# Stint # Copyright 2018 Status Research & Development GmbH # Licensed under either of # # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0) # * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT) # # at your option. This file may not be copied, modified, or distributed except according to those terms. import ./private/datatypes, # ./private/int_negabs, # ./private/compiletime_helpers, # ./intops, ./uintops, ./endians2, typetraits, algorithm, hashes template static_check_size(T: typedesc[SomeInteger], bits: static[int]) = # To avoid a costly runtime check, we refuse storing into StUint types smaller # than the input type. static: doAssert sizeof(T) * 8 <= bits, "Input type (" & $T & ") cannot be stored in a multi-precision " & $bits & "-bit integer." & "\nUse a smaller input type instead. This is a compile-time check" & " to avoid a costly run-time bit_length check at each StUint initialization." func stuint*[T: SomeInteger](n: T, bits: static[int]): StUint[bits] {.inline.}= ## Converts an integer to an arbitrary precision integer. when cpuEndian == littleEndian: result.limbs[0] = Word(n) when sizeof(n) > sizeof(Word): result.limbs[1] = Word(n) shr WordBitWidth else: result.limbs[^1] = Word(n) when sizeof(n) > sizeof(Word): result.limbs[^2] = Word(n) shr WordBitWidth <<<<<<< HEAD func to*(x: SomeInteger, T: typedesc[StInt]): T = stint(x, result.bits) func to*(x: SomeUnsignedInt, T: typedesc[StUint]): T = stuint(x, result.bits) ======= # func stint*[T: SomeInteger](n: T, bits: static[int]): StInt[bits] {.inline.}= # ## Converts an integer to an arbitrary precision signed integer. # # when result.data is IntImpl: # static_check_size(T, bits) # when T is SomeSignedInt: # if n < 0: # # TODO: when bits >= 128, cannot create from # # low(int8-64) # # see: status-im/nim-stint/issues/92 # assignLo(result.data, -n) # result = -result # else: # assignLo(result.data, n) # else: # assignLo(result.data, n) # else: # result.data = (type result.data)(n) # func to*(a: SomeInteger, T: typedesc[Stint]): T = # stint(a, result.bits) func to*(a: SomeUnsignedInt, T: typedesc[StUint]): T = stuint(a, result.bits) func truncate*(num: StInt or StUint, T: typedesc[SomeInteger]): T {.inline.}= ## Extract the int, uint, int8-int64 or uint8-uint64 portion of a multi-precision integer. ## Note that int and uint are 32-bit on 32-bit platform. ## For unsigned result type, result is modulo 2^(sizeof T in bit) ## For signed result type, result is undefined if input does not fit in the target type. result = T(num.leastSignificantWord()) func toInt*(num: StInt or StUint): int {.inline, deprecated:"Use num.truncate(int) instead".}= num.truncate(int) func stuint*(a: StUint, bits: static[int]): StUint[bits] {.inline.} = ## unsigned int to unsigned int conversion ## smaller to bigger bits conversion will have the same value ## bigger to smaller bits conversion, the result is truncated for wr, wa in leastToMostSig(result, a): wr = wa # func stuint*(a: StInt, bits: static[int]): StUint[bits] {.inline.} = # ## signed int to unsigned int conversion # ## current behavior is cast-like, copying bit pattern # ## or truncating if input does not fit into destination # const N = bitsof(x.data) # when N < bits: # when N <= 64: # type T = StUint[N] # result = stuint(convert[T](a).data, bits) # else: # smallToBig(result.data, a.data) # elif N > bits: # when bits <= 64: # result = stuint(x.truncate(type(result.data)), bits) # else: # bigToSmall(result.data, a.data) # else: # result = convert[type(result)](a) # func stint*(a: StInt, bits: static[int]): StInt[bits] {.inline.