Modular arithmetic (#47)
* Add isEven and isOdd functions * Add modular add, mul, sub pow fixes #18
This commit is contained in:
parent
7c11f7da07
commit
f2d0eab153
|
@ -7,8 +7,8 @@
|
|||
#
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import stint/[uint_public, int_public, io]
|
||||
export uint_public, int_public, io
|
||||
import stint/[uint_public, int_public, io, modular_arithmetic]
|
||||
export uint_public, int_public, io, modular_arithmetic
|
||||
|
||||
type
|
||||
Int128* = Stint[128]
|
||||
|
|
|
@ -57,8 +57,19 @@ import ./private/int_comparison
|
|||
make_binary(`<`, bool)
|
||||
make_binary(`<=`, bool)
|
||||
make_binary(`==`, bool)
|
||||
func isZero*(x: Stint): bool {.inline.} = isZero x.data
|
||||
func isNegative*(x: Stint): bool {.inline.} = isNegative x.data
|
||||
make_unary(isZero, bool)
|
||||
make_unary(isNegative, bool)
|
||||
|
||||
func isOdd(x: SomeSignedInt): bool {.inline.}=
|
||||
# internal
|
||||
bool(x and 1)
|
||||
|
||||
func isEven(x: SomeSignedInt): bool {.inline.}=
|
||||
# internal
|
||||
not x.isOdd
|
||||
|
||||
make_unary(isOdd, bool)
|
||||
make_unary(isEven, bool)
|
||||
|
||||
import ./private/int_bitwise_ops
|
||||
|
||||
|
|
|
@ -0,0 +1,119 @@
|
|||
# Stint
|
||||
# Copyright 2018 Status Research & Development GmbH
|
||||
# Licensed under either of
|
||||
#
|
||||
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
#
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import ./uint_public
|
||||
|
||||
func addmod_internal(a, b, m: Stuint): Stuint {.inline.}=
|
||||
## Modular addition
|
||||
## ⚠⚠ Assume a < m and b < m
|
||||
|
||||
assert a < m
|
||||
assert b < m
|
||||
|
||||
# We don't do a_m + b_m directly to avoid overflows
|
||||
let b_from_m = m - b
|
||||
|
||||
if a >= b_from_m:
|
||||
return a - b_from_m
|
||||
return m - b_from_m + a
|
||||
|
||||
func submod_internal(a, b, m: Stuint): Stuint {.inline.}=
|
||||
## Modular substraction
|
||||
## ⚠⚠ Assume a < m and b < m
|
||||
|
||||
assert a < m
|
||||
assert b < m
|
||||
|
||||
# We don't do a_m - b_m directly to avoid underflows
|
||||
if a >= b:
|
||||
return a - b
|
||||
return m - b + a
|
||||
|
||||
|
||||
func doublemod_internal(a, m: Stuint): Stuint {.inline.}=
|
||||
## Double a modulo m. Assume a < m
|
||||
## Internal proc - used in mulmod
|
||||
|
||||
assert a < m
|
||||
|
||||
result = a
|
||||
if a >= m - a:
|
||||
result -= m
|
||||
result += a
|
||||
|
||||
func mulmod_internal(a, b, m: Stuint): Stuint {.inline.}=
|
||||
## Does (a * b) mod m. Assume a < m and b < m
|
||||
## Internal proc - used in powmod
|
||||
|
||||
assert a < m
|
||||
assert b < m
|
||||
|
||||
var (a, b) = (a, b)
|
||||
|
||||
if b > a:
|
||||
swap(a, b)
|
||||
|
||||
while not b.isZero:
|
||||
if b.isOdd:
|
||||
result = result.addmod_internal(a, m)
|
||||
a = doublemod_internal(a, m)
|
||||
b = b shr 1
|
||||
|
||||
func powmod_internal(a, b, m: Stuint): Stuint {.inline.}=
|
||||
## Compute ``(a ^ b) mod m``, assume a < m
|
||||
## Internal proc
|
||||
|
||||
assert a < m
|
||||
|
||||
var (a, b) = (a, b)
|
||||
result = one(type a)
|
||||
|
||||
while not b.isZero:
|
||||
if b.isOdd:
|
||||
result = result.mulmod_internal(a, m)
|
||||
b = b shr 1
|
||||
a = mulmod_internal(a, a, m)
|
||||
|
||||
func addmod*(a, b, m: Stuint): Stuint =
|
||||
## Modular addition
|
||||
|
||||
let a_m = if a < m: a
|
||||
else: a mod m
|
||||
let b_m = if b < m: b
|
||||
else: b mod m
|
||||
|
||||
result = addmod_internal(a_m, b_m, m)
|
||||
|
||||
proc submod*(a, b, m: Stuint): Stuint =
|
||||
## Modular substraction
|
||||
|
||||
let a_m = if a < m: a
|
||||
else: a mod m
|
||||
let b_m = if b < m: b
|
||||
else: b mod m
|
||||
|
||||
result = submod_internal(a_m, b_m, m)
|
||||
|
||||
func mulmod*(a, b, m: Stuint): Stuint =
|
||||
## Modular multiplication
|
||||
|
||||
let a_m = if a < m: a
|
||||
else: a mod m
|
||||
let b_m = if b < m: b
|
||||
else: b mod m
|
||||
|
||||
result = mulmod_internal(a_m, b_m, m)
|
||||
|
||||
proc powmod*(a, b, m: Stuint): Stuint =
