# Stint # Copyright 2018 Status Research & Development GmbH # Licensed under either of # # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0) # * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT) # # at your option. This file may not be copied, modified, or distributed except according to those terms. import ./private/datatypes, ./private/int_negabs, ./private/as_words, ./int_public, ./uint_public, typetraits, algorithm template static_check_size(T: typedesc[SomeInteger], bits: static[int]) = # To avoid a costly runtime check, we refuse storing into StUint types smaller # than the input type. static: assert sizeof(T) * 8 <= bits, "Input type (" & $T & ") cannot be stored in a multi-precision " & $bits & "-bit integer." & "\nUse a smaller input type instead. This is a compile-time check" & " to avoid a costly run-time bit_length check at each StUint initialization." template assign_leastSignificantWords[T: SomeInteger](result: var (Stuint|Stint), n: T) = template lsw_result: untyped = leastSignificantWord(result.data) template slsw_result: untyped = secondLeastSignificantWord(result.data) const wordSize = lsw_result.getSize when sizeof(T) * 8 <= wordSize: lsw_result = (type lsw_result)(n) else: # We try to store an int64 in 2 x uint32 or 4 x uint16 # For now we only support assignation from 64 to 2x32 bit const size = getSize(T) halfSize = size div 2 halfMask = (1.T shl halfSize) - 1.T lsw_result = (type lsw_result)(n and halfMask) slsw_result = (type slsw_result)(n shr halfSize) func stuint*[T: SomeInteger](n: T, bits: static[int]): StUint[bits] {.inline.}= ## Converts an integer to an arbitrary precision integer. assert n >= 0.T when result.data is UintImpl: static_check_size(T, bits) assign_leastSignificantWords(result, n) else: result.data = (type result.data)(n) func stint*[T: SomeInteger](n: T, bits: static[int]): StInt[bits] {.inline.}= ## Converts an integer to an arbitrary precision signed integer. when result.data is IntImpl: static_check_size(T, bits) when T is SomeSignedInt: if n < 0: assign_leastSignificantWords(result, -n) result = -result else: assign_leastSignificantWords(result, n) else: assign_leastSignificantWords(result, n) else: result.data = (type result.data)(n) func to*(x: SomeInteger, T: typedesc[Stint]): T = stint(x, result.bits) func to*(x: SomeUnsignedInt, T: typedesc[StUint]): T = stuint(x, result.bits) func toInt*(num: Stint or StUint): int {.inline.}= ## Returns as int. ## Result is undefined if input does not fit in an int64 cast[int](num.data.leastSignificantWord) func toUint*(num: Stint or StUint): uint {.inline.}= ## Returns as uint. Result is modulo 2^(sizeof(uint)) num.data.leastSignificantWord.uint func toInt64*(num: Stint or StUint): int64 {.inline.}= ## Returns as int64. ## Result is undefined if input does not fit in an int64 when sizeof(uint) == 8: cast[int64](num.data.leastSignificantWord) else: cast[int64](num.data.leastSignificantTwoWords) func toUint64*(num: Stint or StUint): uint64 {.inline.}= ## Returns as uint64. Result is modulo 2^64. when sizeof(uint) == 8: num.data.leastSignificantWord.uint64 else: cast[uint64](num.data.leastSignificantTwoWords) func readHexChar(c: char): int8 {.inline.}= ## Converts an hex char to an int case c of '0'..'9': result = int8 ord(c) - ord('0') of 'a'..'f': result = int8 ord(c) - ord('a') + 10 of 'A'..'F': result = int8 ord(c) - ord('A') + 10 else: raise newException(ValueError, $c & "is not a hexadecimal character") func skipPrefixes(current_idx: var int, str: string, radix: range[2..16]) {.inline.} = ## Returns the index of the first meaningful char in `hexStr` by skipping ## "0x" prefix if str.len < 2: return assert current_idx == 0, "skipPrefixes only works for prefixes (position 0 and 1 of the string)" if str[0] == '0': if str[1] in {'x', 'X'}: assert radix == 16, "Parsing mismatch, 0x prefix is only valid for a hexadecimal number (base 16)" current_idx = 2 elif str[1] in {'o', 'O'}: assert radix == 8, "Parsing mismatch, 0o prefix is only valid for an octal number (base 8)" current_idx = 2 elif str[1] in {'b', 'B'}: assert radix == 2, "Parsing mismatch, 0b prefix is only valid for a binary number (base 2)" current_idx = 2 func nextNonBlank(current_idx: var int, s: string) {.inline.