} = # ## signed int to signed int conversion # ## will raise exception if input does not fit into destination # const N = bitsof(a.data) # when N < bits: # when N <= 64: # result = stint(a.data, bits) # else: # if a.isNegative: # smallToBig(result.data, (-a).data) # result = -result # else: # smallToBig(result.data, a.data) # elif N > bits: # template checkNegativeRange() = # # due to bug #92, we skip negative range check # when false: # const dmin = stint((type result).low, N) # if a < dmin: raise newException(RangeError, "value out of range") # template checkPositiveRange() = # const dmax = stint((type result).high, N) # if a > dmax: raise newException(RangeError, "value out of range") # when bits <= 64: # if a.isNegative: # checkNegativeRange() # result = stint((-a).truncate(type(result.data)), bits) # result = -result # else: # checkPositiveRange() # result = stint(a.truncate(type(result.data)), bits) # else: # if a.isNegative: # checkNegativeRange() # bigToSmall(result.data, (-a).data) # result = -result # else: # checkPositiveRange() # bigToSmall(result.data, a.data) # else: # result = a # func stint*(a: StUint, bits: static[int]): StInt[bits] {.inline.} = # const N = bitsof(a.data) # const dmax = stuint((type result).high, N) # if a > dmax: raise newException(RangeError, "value out of range") # when N < bits: # when N <= 64: # result = stint(a.data, bits) # else: # smallToBig(result.data, a.data) # elif N > bits: # when bits <= 64: # result = stint(a.truncate(type(result.data)), bits) # else: # bigToSmall(result.data, a.data) # else: # result = convert[type(result)](a) func readHexChar(c: char): int8 {.inline.}= ## Converts an hex char to an int case c of '0'..'9': result = int8 ord(c) - ord('0') of 'a'..'f': result = int8 ord(c) - ord('a') + 10 of 'A'..'F': result = int8 ord(c) - ord('A') + 10 else: raise newException(ValueError, $c & "is not a hexadecimal character") func skipPrefixes(current_idx: var int, str: string, radix: range[2..16]) {.inline.} = ## Returns the index of the first meaningful char in `hexStr` by skipping ## "0x" prefix # Always called from a context where radix is known at compile-time # and checked within 2..16 and so cannot throw a RangeDefect at runtime if str.len < 2: return doAssert current_idx == 0, "skipPrefixes only works for prefixes (position 0 and 1 of the string)" if str[0] == '0': if str[1] in {'x', 'X'}: if radix == 16: current_idx = 2 else: raise newException(ValueError,"Parsing mismatch, 0x prefix is only valid for a hexadecimal number (base 16)") elif str[1] in {'o', 'O'}: if radix == 8: current_idx = 2 else: raise newException(ValueError, "Parsing mismatch, 0o prefix is only valid for an octal number (base 8)") elif str[1] in {'b', 'B'}: if radix == 2: current_idx = 2 elif radix != 16: raise newException(ValueError, "Parsing mismatch, 0b prefix is only valid for a binary number (base 2) or as first byte of a hexadecimal number (base 16)") func nextNonBlank(current_idx: var int, s: string) {.inline.} = ## Move the current index, skipping white spaces and "_" characters. const blanks = {' ', '_'} inc current_idx while current_idx < s.len and s[current_idx] in blanks: inc current_idx func readDecChar(c: char): int {.inline.}= ## Converts a decimal char to an int # specialization without branching for base <= 10. if c notin {'0'..'9'}: raise newException(ValueError, "Character out of '0'..'9' range") ord(c) - ord('0') func parse*[bits: static[int]](input: string, T: typedesc[StUint[bits]], radix: static[uint8] = 10): T = ## Parse a string and store the result in a StInt[bits] or StUint[bits]. static: doAssert (radix >= 2) and radix <= 16, "Only base from 2..16 are supported" # TODO: use static[range[2 .. 16]], not supported at the moment (2018-04-26) # TODO: we can special case hex result/input as an array of bytes # and be much faster const base = radix.uint8.stuint(bits) var curr = 0 # Current index in the string skipPrefixes(curr, input, radix) while curr < input.len: # TODO: overflow detection when radix <= 10: result = result * base + input[curr].readDecChar.stuint(bits) else: result = result * base + input[curr].readHexChar.stuint(bits) nextNonBlank(curr, input) # func parse*[bits: static[int]](input: string, T: typedesc[Stint[bits]], radix: static[int8] = 10): T = # ## Parse a string and store the result in a Stint[bits] or Stuint[bits]. # static: doAssert (radix >= 2) and radix <= 16, "Only base from 2..16 are supported" # # TODO: use static[range[2 .. 