We aren't using Karatsuba actually but school-grade naive mul

This commit is contained in:
mratsim 2018-02-16 11:01:03 +01:00
parent d60419a731
commit 994be7fa61
1 changed files with 25 additions and 17 deletions

View File

@ -36,15 +36,12 @@ proc `-`*[T: MpUint](a, b: T): T {.noSideEffect, noInit, inline.}=
result = a result = a
result -= b result -= b
proc karatsuba[T: BaseUint](a, b: T): MpUint[T] {.noSideEffect, noInit, inline.} proc naiveMul[T: BaseUint](a, b: T): MpUint[T] {.noSideEffect, noInit, inline.}
# Forward declaration # Forward declaration
proc `*`*[T: MpUint](a, b: T): T {.noSideEffect, noInit.}= proc `*`*[T: MpUint](a, b: T): T {.noSideEffect, noInit.}=
## Multiplication for multi-precision unsigned uint ## Multiplication for multi-precision unsigned uint
# #
# We use a modified Karatsuba algorithm
#
# Karatsuba algorithm splits the operand into `hi * B + lo`
# For our representation, it is similar to school grade multiplication # For our representation, it is similar to school grade multiplication
# Consider hi and lo as if they were digits # Consider hi and lo as if they were digits
# #
@ -60,28 +57,40 @@ proc `*`*[T: MpUint](a, b: T): T {.noSideEffect, noInit.}=
# #
# If T is a type # If T is a type
# For T * T --> T we don't need to compute z2 as it always overflow # For T * T --> T we don't need to compute z2 as it always overflow
# For T * T --> 2T (uint64 * uint64 --> uint128) we use the full precision Karatsuba algorithm # For T * T --> 2T (uint64 * uint64 --> uint128) we use extra precision multiplication
result = karatsuba(a.lo, b.lo) result = naiveMul(a.lo, b.lo)
result.hi += (karatsuba(a.hi, b.lo) + karatsuba(a.lo, b.hi)).lo result.hi += (naiveMul(a.hi, b.lo) + naiveMul(a.lo, b.hi)).lo
template karatsubaImpl[T: MpUint](x, y: T): MpUint[T] = template naiveMulImpl[T: MpUint](x, y: T): MpUint[T] =
# See details at
# https://en.wikipedia.org/wiki/Karatsuba_algorithm # https://en.wikipedia.org/wiki/Karatsuba_algorithm
# https://locklessinc.com/articles/256bit_arithmetic/
# https://www.miracl.com/press/missing-a-trick-karatsuba-variations-michael-scott
#
# We use the naive school grade multiplication instead of Karatsuba I.e.
# z1 = x.hi * y.lo + x.lo * y.hi (Naive) = (x.lo - x.hi)(y.hi - y.lo) + z0 + z2 (Karatsuba)
#
# On modern architecture:
# - addition and multiplication have the same cost
# - Karatsuba would require to deal with potentially negative intermediate result
# and introduce branching
# - More total operations means more register moves
const halfShl = T.sizeof div 2 const halfShl = T.sizeof div 2
let let
z0 = karatsuba(x.lo, y.lo) z0 = naiveMul(x.lo, y.lo)
tmp = karatsuba(x.hi, y.lo) tmp = naiveMul(x.hi, y.lo)
var z1 = tmp var z1 = tmp
z1 += karatsuba(x.hi, y.lo) z1 += naiveMul(x.hi, y.lo)
let z2 = (z1 < tmp).T + karatsuba(x.hi, y.hi) let z2 = (z1 < tmp).T + naiveMul(x.hi, y.hi)
result.lo = z1.lo shl halfShl + z0 result.lo = z1.lo shl halfShl + z0
result.hi = z2 + z1.hi result.hi = z2 + z1.hi
proc karatsuba[T: BaseUint](a, b: T): MpUint[T] {.noSideEffect, noInit, inline.}= proc naiveMul[T: BaseUint](a, b: T): MpUint[T] {.noSideEffect, noInit, inline.}=
## Karatsuba algorithm with full precision ## Naive multiplication algorithm with extended precision
when T.sizeof in {1, 2, 4}: when T.sizeof in {1, 2, 4}:
# Use types twice bigger to do the multiplication # Use types twice bigger to do the multiplication
@ -89,8 +98,7 @@ proc karatsuba[T: BaseUint](a, b: T): MpUint[T] {.noSideEffect, noInit, inline.}
elif T.sizeof == 8: # uint64 or MpUint[uint32] elif T.sizeof == 8: # uint64 or MpUint[uint32]
# We cannot double uint64 to uint128 # We cannot double uint64 to uint128
# We use the Karatsuba algorithm naiveMulImpl(cast[MpUint[uint32]](a), cast[MpUint[uint32]](b))
karatsubaImpl(cast[MpUint[uint32]](a), cast[MpUint[uint32]](b))
else: else:
# Case: at least uint128 * uint128 --> uint256 # Case: at least uint128 * uint128 --> uint256
karatsubaImpl(a, b) naiveMulImpl(a, b)