mirror of
https://github.com/status-im/nim-stew.git
synced 2025-01-10 04:05:44 +00:00
779ba052c8
* Re-route KeyError exceptions as Defect for all except the `[]` function why: Access via key is verified, error is returned via Result[] * Refactor lruFetch() item rotation why: Previously, the item was deleted and re-inserted in the table although for rotation, only the queue links need to be updated. * Delete some KeyError annotations why: Was overlooked earlier * More KeyError fixes
886 lines
30 KiB
Nim
886 lines
30 KiB
Nim
# Nimbus
|
|
# Copyright (c) 2018 Status Research & Development GmbH
|
|
# Licensed under either of
|
|
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
|
|
# http://www.apache.org/licenses/LICENSE-2.0)
|
|
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
|
|
# http://opensource.org/licenses/MIT)
|
|
# at your option. This file may not be copied, modified, or distributed except
|
|
# according to those terms.
|
|
|
|
## Keyed Queue
|
|
## ===========
|
|
##
|
|
## This module provides a keyed fifo or stack data structure similar to
|
|
## `DoublyLinkedList` but with efficient random data access for fetching
|
|
## and deletion. The underlying data structure is a hash table with data
|
|
## lookup and delete assumed to be O(1) in most cases (so long as the
|
|
## underlying hash table does not degrade into one-bucket linear mode, or
|
|
## some bucket-adjustment algorithm takes over.)
|
|
##
|
|
## For consistency with other data types in Nim the queue has value
|
|
## semantics, this means that `=` performs a deep copy of the allocated queue
|
|
## which is refered to the deep copy semantics of the underlying table driver.
|
|
|
|
import
|
|
std/[math, tables],
|
|
./results
|
|
|
|
export
|
|
results
|
|
|
|
{.push raises: [Defect].}
|
|
|
|
type
|
|
KeyedQueueItem*[K,V] = object ##\
|
|
## Data value container as stored in the queue.
|
|
## There is a special requirements for `KeyedQueueItem` terminal nodes:
|
|
## *prv == nxt* so that there is no dangling link. On the flip side,
|
|
## this requires some extra consideration when deleting the second node
|
|
## relative to either end.
|
|
data*: V ## Some data value, can freely be modified.
|
|
kPrv*, kNxt*: K ## Queue links, read-only.
|
|
|
|
KeyedQueuePair*[K,V] = object ##\
|
|
## Key-value pair, typically used as return code.
|
|
key: K ## Sorter key (read-only for consistency with `SLstResult[K,V]`)
|
|
data*: V ## Some data value, to be modified freely
|
|
|
|
KeyedQueueTab*[K,V] = ##\
|
|
## Internal table type exposed for debugging.
|
|
Table[K,KeyedQueueItem[K,V]]
|
|
|
|
KeyedQueue*[K,V] = object ##\
|
|
## Data queue descriptor
|
|
tab*: KeyedQueueTab[K,V] ## Data table
|
|
kFirst*, kLast*: K ## Doubly linked item list queue
|
|
|
|
BlindValue = ##\
|
|
## Type name is syntactic sugar, used for key-only queues
|
|
distinct byte
|
|
|
|
KeyedQueueNV*[K] = ##\
|
|
## Key-only queue, no values
|
|
KeyedQueue[K,BlindValue]
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Private helpers
|
|
# ------------------------------------------------------------------------------
|
|
|
|
template noKeyError(info: static[string]; code: untyped) =
|
|
try:
|
|
code
|
|
except KeyError as e:
|
|
raiseAssert "Not possible (" & info & "): " & e.msg
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Private functions
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc shiftImpl[K,V](rq: var KeyedQueue[K,V]) =
|
|
## Expects: rq.tab.len != 0
|
|
|
|
noKeyError("shiftImpl"):
|
|
# Unqueue first item
|
|
let item = rq.tab[rq.kFirst] # yes, crashes if `rq.tab.len == 0`
|
|
rq.tab.del(rq.kFirst)
|
|
|
|
if rq.tab.len == 0:
|
|
rq.kFirst.reset
|
|
rq.kLast.reset
|
|
else:
|
|
rq.kFirst = item.kNxt
|
|
if rq.tab.len == 1:
|
|
rq.tab[rq.kFirst].kNxt = rq.kFirst # node points to itself
|
|
rq.tab[rq.kFirst].kPrv = rq.tab[rq.kFirst].kNxt # term node has: nxt == prv
|
|
|
|
|
|
proc popImpl[K,V](rq: var KeyedQueue[K,V]) =
|