16]], not supported at the moment (2018-04-26) # # TODO: we can special case hex result/input as an array of bytes # # and be much faster # # For conversion we require overflowing operations (for example for negative hex numbers) # const base = radix.int8.stuint(bits) # var # curr = 0 # Current index in the string # isNeg = false # no_overflow: Stuint[bits] # if input[curr] == '-': # doAssert radix == 10, "Negative numbers are only supported with base 10 input." # isNeg = true # inc curr # else: # skipPrefixes(curr, input, radix) # while curr < input.len: # # TODO: overflow detection # when radix <= 10: # no_overflow = no_overflow * base + input[curr].readDecChar.stuint(bits) # else: # no_overflow = no_overflow * base + input[curr].readHexChar.stuint(bits) # nextNonBlank(curr, input) # # TODO: we can't create the lowest int this way # if isNeg: # result = -convert[T](no_overflow) # else: # result = convert[T](no_overflow) func fromHex*(T: typedesc[StUint|StInt], s: string): T {.inline.} = ## Convert an hex string to the corresponding unsigned integer parse(s, type result, radix = 16) func hexToUint*[bits: static[int]](hexString: string): StUint[bits] {.inline.} = ## Convert an hex string to the corresponding unsigned integer parse(hexString, type result, radix = 16) # func toString*[bits: static[int]](num: StUint[bits], radix: static[uint8] = 10): string = # ## Convert a Stint or Stuint to string. # ## In case of negative numbers: # ## - they are prefixed with "-" for base 10. # ## - if not base 10, they are returned raw in two-complement form. # static: doAssert (radix >= 2) and radix <= 16, "Only base from 2..16 are supported" # # TODO: use static[range[2 .. 16]], not supported at the moment (2018-04-26) # const hexChars = "0123456789abcdef" # const base = radix.uint8.stuint(bits) # result = "" # var (q, r) = divmod(num, base) # while true: # when bitsof(r.data) <= 64: # result.add hexChars[r.data.int] # else: # result.add hexChars[r.truncate(int)] # if q.isZero: # break # (q, r) = divmod(q, base) # reverse(result) # func toString*[bits: static[int]](num: Stint[bits], radix: static[int8] = 10): string = # ## Convert a Stint or Stuint to string. # ## In case of negative numbers: # ## - they are prefixed with "-" for base 10. # ## - if not base 10, they are returned raw in two-complement form. # static: doAssert (radix >= 2) and radix <= 16, "Only base from 2..16 are supported" # # TODO: use static[range[2 .. 16]], not supported at the moment (2018-04-26) # const hexChars = "0123456789abcdef" # const base = radix.int8.stuint(bits) # result = "" # type T = Stuint[bits] # let isNeg = num.isNegative # let num = convert[T](if radix == 10 and isNeg: -num # else: num) # var (q, r) = divmod(num, base) # while true: # when bitsof(r.data) <= 64: # result.add hexChars[r.data.int] # else: # result.add hexChars[r.truncate(int)] # if q.isZero: # break # (q, r) = divmod(q, base) # if isNeg and radix == 10: # result.add '-' # reverse(result) # func `$`*(num: Stint or StUint): string {.inline.}= # when num.data is SomeInteger: # $num.data # else: # toString(num, 10) # func toHex*[bits: static[int]](num: Stint[bits] or StUint[bits]): string {.inline.}= # ## Convert to a hex string. # ## Output is considered a big-endian base 16 string. # ## Leading zeros are stripped. Use dumpHex instead if you need the in-memory representation # toString(num, 16) # func dumpHex*(x: Stint or StUint, order: static[Endianness] = bigEndian): string = # ## Stringify an int to hex. # ## Note. Leading zeros are not removed. Use toString(n, base = 16)/toHex instead. # ## # ## You can specify bigEndian or littleEndian order. # ## i.e. in bigEndian: # ## - 1.uint64 will be 00000001 # ## - (2.uint128)^64 + 1 will be 0000000100000001 # ## # ## in littleEndian: # ## - 1.uint64 will be 01000000 # ## - (2.uint128)^64 + 1 will be 0100000001000000 # const # hexChars = "0123456789abcdef" # size = bitsof(x.data) div 8 # result = newString(2*size) # when nimvm: # for i in 0 ..