)
chkMod("3", "3", "0", 128)
chkMod("3", "1", "0", 128)
chkMod("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "3", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 128)
chkMod("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "4", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 128)
chkMod("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "0", 128)
chkMod("0F", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC", "3", 128)
test "operator `divmod`":
chkDivMod("0", "3", "0", "0", 64)
chkDivMod("1", "3", "0", "1", 64)
chkDivMod("3", "3", "1", "0", 64)
chkDivMod("3", "1", "3", "0", 64)
chkDivMod("FFFFFFFFFFFFFFFF", "3", "0", "FFFFFFFFFFFFFFFF", 64)
chkDivMod("FFFFFFFFFFFFFFFF", "4", "0", "FFFFFFFFFFFFFFFF", 64)
chkDivMod("FFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFF", "1", "0", 64)
chkDivMod("0F", "FFFFFFFFFFFFFFFC", "FFFFFFFFFFFFFFFD", "3", 64)
chkDivMod("0", "3", "0", "0", 128)
chkDivMod("1", "3", "0", "1", 128)
chkDivMod("3", "3", "1", "0", 128)
chkDivMod("3", "1", "3", "0", 128)
chkDivMod("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "3", "0", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 128)
chkDivMod("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "4", "0", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 128)
chkDivMod("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "1", "0", 128)
chkDivMod("0F", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD", "3", 128)
test "issues with Nim v1.0.2":
block:
let x = -2.stint(256)
let y = 3200566678774828.stint(256)
let z = -6401133357549656.stint(256)
check x * y == z
chkMod(-3, 7, -3, 64)
chkMod(-3, 5, -3, 64)
chkMod(-13, 5, -3, 64)
chkMod(7, 5, 2, 64)
chkMod(-7, 5, -2, 64)
chkMod(7, -5, 2, 64)
chkMod(-7, -5, -2, 64)
chkMod(2, 5, 2, 64)
chkMod(-2, 5, -2, 64)
chkMod(2, -5, 2, 64)
chkMod(-2, -5, -2, 64)
suite "Testing signed int multiplication implementation":
test "Multiplication with result fitting in low half":
let a = 10000.stint(64)
let b = 10000.stint(64)
check: truncate(a*b, int64) == 100_000_000'i64 # need 27-bits
test "Multiplication with result overflowing low half":
let a = 1_000_000.stint(64)
let b = 1_000_000.stint(64)
check: truncate(a*b, int64) == 1_000_000_000_000'i64 # need 40 bits
test "Multiplication with result fitting in low half - opposite signs":
let a = -10000.stint(64)
let b = 10000.stint(64)
check:
truncate(a*b, int64) == -100_000_000'i64 # need 27-bits
truncate(b*a, int64) == -100_000_000'i64
test "Multiplication with result overflowing low half - opposite signs":
let a = -1_000_000.stint(64)
let b = 1_000_000.stint(64)
when sizeof(int) == 8:
check:
truncate(a*b, int64) == -1_000_000_000_000'i64 # need 40 bits
truncate(b*a, int64) == -1_000_000_000_000'i64
else:
discard # TODO https://github.com/status-im/nim-stint/issues/144
# TODO truncate fails here
test "Multiplication with result fitting in low half - both negative":
let a = -10000.stint(64)
let b = -10000.stint(64)
check: truncate(a*b, int64) == 100_000_000'i64 # need 27-bits
test "Multiplication with result overflowing low half - both negative":
let a = -1_000_000.stint(64)
let b = -1_000_000.stint(64)
check: truncate(a*b, int64) == 1_000_000_000_000'i64 # need 40 bits
suite "Testing signed int division and modulo implementation":
test "Divmod(100, 13) returns the correct result":
let a = 100.stint(64)
let b = 13.stint(64)
let qr = divmod(a, b)
check: truncate(qr.quot, int64) == 7'i64
check: truncate(qr.rem, int64) == 9'i64
test "Divmod(-100, 13) returns the correct result":
let a = -100.stint(64)
let b = 13.stint(64)
let qr = divmod(a, b)
check: truncate(qr.quot, int64) == -100'i64 div 13
check: truncate(qr.rem, int64) == -100'i64 mod 13
test "Divmod(100, -13) returns the correct result":
let a = 100.stint(64)
let b = -13.stint(64)
let qr = divmod(a, b)
check: truncate(qr.quot, int64) == 100'i64 div -13
check: truncate(qr.rem, int64) == 100'i64 mod -13
test "Divmod(-100, -13) returns the correct result":
let a = -100.stint(64)
let b = -13.stint(64)
let qr = divmod(a, b)
check: truncate(qr.quot, int64) == -100'i64 div -13
check: truncate(qr.rem, int64) == -100'i64 mod -13
test "Divmod(2^64, 3) returns the correct result":
let a = 1.stint(128) shl 64
let b = 3.stint(128)
let qr = divmod(a, b)
let q = qr.quot
let r = qr.rem
check:
q == 6148914691236517205'u64.i128
r == 1'u64.i128
test "Divmod(1234567891234567890, 10) returns the correct result":
let a = stint(1234567891234567890'i64, 64)
let b = stint(10'i64, 64)
let qr = divmod(a, b)
let q = truncate(qr.quot, int64)
let r = truncate(qr.rem, int64)
check: q == 123456789123456789'i64
check: r == 0'i64