45% faster division with 45% faster shifts (and maintainable). Fixes #1

This commit is contained in:
mratsim 2018-02-17 01:11:18 +01:00
parent 43cb3441bc
commit 00040e4d38
2 changed files with 10 additions and 78 deletions

View File

@ -80,7 +80,7 @@ template naiveMulImpl[T: MpUint](x, y: T): MpUint[T] =
let # cannot be const, compile-time sizeof only works for simple types
size = T.sizeof * 8
halfSize = size div 2
halfSize = size shr 1
let
z0 = naiveMul(x.lo, y.lo)
tmp = naiveMul(x.hi, y.lo)

View File

@ -30,94 +30,26 @@ proc `shr`*[T: MpUint](x: T, y: SomeInteger): T {.noInit, noSideEffect.}
proc `shl`*[T: MpUint](x: T, y: SomeInteger): T {.noInit, noSideEffect.}=
## Compute the `shift left` operation of x and y
if y == 0:
return x
let
size = T.sizeof * 8
halfSize = size div 2
halfSize = size shr 1
type Sub = type x.lo
if y < halfSize:
result.hi = (x.hi shl y) or (x.lo shr (halfSize - y))
result.lo = x.lo shl y
else:
result.hi = x.lo shl (y - halfSize)
result.lo = 0.Sub
result.hi = (x.hi shl y) or (x.lo shl (y - halfSize))
result.lo = if y < halfSize: x.lo shl y
else: 0.Sub
proc `shr`*[T: MpUint](x: T, y: SomeInteger): T {.noInit, noSideEffect.}=
## Compute the `shift right` operation of x and y
if y == 0:
return x
let
size = T.sizeof * 8
halfSize = size div 2
halfSize = size shr 1
type Sub = type x.lo
if y < halfSize:
result.lo = (x.lo shr y) or (x.hi shl (halfSize - y))
result.hi = x.hi shr y
else:
result.hi = x.hi shr (y - halfSize)
result.lo = 0.Sub
result.lo = (x.lo shr y) or (x.hi shl (y - halfSize)) # the shl is not a mistake
result.hi = if y < halfSize: x.hi shr y
else: 0.Sub
# ########################################################################
# TODO Benchmarks (especially on ARM)
# Alternative shift implementations without branching
#
# Quick testing on MpUint[uint32] on x86_64 with Clang shows that it is somewhat slower
# Fast shifting is key to fast division and modulo operations
#
# Note: Using branchless shift will help preventing timing attacks / be more robust cryptography-wise
# Note2: It's a mess to maintain/read/update
# proc `shl`*[T: MpUint](x: T, y: SomeInteger): T {.noInit, noSideEffect.}=
# ## Compute the `shift left` operation of x and y
# type Sub = type x.lo
#
# let # cannot be const, compile-time sizeof only works for simple types
# size = Sub(T.sizeof * 8)
# halfSize = size div 2
#
# var S = y.Sub and (size-1) # y mod size
#
# let
# M1 = Sub( ((((S + size-1) or S) and halfSize) div halfSize) - 1)
# M2 = Sub( (S div halfSize) - 1)
#
# S = S and (halfSize-1) # y mod halfsize
#
# result.hi = (x.lo shl S) and not M2
# result.lo = (x.lo shl S) and M2
# result.hi = result.hi or ((
# x.hi shl S or (x.lo shr (halfSize - S) and M1)
# ) and M2)
# proc `shr`*[T: MpUint](x: T, y: SomeInteger): T {.noInit, noSideEffect.}=
# ## Compute the `shift right` operation of x and y
# type Sub = type x.lo
#
# let # cannot be const, compile-time sizeof only works for simple types
# size = Sub(T.sizeof * 8)
# halfSize = size div 2
#
# var S = y.Sub and (size-1) # y mod size
#
# let
# M1 = Sub( ((((S + size-1) or S) and halfSize) div halfSize) - 1)
# M2 = Sub( (S div halfSize) - 1)
#
# S = S and (halfSize-1) # y mod halfsize
#
# result.lo = (x.hi shr S) and not M2
# result.hi = (x.hi shr S) and M2
# result.lo = result.lo or ((
# x.lo shr S or (x.hi shl (halfSize - S) and M1)
# ) and M2)