< size: # when order == system.cpuEndian: # let byte = x.data.getByte(i) # else: # let byte = x.data.getByte(size - 1 - i) # result[2*i] = hexChars[int byte shr 4 and 0xF] # result[2*i+1] = hexChars[int byte and 0xF] # else: # {.pragma: restrict, codegenDecl: "$# __restrict $#".} # let bytes {.restrict.}= cast[ptr array[size, byte]](x.unsafeaddr) # for i in 0 ..< size: # when order == system.cpuEndian: # result[2*i] = hexChars[int bytes[i] shr 4 and 0xF] # result[2*i+1] = hexChars[int bytes[i] and 0xF] # else: # result[2*i] = hexChars[int bytes[bytes[].high - i] shr 4 and 0xF] # result[2*i+1] = hexChars[int bytes[bytes[].high - i] and 0xF] proc initFromBytesBE*[bits: static[int]](val: var Stuint[bits], ba: openarray[byte], allowPadding: static[bool] = true) {.deprecated:"Use fromBytesBE instead".}= ## Initializes a UInt[bits] value from a byte buffer storing a big-endian ## representation of a number. ## ## If `allowPadding` is set to false, the input array must be exactly ## (bits div 8) bytes long. Otherwise, it may be shorter and the remaining ## bytes will be assumed to be zero. const N = bits div 8 when not allowPadding: doAssert(ba.len == N) else: doAssert ba.len <= N when system.cpuEndian == bigEndian: let baseIdx = N - val.len else: let baseIdx = ba.len - 1 when nimvm: when system.cpuEndian == bigEndian: when allowPadding: for i, b in ba: val.data.setByte(baseIdx + i, b) else: for i, b in ba: val.data.setByte(i, b) else: when allowPadding: for i, b in ba: val.data.setByte(baseIdx - i, b) else: for i, b in ba: val.data.setByte(N-1 - i, b) else: {.pragma: restrict, codegenDecl: "$# __restrict $#".} let r_ptr {.restrict.} = cast[ptr array[N, byte]](val.addr) when system.cpuEndian == bigEndian: # TODO: due to https://github.com/status-im/nim-stint/issues/38 # We can't cast a stack byte array to stuint with a convenient proc signature. when allowPadding: for i, b in ba: r_ptr[baseIdx + i] = b else: for i, b in ba: r_ptr[i] = b else: when allowPadding: for i, b in ba: r_ptr[baseIdx - i] = b else: for i, b in ba: r_ptr[N-1 - i] = b func significantBytesBE*(val: openArray[byte]): int {.deprecated.}= ## Returns the number of significant trailing bytes in a big endian ## representation of a number. # TODO: move that in https://github.com/status-im/nim-byteutils for i in 0 ..< val.len: if val[i] != 0: return val.len - i return 1 func fromBytesBE*(T: type Stuint, ba: openarray[byte], allowPadding: static[bool] = true): T {.noInit, inline.} = ## This function provides a convenience wrapper around `initFromBytesBE`. when not allowPadding: {.deprecated: "fromBytesBE without padding is deprecated".} result.initFromBytesBE(ba, allowPadding) else: result = endians2.fromBytesBE(T, ba) func readUintBE*[bits: static[int]](ba: openarray[byte]): Stuint[bits] {.noInit, inline.}= ## Convert a big-endian array of (bits div 8) Bytes to an UInt[bits] (in native host endianness) ## Input: ## - a big-endian openArray of size (bits div 8) at least ## Returns: ## - A unsigned integer of the same size with `bits` bits ## ## ⚠ If the openarray length is bigger than bits div 8, part converted is undefined behaviour. result = endians2.fromBytesBE(Stuint[bits], ba) func toByteArrayBE*[bits: static[int]](n: StUint[bits]): array[bits div 8, byte] {.noInit, inline.}= ## Convert a uint[bits] to to a big-endian array of bits div 8 bytes ## Input: ## - an unsigned integer ## Returns: ## - a big-endian array of the same size result = n.toBytes(bigEndian) template hash*(num: StUint|StInt): Hash = # TODO: # `hashData` is not particularly efficient. # Explore better hashing solutions in nim-stew. hashData(unsafeAddr num, sizeof num)