|
## Expects: rq.tab.len != 0
|
|
|
|
# Pop last item
|
|
noKeyError("popImpl"):
|
|
let item = rq.tab[rq.kLast] # yes, crashes if `rq.tab.len == 0`
|
|
rq.tab.del(rq.kLast)
|
|
|
|
if rq.tab.len == 0:
|
|
rq.kFirst.reset
|
|
rq.kLast.reset
|
|
else:
|
|
rq.kLast = item.kPrv
|
|
if rq.tab.len == 1:
|
|
rq.tab[rq.kLast].kPrv = rq.kLast # single node points to itself
|
|
rq.tab[rq.kLast].kNxt = rq.tab[rq.kLast].kPrv # term node has: nxt == prv
|
|
|
|
|
|
proc deleteImpl[K,V](rq: var KeyedQueue[K,V]; key: K) =
|
|
## Expects: rq.tab.hesKey(key)
|
|
|
|
if rq.kFirst == key:
|
|
rq.shiftImpl
|
|
|
|
elif rq.kLast == key:
|
|
rq.popImpl
|
|
|
|
else:
|
|
noKeyError("deleteImpl"):
|
|
let item = rq.tab[key] # yes, crashes if `not rq.tab.hasKey(key)`
|
|
rq.tab.del(key)
|
|
|
|
# now: 2 < rq.tab.len (otherwise rq.kFirst == key or rq.kLast == key)
|
|
if rq.tab[rq.kFirst].kNxt == key:
|
|
# item was the second one
|
|
rq.tab[rq.kFirst].kPrv = item.kNxt
|
|
if rq.tab[rq.kLast].kPrv == key:
|
|
# item was one before last
|
|
rq.tab[rq.kLast].kNxt = item.kPrv
|
|
|
|
rq.tab[item.kPrv].kNxt = item.kNxt
|
|
rq.tab[item.kNxt].kPrv = item.kPrv
|
|
|
|
|
|
proc appendImpl[K,V](rq: var KeyedQueue[K,V]; key: K; val: V) =
|
|
## Expects: not rq.tab.hasKey(key)
|
|
|
|
# Append queue item
|
|
var item = KeyedQueueItem[K,V](data: val)
|
|
|
|
noKeyError("appendImpl"):
|
|
if rq.tab.len == 0:
|
|
rq.kFirst = key
|
|
item.kPrv = key
|
|
else:
|
|
if rq.kFirst == rq.kLast:
|
|
rq.tab[rq.kFirst].kPrv = key # first terminal node
|
|
rq.tab[rq.kLast].kNxt = key
|
|
item.kPrv = rq.kLast
|
|
|
|
rq.kLast = key
|
|
item.kNxt = item.kPrv # terminal node
|
|
|
|
rq.tab[key] = item # yes, makes `verify()` fail if `rq.tab.hasKey(key)`
|
|
|
|
|
|
proc prependImpl[K,V](rq: var KeyedQueue[K,V]; key: K; val: V) =
|
|
## Expects: not rq.tab.hasKey(key)
|
|
|
|
# Prepend queue item
|
|
var item = KeyedQueueItem[K,V](data: val)
|
|
|
|
noKeyError("prependImpl"):
|
|
if rq.tab.len == 0:
|
|
rq.kLast = key
|
|
item.kNxt = key
|
|
else:
|
|
if rq.kFirst == rq.kLast:
|
|
rq.tab[rq.kLast].kNxt = key # first terminal node
|
|
rq.tab[rq.kFirst].kPrv = key
|
|
item.kNxt = rq.kFirst
|
|
|
|
rq.kFirst = key
|
|
item.kPrv = item.kNxt # terminal node has: nxt == prv
|
|
|
|
rq.tab[key] = item # yes, makes `verify()` fail if `rq.tab.hasKey(key)`
|
|
|
|
# -----------
|
|
|
|
proc shiftKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
noKeyError("shiftKeyImpl"):
|
|
if 0 < rq.tab.len:
|
|
let key = rq.kFirst
|
|
rq.shiftImpl
|
|
return ok(key)
|
|
err()
|
|
|
|
proc popKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
noKeyError("popKeyImpl"):
|
|
if 0 < rq.tab.len:
|
|
let key = rq.kLast
|
|
rq.popImpl
|
|
return ok(key)
|
|
err()
|
|
|
|
# -----------
|
|
|
|
proc firstKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
if rq.tab.len == 0:
|
|
return err()
|
|
ok(rq.kFirst)
|
|
|
|
proc secondKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
if rq.tab.len < 2:
|
|
return err()
|
|
noKeyError("secondKeyImpl"):
|
|
return ok(rq.tab[rq.kFirst].kNxt)
|
|
|
|
proc beforeLastKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
if rq.tab.len < 2:
|
|
return err()
|
|
noKeyError("lastKeyImpl"):
|
|
return ok(rq.tab[rq.kLast].kPrv)
|
|
|
|
proc lastKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
if rq.tab.len == 0:
|
|
return err()
|
|
ok(rq.kLast)
|
|
|
|
proc nextKeyImpl[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
|
if not rq.tab.hasKey(key) or rq.kLast == key:
|
|
return err()
|
|
noKeyError("nextKeyImpl"):
|
|
return ok(rq.tab[key].kNxt)
|
|
|
|
proc prevKeyImpl[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
|
if not rq.tab.hasKey(key) or rq.kFirst == key:
|
|
return err()
|
|
noKeyError("prevKeyImpl"):
|
|
return ok(rq.tab[key].kPrv)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions, constructor
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc init*[K,V](rq: var KeyedQueue[K,V]; initSize = 10) =