} = ## Move the current index, skipping white spaces and "_" characters. const blanks = {' ', '_'} inc current_idx while current_idx < s.len and s[current_idx] in blanks: inc current_idx func readDecChar(c: range['0'..'9']): int {.inline.}= ## Converts a decimal char to an int # specialization without branching for base <= 10. ord(c) - ord('0') func parse*[bits: static[int]](input: string, T: typedesc[Stuint[bits]], radix: static[uint8] = 10): T = ## Parse a string and store the result in a Stint[bits] or Stuint[bits]. static: assert (radix >= 2) and radix <= 16, "Only base from 2..16 are supported" # TODO: use static[range[2 .. 16]], not supported at the moment (2018-04-26) # TODO: we can special case hex result/input as an array of bytes # and be much faster const base = radix.uint8.stuint(bits) var curr = 0 # Current index in the string skipPrefixes(curr, input, radix) while curr < input.len: # TODO: overflow detection when radix <= 10: result = result * base + input[curr].readDecChar.stuint(bits) else: result = result * base + input[curr].readHexChar.stuint(bits) nextNonBlank(curr, input) func parse*[bits: static[int]](input: string, T: typedesc[Stint[bits]], radix: static[int8] = 10): T = ## Parse a string and store the result in a Stint[bits] or Stuint[bits]. static: assert (radix >= 2) and radix <= 16, "Only base from 2..16 are supported" # TODO: use static[range[2 .. 16]], not supported at the moment (2018-04-26) # TODO: we can special case hex result/input as an array of bytes # and be much faster # For conversion we require overflowing operations (for example for negative hex numbers) const base = radix.int8.stuint(bits) var curr = 0 # Current index in the string isNeg = false no_overflow: Stuint[bits] if input[curr] == '-': assert radix == 10, "Negative numbers are only supported with base 10 input." isNeg = true inc curr else: skipPrefixes(curr, input, radix) while curr < input.len: # TODO: overflow detection when radix <= 10: no_overflow = no_overflow * base + input[curr].readDecChar.stuint(bits) else: no_overflow = no_overflow * base + input[curr].readHexChar.stuint(bits) nextNonBlank(curr, input) # TODO: we can't create the lowest int this way if isNeg: result = -cast[Stint[bits]](no_overflow) else: result = cast[Stint[bits]](no_overflow) func fromHex*(T: type StUint, s: string): T {.inline.} = ## Convert an hex string to the corresponding unsigned integer parse(s, type result, radix = 16) func hexToUint*[bits: static[int]](hexString: string): Stuint[bits] {.inline.} = ## Convert an hex string to the corresponding unsigned integer parse(hexString, type result, radix = 16) func toString*[bits: static[int]](num: StUint[bits], radix: static[uint8] = 10): string = ## Convert a Stint or Stuint to string. ## In case of negative numbers: ## - they are prefixed with "-" for base 10. ## - if not base 10, they are returned raw in two-complement form. static: assert (radix >= 2) and radix <= 16, "Only base from 2..16 are supported" # TODO: use static[range[2 .. 16]], not supported at the moment (2018-04-26) const hexChars = "0123456789abcdef" const base = radix.uint8.stuint(bits) result = "" var (q, r) = divmod(num, base) while true: result.add hexChars[r.toInt] if q.isZero: break (q, r) = divmod(q, base) reverse(result) func toString*[bits: static[int]](num: Stint[bits], radix: static[int8] = 10): string = ## Convert a Stint or Stuint to string. ## In case of negative numbers: ## - they are prefixed with "-" for base 10. ## - if not base 10, they are returned raw in two-complement form. static: assert (radix >= 2) and radix <= 16, "Only base from 2..16 are supported" # TODO: use static[range[2 .. 