2018-04-25 19:21:25 +00:00
# Stint
2023-06-08 10:53:38 +00:00
# Copyright 2018-2023 Status Research & Development GmbH
2018-04-20 09:13:47 +00:00
# Licensed under either of
#
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
#
# at your option. This file may not be copied, modified, or distributed except according to those terms.
2018-05-06 20:29:08 +00:00
2021-08-06 12:44:25 +00:00
import
# Status lib
stew / bitops2 ,
# Internal
. / datatypes ,
. / uint_bitwise ,
2022-01-12 17:25:55 +00:00
. / primitives / [ addcarry_subborrow , extended_precision ]
2021-08-06 12:44:25 +00:00
# Division
# --------------------------------------------------------
func shortDiv * ( a : var Limbs , k : Word ) : Word =
## Divide `a` by k in-place and return the remainder
result = Word ( 0 )
let clz = leadingZeros ( k )
let normK = k shl clz
for i in countdown ( a . len - 1 , 0 ) :
# dividend = 2^64 * remainder + a[i]
var hi = result
var lo = a [ i ]
2022-01-25 22:12:52 +00:00
if hi = = 0 :
if lo < k :
a [ i ] = 0
elif lo = = k :
a [ i ] = 1
result = 0
continue
2021-08-06 12:44:25 +00:00
# Normalize, shifting the remainder by clz(k) cannot overflow.
hi = ( hi shl clz ) or ( lo shr ( WordBitWidth - clz ) )
lo = lo shl clz
div2n1n ( a [ i ] , result , hi , lo , normK )
# Undo normalization
result = result shr clz
2022-01-23 20:39:26 +00:00
func shlAddMod_multi ( a : var openArray [ Word ] , c : Word ,
M : openArray [ Word ] , mBits : int ) : Word =
## Fused modular left-shift + add
## Shift input `a` by a word and add `c` modulo `M`
2023-06-14 10:41:02 +00:00
##
2022-01-23 20:39:26 +00:00
## Specialized for M being a multi-precision integer.
2021-08-06 12:44:25 +00:00
##
2022-01-23 20:39:26 +00:00
## With a word W = 2^WordBitWidth and a modulus M
## Does a <- a * W + c (mod M)
## and returns q = (a * W + c ) / M
2021-08-06 12:44:25 +00:00
##
2022-01-23 20:39:26 +00:00
## The modulus `M` most-significant bit at `mBits` MUST be set.
2023-06-14 10:41:02 +00:00
2022-01-23 20:39:26 +00:00
# Assuming 64-bit words
let hi = a [ ^ 1 ] # Save the high word to detect carries
let R = mBits and ( WordBitWidth - 1 ) # R = mBits mod 64
var a0 , a1 , m0 : Word
if R = = 0 : # If the number of mBits is a multiple of 64
a0 = a [ ^ 1 ] #
copyWords ( a , 1 , a , 0 , a . len - 1 ) # we can just shift words
a [ 0 ] = c # and replace the first one by c
a1 = a [ ^ 1 ]
m0 = M [ ^ 1 ]
else : # Else: need to deal with partial word shifts at the edge.
let clz = WordBitWidth - R
a0 = ( a [ ^ 1 ] shl clz ) or ( a [ ^ 2 ] shr R )
copyWords ( a , 1 , a , 0 , a . len - 1 )
a [ 0 ] = c
a1 = ( a [ ^ 1 ] shl clz ) or ( a [ ^ 2 ] shr R )
m0 = ( M [ ^ 1 ] shl clz ) or ( M [ ^ 2 ] shr R )