|
|
## Optional initaliser for the queue setting the inital size of the
|
|
## underlying table object.
|
|
rq.tab = initTable[K,KeyedQueueItem[K,V]](initSize.nextPowerOfTwo)
|
|
|
|
proc init*[K,V](T: type KeyedQueue[K,V]; initSize = 10): T =
|
|
## Initaliser variant.
|
|
result.init(initSize)
|
|
|
|
proc init*[K](rq: var KeyedQueueNV[K]; initSize = 10) =
|
|
## Key-only queue, no explicit values
|
|
rq.tab = initTable[K,KeyedQueueItem[K,BlindValue]](initSize.nextPowerOfTwo)
|
|
|
|
proc init*[K](T: type KeyedQueueNV[K]; initSize = 10): T =
|
|
## Initaliser variant.
|
|
result.init(initSize)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions, list operations
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc append*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
|
## Append new `key`. The function will succeed returning `true` unless the
|
|
## `key` argument exists in the queue, already.
|
|
##
|
|
## All the items on the queue different from the one just added are
|
|
## called *previous* or *left hand* items while the item just added
|
|
## is the *right-most* item.
|
|
if not rq.tab.hasKey(key):
|
|
rq.appendImpl(key, val)
|
|
return true
|
|
|
|
template push*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
|
## Same as `append()`
|
|
rq.append(key, val)
|
|
|
|
|
|
proc replace*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
|
## Replace value for entry associated with the key argument `key`. Returns
|
|
## `true` on success, and `false` otherwise.
|
|
if rq.tab.hasKey(key):
|
|
noKeyError("replace"):
|
|
rq.tab[key].data = val
|
|
return true
|
|
|
|
proc `[]=`*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V) =
|
|
## This function provides a combined append/replace action with table
|
|
## semantics:
|
|
## * If the argument `key` is not in the queue yet, append the `(key,val)`
|
|
## pair as in `rq.append(key,val)`
|
|
## * Otherwise replace the value entry of the queue item by the argument
|
|
## `val` as in `rq.replace(key,val)`
|
|
if rq.tab.hasKey(key):
|
|
noKeyError("[]="):
|
|
rq.tab[key].data = val
|
|
else:
|
|
rq.appendImpl(key, val)
|
|
|
|
|
|
proc prepend*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
|
## Prepend new `key`. The function will succeed returning `true` unless the
|
|
## `key` argument exists in the queue, already.
|
|
##
|
|
## All the items on the queue different from the item just added are
|
|
## called *following* or *right hand* items while the item just added
|
|
## is the *left-most* item.
|
|
if not rq.tab.hasKey(key):
|
|
rq.prependImpl(key, val)
|
|
return true
|
|
|
|
template unshift*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
|
## Same as `prepend()`
|
|
rq.prepend(key,val)
|
|
|
|
|
|
proc shift*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
|
## Deletes the *first* queue item and returns the key-value item pair just
|
|
## deleted. For a non-empty queue this function is the same as
|
|
## `rq.firstKey.value.delele`.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## item returned and deleted is the *left-most* item.