16]], not supported at the moment (2018-04-26) const hexChars = "0123456789abcdef" const base = radix.int8.stint(bits) result = "" let isNeg = num.isNegative let num = if radix == 10 and isNeg: -num else: num var (q, r) = divmod(num, base) while true: result.add hexChars[r.toInt] if q.isZero: break (q, r) = divmod(q, base) if isNeg: result.add '-' reverse(result) func `$`*(num: Stint or StUint): string {.inline.}= when num.data is SomeInteger: $num.data else: toString(num, 10) func toHex*[bits: static[int]](num: Stint[bits] or StUint[bits]): string {.inline.}= ## Convert to a hex string. ## Output is considered a big-endian base 16 string. ## Leading zeros are stripped. Use dumpHex instead if you need the in-memory representation toString(num, 16) func dumpHex*(x: Stint or StUint, order: static[Endianness] = bigEndian): string = ## Stringify an int to hex. ## Note. Leading zeros are not removed. Use toString(n, base = 16)/toHex instead. ## ## You can specify bigEndian or littleEndian order. ## i.e. in bigEndian: ## - 1.uint64 will be 00000001 ## - (2.uint128)^64 + 1 will be 0000000100000001 ## ## in littleEndian: ## - 1.uint64 will be 01000000 ## - (2.uint128)^64 + 1 will be 0100000001000000 const hexChars = "0123456789abcdef" size = getSize(x.data) div 8 {.pragma: restrict, codegenDecl: "$# __restrict $#".} let bytes {.restrict.}= cast[ptr array[size, byte]](x.unsafeaddr) result = newString(2*size) for i in 0 ..< size: when order == system.cpuEndian: result[2*i] = hexChars[int bytes[i] shr 4 and 0xF] result[2*i+1] = hexChars[int bytes[i] and 0xF] else: result[2*i] = hexChars[int bytes[bytes[].high - i] shr 4 and 0xF] result[2*i+1] = hexChars[int bytes[bytes[].high - i] and 0xF] proc initFromBytesBE*[bits: static[int]](val: var Stuint[bits], ba: openarray[byte], allowPadding: static[bool] = true) = ## Initializes a UInt[bits] value from a byte buffer storing a big-endian ## representation of a number. ## ## If `allowPadding` is set to false, the input array must be exactly ## (bits div 8) bytes long. Otherwise, it may be shorter and the remaining ## bytes will be assumed to be zero. const N = bits div 8 when not allowPadding: assert(ba.len == N) else: assert ba.len <= N {.pragma: restrict, codegenDecl: "$# __restrict $#".} let r_ptr {.restrict.} = cast[ptr array[N, byte]](val.addr) when system.cpuEndian == bigEndian: # TODO: due to https://github.com/status-im/nim-stint/issues/38 # We can't cast a stack byte array to stuint with a convenient proc signature. when allowPadding: let baseIdx = N - val.len for i, b in ba: r_ptr[baseIdx + i] = b else: for i, b in ba: r_ptr[i] = b else: when allowPadding: let baseIdx = ba.len - 1 for i, b in ba: r_ptr[baseIdx - i] = b else: for i, b in ba: r_ptr[N-1 - i] = b func significantBytesBE*(val: openarray[byte]): int {.deprecated.}= ## Returns the number of significant trailing bytes in a big endian ## representation of a number. # TODO: move that in https://github.com/status-im/nim-byteutils for i in 0 ..< val.len: if val[i] != 0: return val.len - i return 1 func fromBytesBE*(T: type Stuint, ba: openarray[byte], allowPadding: static[bool] = true): T = ## This function provides a convenience wrapper around `initFromBytesBE`. result.initFromBytesBE(ba, allowPadding) func readUintBE*[bits: static[int]](ba: openarray[byte]): Stuint[bits] = ## Convert a big-endian array of (bits div 8) Bytes to an UInt[bits] (in native host endianness) ## Input: ## - a big-endian openarray of size (bits div 8) at least ## Returns: ## - A unsigned integer of the same size with `bits` bits ## ## ⚠ If the openarray length is bigger than bits div 8, part converted is undefined behaviour. result.initFromBytesBE(ba, false) func toByteArrayBE*[bits: static[int]](n: StUint[bits]): array[bits div 8, byte] = ## Convert a uint[bits] to to a big-endian array of bits div 8 bytes ## Input: ## - an unsigned integer ## Returns: ## - a big-endian array of the same size const N = bits div 8 when system.cpuEndian == bigEndian: result = cast[type result](n) else: {.pragma: restrict, codegenDecl: "$# __restrict $#".} let n_ptr {.restrict.} = cast[ptr array[N, byte]](n.unsafeAddr) for i in 0 ..< N: result[N-1 - i] = n_ptr[i]