|
||||
## Modular exponentiation
|
||||
|
||||
let a_m = if a < m: a
|
||||
else: a mod m
|
||||
|
||||
result = powmod_internal(a_m, b, m)
|
|
@ -43,3 +43,9 @@ func `<=`*(x, y: IntImpl): bool {.inline.}=
|
|||
if x != y:
|
||||
return x < y
|
||||
return true # they're equal
|
||||
|
||||
func isOdd*(x: IntImpl): bool {.inline.}=
|
||||
bool(x.least_significant_word and 1)
|
||||
|
||||
func isEven*(x: IntImpl): bool {.inline.}=
|
||||
not x.isOdd
|
||||
|
|
|
@ -38,3 +38,9 @@ func `<=`*(x, y: UintImpl): bool {.inline.}=
|
|||
if x != y:
|
||||
return x < y
|
||||
return true # they're equal
|
||||
|
||||
func isOdd*(x: UintImpl): bool {.inline.}=
|
||||
bool(x.least_significant_word and 1)
|
||||
|
||||
func isEven*(x: UintImpl): bool {.inline.}=
|
||||
not x.isOdd
|
||||
|
|
|
@ -23,7 +23,7 @@ func pow*(x: UintImpl, y: Natural): UintImpl =
|
|||
result = one(type x)
|
||||
|
||||
while true:
|
||||
if (y and 1) != 0:
|
||||
if bool(y and 1): # if y is odd
|
||||
result = result * x
|
||||
y = y shr 1
|
||||
if y == 0:
|
||||
|
@ -42,7 +42,7 @@ func pow*(x: UintImpl, y: UintImpl): UintImpl =
|
|||
result = one(type x)
|
||||
|
||||
while true:
|
||||
if not (y and one(type y)).isZero:
|
||||
if y.isOdd:
|
||||
result = result * x
|
||||
y = y shr 1
|
||||
if y.isZero:
|
||||
|
|
|
@ -53,7 +53,18 @@ import ./private/uint_comparison
|
|||
make_binary(`<`, bool)
|
||||
make_binary(`<=`, bool)
|
||||
make_binary(`==`, bool)
|
||||
func isZero*(x: StUint): bool {.inline.} = isZero x.data
|
||||
make_unary(isZero, bool)
|
||||
|
||||
func isOdd(x: SomeUnsignedInt): bool {.inline.}=
|
||||
# internal
|
||||
bool(x and 1)
|
||||
|
||||
func isEven(x: SomeUnsignedInt): bool {.inline.}=
|
||||
# internal
|
||||
not x.isOdd
|
||||
|
||||
make_unary(isOdd, bool)
|
||||
make_unary(isEven, bool)
|
||||
|
||||
import ./private/uint_bitwise_ops
|
||||
|
||||
|
|
|
@ -54,3 +54,12 @@ suite "Signed int - Testing comparison operators":
|
|||
a >= -c
|
||||
b >= -c
|
||||
-b >= -b
|
||||
|
||||
test "isOdd/isEven":
|
||||
check:
|
||||
a.isEven
|
||||
not a.isOdd
|
||||
b.isOdd
|
||||
not b.isEven
|
||||
c.isEven
|
||||
not c.isOdd
|
||||
|
|
|
@ -53,3 +53,12 @@ suite "Testing unsigned int comparison operators":
|
|||
cast[StUint[16]](c) >= a * b
|
||||
d >= e
|
||||
f >= d
|
||||
|
||||
test "isOdd/isEven":
|
||||
check:
|
||||
a.isEven
|
||||
not a.isOdd
|
||||
b.isOdd
|
||||
not b.isEven
|
||||
c.isEven
|
||||
not c.isOdd
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
# Stint
|
||||
# Copyright 2018 Status Research & Development GmbH
|
||||
# Licensed under either of
|
||||
#
|
||||
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
#
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import ../stint, unittest, math
|
||||
|
||||
suite "Modular arithmetic":
|
||||
test "Modular addition":
|
||||
|
||||
# uint16 rolls over at 65535
|
||||
let a = 50000.stuint(16)
|
||||
let b = 20000.stuint(16)
|
||||
let m = 60000.stuint(16)
|
||||
|
||||
check: addmod(a, b, m) == 10000.stuint(16)
|
||||
|
||||
test "Modular substraction":
|
||||
|
||||
let a = 5.stuint(16)
|
||||
let b = 7.stuint(16)
|
||||
let m = 20.stuint(16)
|
||||
|
||||
check: submod(a, b, m) == 18.stuint(16)
|
||||
|
||||
test "Modular multiplication":
|
||||
# https://www.wolframalpha.com/input/?i=(1234567890+*+987654321)+mod+999999999
|
||||
# --> 345_679_002
|
||||
let a = 1234567890.stuint(64)
|
||||
let b = 987654321.stuint(64)
|
||||
let m = 999999999.stuint(64)
|
||||
|
||||
check: mulmod(a, b, m) == 345_679_002.stuint(64)
|
||||
|
||||
test "Modular exponentiation":
|
||||
# https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/fast-modular-exponentiation
|
||||
check:
|
||||
powmod(5.stuint(16), 117.stuint(16), 19.stuint(16)) == 1.stuint(16)
|
||||
powmod(3.stuint(16), 1993.stuint(16), 17.stuint(16)) == 14.stuint(16)
|
||||
|
||||
check:
|
||||
powmod(12.stuint(256), 34.stuint(256), high(UInt256)) == "4922235242952026704037113243122008064".u256
|
Loading…
Reference in New Issue