|
|
if 0 < rq.tab.len:
|
|
noKeyError("shift"):
|
|
let kvp = KeyedQueuePair[K,V](
|
|
key: rq.kFirst,
|
|
data: rq.tab[rq.kFirst].data)
|
|
rq.shiftImpl
|
|
return ok(KeyedQueuePair[K,V](kvp))
|
|
err()
|
|
|
|
proc shiftKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
## Similar to `shift()` but with different return value.
|
|
rq.shiftKeyImpl
|
|
|
|
proc shiftValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
|
## Similar to `shift()` but with different return value.
|
|
if 0 < rq.tab.len:
|
|
noKeyError("shiftValue"):
|
|
let val = rq.tab[rq.kFirst].data
|
|
rq.shiftImpl
|
|
return ok(val)
|
|
err()
|
|
|
|
|
|
proc pop*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
|
## Deletes the *last* queue item and returns the key-value item pair just
|
|
## deleted. For a non-empty queue this function is the same as
|
|
## `rq.lastKey.value.delele`.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## item returned and deleted is the *right-most* item.
|
|
if 0 < rq.tab.len:
|
|
noKeyError("pop"):
|
|
let kvp = KeyedQueuePair[K,V](
|
|
key: rq.kLast,
|
|
data: rq.tab[rq.kLast].data)
|
|
rq.popImpl
|
|
return ok(KeyedQueuePair[K,V](kvp))
|
|
err()
|
|
|
|
proc popKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
## Similar to `pop()` but with different return value.
|
|
rq.popKeyImpl
|
|
|
|
proc popValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
|
## Similar to `pop()` but with different return value.
|
|
if 0 < rq.tab.len:
|
|
noKeyError("popValue"):
|
|
let val = rq.tab[rq.kLast].data
|
|
rq.popImpl
|
|
return ok(val)
|
|
err()
|
|
|
|
|
|
proc delete*[K,V](rq: var KeyedQueue[K,V]; key: K):
|
|
Result[KeyedQueuePair[K,V], void] =
|
|
## Delete the item with key `key` from the queue and returns the key-value
|
|
## item pair just deleted (if any).
|
|
if rq.tab.hasKey(key):
|
|
try:
|
|
let kvp = KeyedQueuePair[K,V](
|
|
key: key,
|
|
data: rq.tab[key].data)
|
|
rq.deleteImpl(key)
|
|
return ok(kvp)
|
|
except KeyError:
|
|
raiseAssert "We've checked that the key is present above"
|
|
err()
|
|
|
|
proc del*[K,V](rq: var KeyedQueue[K,V]; key: K) =
|
|
## Similar to `delete()` but without return code.
|
|
if rq.tab.hasKey(key):
|
|
rq.deleteImpl(key)
|
|
|
|
# --------
|
|
|
|
proc append*[K](rq: var KeyedQueueNV[K]; key: K): bool =
|
|
## Key-only queue variant
|
|
rq.append(key,BlindValue(0))
|
|
|
|
template push*[K](rq: var KeyedQueueNV[K]; key: K): bool =
|
|
## Key-only queue variant
|
|
rq.append(key)
|
|
|
|
|
|
proc prepend*[K](rq: var KeyedQueueNV[K]; key: K): bool =
|
|
## Key-only queue variant
|
|
rq.prepend(key,BlindValue(0))
|
|
|
|
template unshift*[K](rq: var KeyedQueueNV[K]; key: K): bool =
|
|
## Key-only queue variant
|
|
rq.prepend(key)
|
|
|
|
|
|
proc shift*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
|
## Key-only queue variant
|
|
rq.shiftKeyImpl
|
|
|
|
proc shiftKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
|
{.gcsafe, deprecated: "use shift() for key-only queue".} =
|
|
rq.shiftKeyImpl
|
|
|
|
|
|
proc pop*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
|
## Key-only variant of `pop()` (same as `popKey()`)
|
|
rq.popKeyImpl
|
|
|
|
proc popKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
|
{.gcsafe, deprecated: "use pop() for key-only queue".} =
|
|
rq.popKeyImpl
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions, fetch
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc hasKey*[K,V](rq: var KeyedQueue[K,V]; key: K): bool =
|
|
## Check whether the argument `key` has been queued, already
|
|
rq.tab.hasKey(key)