# m0 has its high bit set. (a0, a1)/m0 fits in a limb.
# Get a quotient q, at most we will be 2 iterations off
# from the true quotient
var q : Word # Estimate quotient
if a0 = = m0 : # if a_hi == divisor
q = high ( Word ) # quotient = MaxWord (0b1111...1111)
elif a0 = = 0 and a1 < m0 : # elif q == 0, true quotient = 0
q = 0
2022-01-25 22:12:52 +00:00
return q
2022-01-23 20:39:26 +00:00
else :
var r : Word
div2n1n ( q , r , a0 , a1 , m0 ) # else instead of being of by 0, 1 or 2
q - = 1 # we return q-1 to be off by -1, 0 or 1
# Now substract a*2^64 - q*m
var carry = Word ( 0 )
var overM = true # Track if quotient greater than the modulus
for i in 0 .. < M . len :
var qm_lo : Word
block : # q*m
# q * p + carry (doubleword) carry from previous limb
muladd1 ( carry , qm_lo , q , M [ i ] , carry )
block : # a*2^64 - q*m
var borrow : Borrow
subB ( borrow , a [ i ] , a [ i ] , qm_lo , Borrow ( 0 ) )
carry + = Word ( borrow ) # Adjust if borrow
if a [ i ] ! = M [ i ] :
overM = a [ i ] > M [ i ]
# Fix quotient, the true quotient is either q-1, q or q+1
#
# if carry < q or carry == q and overM we must do "a -= M"
# if carry > hi (negative result) we must do "a += M"
if carry > hi :
var c = Carry ( 0 )
for i in 0 .. < a . len :
addC ( c , a [ i ] , a [ i ] , M [ i ] , c )
q - = 1
elif overM or ( carry < hi ) :
var b = Borrow ( 0 )
for i in 0 .. < a . len :
subB ( b , a [ i ] , a [ i ] , M [ i ] , b )
q + = 1
return q
func shlAddMod ( a : var openArray [ Word ] , c : Word ,
M : openArray [ Word ] , mBits : int ) : Word {. inline . } =
## Fused modular left-shift + add
## Shift input `a` by a word and add `c` modulo `M`
2023-06-14 10:41:02 +00:00
##
2022-01-23 20:39:26 +00:00
## With a word W = 2^WordBitWidth and a modulus M
## Does a <- a * W + c (mod M)
## and returns q = (a * W + c ) / M
##
## The modulus `M` most-significant bit at `mBits` MUST be set.
if mBits < = WordBitWidth :
# If M fits in a single limb
# We normalize M with clz so that the MSB is set
# And normalize (a * 2^64 + c) by R as well to maintain the result
# This ensures that (a0, a1)/p0 fits in a limb.
let R = mBits and ( WordBitWidth - 1 )
# (hi, lo) = a * 2^64 + c
2023-06-22 09:43:31 +00:00
if R = = 0 :
# We can delegate this R == 0 case to the
# shlAddMod_multi, with the same result.
# But isn't it faster to handle it here?
var q , r : Word
div2n1n ( q , r , a [ 0 ] , c , M [ 0 ] )
a [ 0 ] = r
return q
else :
let clz = WordBitWidth - R
let hi = ( a [ 0 ] shl clz ) or ( c shr R )
let lo = c shl clz
let m0 = M [ 0 ] shl clz
var q , r : Word
div2n1n ( q , r , hi , lo , m0 )
a [ 0 ] = r shr clz
return q
2022-01-23 20:39:26 +00:00
else :
return shlAddMod_multi ( a , c , M , mBits )
2022-01-23 21:45:47 +00:00
func divRem * (
2022-01-23 20:39:26 +00:00
q , r : var openArray [ Word ] ,
a , b : openArray [ Word ]
) =
let ( aBits , aLen ) = usedBitsAndWords ( a )
let ( bBits , bLen ) = usedBitsAndWords ( b )
let rLen = bLen
2022-01-25 22:12:52 +00:00
if unlikely ( bBits = = 0 ) :
2023-06-13 12:03:43 +00:00
raise newException ( DivByZeroDefect , " You attempted to divide by zero " )
2022-01-25 22:12:52 +00:00
2022-01-23 20:39:26 +00:00
if aBits < bBits :
# if a uses less bits than b,
# a < b, so q = 0 and r = a
copyWords ( r , 0 , a , 0 , aLen )
for i in aLen .. < r . len : # r.len >= rLen
r [ i ] = 0
for i in 0 .. < q . len :
q [ i ] = 0
2018-04-21 10:12:05 +00:00
else :
2022-01-23 20:39:26 +00:00
# The length of a is at least the divisor
# We can copy bLen-1 words
# and modular shift-lef-add the rest
let aOffset = aLen - bLen
copyWords ( r , 0 , a , aOffset + 1 , bLen - 1 )
r [ rLen - 1 ] = 0
# Now shift-left the copied words while adding the new word mod b
2023-06-14 10:41:02 +00:00
when nimvm :
# workaround nim bug #22095
var rr = @ ( r . toOpenArray ( 0 , rLen - 1 ) )
var bb = @ ( b . toOpenArray ( 0 , bLen - 1 ) )
for i in countdown ( aOffset , 0 ) :
q [ i ] = shlAddMod (
rr ,
a [ i ] ,
bb ,
bBits