|
|
|
|
proc eq*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[V,void] =
|
|
## Retrieve the value data stored with the argument `key` from
|
|
## the queue if there is any.
|
|
if not rq.tab.hasKey(key):
|
|
return err()
|
|
noKeyError("eq"):
|
|
return ok(rq.tab[key].data)
|
|
|
|
proc `[]`*[K,V](rq: var KeyedQueue[K,V]; key: K): V
|
|
{.gcsafe,raises: [Defect,KeyError].} =
|
|
## This function provides a simplified version of the `eq()` function with
|
|
## table semantics. Note that this finction throws a `KeyError` exception
|
|
## unless the argument `key` exists in the queue.
|
|
rq.tab[key].data
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions, LRU mode
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc lruFetch*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[V,void] =
|
|
## Fetch in *last-recently-used* mode: If the argument `key` exists in the
|
|
## queue, move the key-value item pair to the *right end* (see `append()`)
|
|
## of the queue and return the value associated with the key.
|
|
if not rq.tab.hasKey(key):
|
|
return err()
|
|
|
|
noKeyError("lruFetch"):
|
|
let item = rq.tab[key]
|
|
if rq.kLast != key:
|
|
# Now, `key` is in the table and does not refer to the last `item`,
|
|
# so the table has at least two entries.
|
|
|
|
# unlink item
|
|
if rq.kFirst == key:
|
|
rq.kFirst = item.kNxt
|
|
rq.tab[rq.kFirst].kPrv = rq.tab[rq.kFirst].kNxt # term node: nxt == prv
|
|
|
|
else: # Now, there are at least three entries
|
|
if rq.tab[rq.kFirst].kNxt == key:
|
|
rq.tab[rq.kFirst].kPrv = item.kNxt # item was the 2nd one
|
|
rq.tab[item.kPrv].kNxt = item.kNxt
|
|
rq.tab[item.kNxt].kPrv = item.kPrv
|
|
|
|
# Re-append item, i.e. appendImpl() without adding item.
|
|
rq.tab[rq.kLast].kNxt = key
|
|
rq.tab[key].kPrv = rq.kLast
|
|
rq.kLast = key
|
|
rq.tab[key].kNxt = rq.tab[key].kPrv # term node: nxt == prv
|
|
|
|
return ok(item.data)
|
|
|
|
proc lruAppend*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V; maxItems: int): V =
|
|
## Append in *last-recently-used* mode: If the queue has at least `maxItems`
|
|
## item entries, do `shift()` out the *left-most* one. Then `append()` the
|
|
## key-value argument pair `(key,val)` to the *right end*. Together with
|
|
## `lruFetch()` this function can be used to build a *LRU cache*:
|
|
## ::
|
|
## const queueMax = 10
|
|
##
|
|
## proc expensiveCalculation(key: int): Result[int,void] =
|
|
## ...
|
|
##
|
|
## proc lruCache(q: var KeyedQueue[int,int]; key: int): Result[int,void] =
|
|
## block:
|
|
## let rc = q.lruFetch(key)
|
|
## if rc.isOK:
|
|
## return ok(rc.value)
|
|
## block:
|
|
## let rc = expensiveCalculation(key)
|
|
## if rc.isOK:
|
|
## return ok(q.lruAppend(key, rc.value, queueMax))
|
|
## err()
|
|
##
|
|
# Limit number of cached items
|
|
try:
|
|
if maxItems <= rq.tab.len:
|
|
rq.shiftImpl
|
|
# Append new value
|
|
rq.appendImpl(key, val)
|
|
return val
|
|
except KeyError:
|
|
raiseAssert "Not possible"
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public traversal functions, fetch keys
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc firstKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
## Retrieve first key from the queue unless it is empty.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## key returned is the *left-most* one.
|
|
rq.firstKeyImpl
|
|
|
|
proc secondKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
## Retrieve the key next after the first key from queue unless it is empty.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## key returned is the one ti the right of the *left-most* one.
|
|
rq.secondKeyImpl
|
|
|
|
proc beforeLastKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
## Retrieve the key just before the last one from queue unless it is empty.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## key returned is the one to the left of the *right-most* one.
|
|
rq.beforeLastKeyImpl
|
|
|
|
proc lastKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
|
## Retrieve last key from queue unless it is empty.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## key returned is the *right-most* one.