)
for i in 0 .. rLen - 1 :
r [ i ] = rr [ i ]
else :
for i in countdown ( aOffset , 0 ) :
q [ i ] = shlAddMod (
r . toOpenArray ( 0 , rLen - 1 ) ,
a [ i ] ,
b . toOpenArray ( 0 , bLen - 1 ) ,
bBits
)
2022-01-23 20:39:26 +00:00
# Clean up extra words
for i in aOffset + 1 .. < q . len :
q [ i ] = 0
for i in rLen .. < r . len :
r [ i ] = 0
2018-04-20 09:13:47 +00:00
2022-01-12 17:25:55 +00:00
# ######################################################################
# Division implementations
#
# Multi-precision division is a costly
2022-01-23 20:39:26 +00:00
# and also difficult to implement operation
2022-01-12 17:25:55 +00:00
# ##### Research #####
# Overview of division algorithms:
# - https://gmplib.org/manual/Division-Algorithms.html#Division-Algorithms
# - https://gmplib.org/~tege/division-paper.pdf
# - Comparison of fast division algorithms for large integers: http://bioinfo.ict.ac.cn/~dbu/AlgorithmCourses/Lectures/Lec5-Fast-Division-Hasselstrom2003.pdf
# Schoolbook / Knuth Division (Algorithm D)
# - https://skanthak.homepage.t-online.de/division.html
# Review of implementation flaws
# - Hacker's Delight https://github.com/hcs0/Hackers-Delight/blob/master/divmnu64.c.txt
# - LLVM: https://github.com/llvm-mirror/llvm/blob/2c4ca68/lib/Support/APInt.cpp#L1289-L1451
# - ctbignum: https://github.com/niekbouman/ctbignum/blob/v0.5/include/ctbignum/division.hpp
# - Modern Computer Arithmetic - https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
# p14 - 1.4.1 Naive Division
# - Handbook of Applied Cryptography - https://cacr.uwaterloo.ca/hac/about/chap14.pdf
# Chapter 14 algorithm 14.2.5
# Smith Method (and derivatives)
# This method improves Knuth algorithm by ~3x by removing regular normalization
# - A Multiple-Precision Division Algorithm, David M Smith
# American mathematical Society, 1996
# https://www.ams.org/journals/mcom/1996-65-213/S0025-5718-96-00688-6/S0025-5718-96-00688-6.pdf
#
# - An Efficient Multiple-Precision Division Algorithm,
# Liusheng Huang, Hong Zhong, Hong Shen, Yonglong Luo, 2005
# https://ieeexplore.ieee.org/document/1579076
2023-06-14 10:41:02 +00:00
#
2022-01-12 17:25:55 +00:00
# - Efficient multiple-precision integer division algorithm
# Debapriyay Mukhopadhyaya, Subhas C.Nandy, 2014
# https://www.sciencedirect.com/science/article/abs/pii/S0020019013002627
# Recursive division by Burnikel and Ziegler (http://www.mpi-sb.mpg.de/~ziegler/TechRep.ps.gz):
# - Python implementation: https://bugs.python.org/file11060/fast_div.py and discussion https://bugs.python.org/issue3451
# - C++ implementation: https://github.com/linbox-team/givaro/blob/master/src/kernel/recint/rudiv.h
# - The Handbook of Elliptic and Hyperelliptic Cryptography Algorithm 10.35 on page 188 has a more explicit version of the div2NxN algorithm. This algorithm is directly recursive and avoids the mutual recursion of the original paper's calls between div2NxN and div3Nx2N.
# - Modern Computer Arithmetic - https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
# p18 - 1.4.3 Divide and Conquer Division
# Newton Raphson Iterations
# - Putty (constant-time): https://github.com/github/putty/blob/0.74/mpint.c#L1818-L2112
# - Modern Computer Arithmetic - https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
# p18 - 1.4.3 Divide and Conquer Division
# Other libraries that can be used as reference for alternative (?) implementations:
# - TTMath: https://github.com/status-im/nim-ttmath/blob/8f6ff2e57b65a350479c4012a53699e262b19975/src/headers/ttmathuint.h#L1530-L2383
# - LibTomMath: https://github.com/libtom/libtommath
# - Google Abseil for uint128: https://github.com/abseil/abseil-cpp/tree/master/absl/numeric
# Note: GMP/MPFR are GPL. The papers can be used but not their code.
# Related research
# - Efficient divide-and-conquer multiprecision integer division
# William Hart, IEEE 2015
# https://github.com/wbhart/bsdnt
# https://ieeexplore.ieee.org/document/7203801