|
|
rq.lastKeyImpl
|
|
|
|
proc nextKey*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
|
## Retrieve the key following the argument `key` from queue if
|
|
## there is any.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## key returned is the next one to the *right*.
|
|
rq.nextKeyImpl(key)
|
|
|
|
proc prevKey*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
|
## Retrieve the key preceeding the argument `key` from queue if
|
|
## there is any.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## key returned is the next one to the *left*.
|
|
rq.prevKeyImpl(key)
|
|
|
|
# ----------
|
|
|
|
proc firstKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
|
{.gcsafe, deprecated: "use first() for key-only queue".} =
|
|
rq.firstKeyImpl
|
|
|
|
proc secondKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
|
{.gcsafe, deprecated: "use second() for key-only queue".} =
|
|
rq.secondKeyImpl
|
|
|
|
proc beforeLastKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
|
{.gcsafe, deprecated: "use beforeLast() for key-only queue".} =
|
|
rq.beforeLastKeyImpl
|
|
|
|
proc lastKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
|
{.gcsafe, deprecated: "use last() for key-only queue".} =
|
|
rq.lastKeyImpl
|
|
|
|
proc nextKey*[K](rq: var KeyedQueueNV[K]; key: K): Result[K,void]
|
|
{.gcsafe, deprecated: "use next() for key-only queue".} =
|
|
rq.nextKeyImpl(key)
|
|
|
|
proc prevKey*[K](rq: var KeyedQueueNV[K]; key: K): Result[K,void]
|
|
{.gcsafe, deprecated: "use prev() for key-only queue".} =
|
|
rq.nextKeyImpl(key)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public traversal functions, fetch key/value pairs
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc first*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
|
## Similar to `firstKey()` but with key-value item pair return value.
|
|
if rq.tab.len == 0:
|
|
return err()
|
|
noKeyError("first"):
|
|
let key = rq.kFirst
|
|
return ok(KeyedQueuePair[K,V](key: key, data: rq.tab[key].data))
|
|
|
|
proc second*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
|
## Similar to `secondKey()` but with key-value item pair return value.
|
|
if rq.tab.len < 2:
|
|
return err()
|
|
noKeyError("second"):
|
|
let key = rq.tab[rq.kFirst].kNxt
|
|
return ok(KeyedQueuePair[K,V](key: key, data: rq.tab[key].data))
|
|
|
|
proc beforeLast*[K,V](rq: var KeyedQueue[K,V]):
|
|
Result[KeyedQueuePair[K,V],void] =
|
|
## Similar to `beforeLastKey()` but with key-value item pair return value.
|
|
if rq.tab.len < 2:
|
|
return err()
|
|
noKeyError("beforeLast"):
|
|
let key = rq.tab[rq.kLast].kPrv
|
|
return ok(KeyedQueuePair[K,V](key: key, data: rq.tab[key].data))
|
|
|
|
proc last*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
|
## Similar to `lastKey()` but with key-value item pair return value.
|
|
if rq.tab.len == 0:
|
|
return err()
|
|
noKeyError("last"):
|
|
let key = rq.kLast
|
|
return ok(KeyedQueuePair[K,V](key: key, data: rq.tab[key].data))
|
|
|
|
proc next*[K,V](rq: var KeyedQueue[K,V]; key: K):
|
|
Result[KeyedQueuePair[K,V],void] =
|
|
## Similar to `nextKey()` but with key-value item pair return value.
|
|
if not rq.tab.hasKey(key) or rq.kLast == key:
|
|
return err()
|
|
noKeyError("next"):
|
|
let nKey = rq.tab[key].kNxt
|
|
return ok(KeyedQueuePair[K,V](key: nKey, data: rq.tab[nKey].data))
|
|
|
|
proc prev*[K,V](rq: var KeyedQueue[K,V]; key: K):
|
|
Result[KeyedQueuePair[K,V],void] =
|
|
## Similar to `prevKey()` but with key-value item pair return value.
|
|
if not rq.tab.hasKey(key) or rq.kFirst == key:
|
|
return err()
|
|
noKeyError("prev"):
|
|
let pKey = rq.tab[key].kPrv
|
|
return ok(KeyedQueuePair[K,V](key: pKey, data: rq.tab[pKey].data))
|
|
|
|
# ------------
|
|
|
|
proc first*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
|
## Key-only queue variant
|
|
rq.firstKeyImpl
|
|
|
|
proc second*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
|
## Key-only queue variant
|
|
rq.secondKeyImpl
|
|
|
|
proc beforeLast*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
|
## Key-only queue variant
|
|
rq.beforeLastKeyImpl
|
|
|
|
proc last*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
|
## Key-only queue variant
|
|
rq.lastKeyImpl
|
|
|
|
proc next*[K](rq: var KeyedQueueNV[K]; key: K): Result[K,void] =
|
|
## Key-only queue variant
|
|
rq.nextKeyImpl(key)
|
|
|
|
proc prev*[K](rq: var KeyedQueueNV[K]; key: K): Result[K,void] =
|
|
## Key-only queue variant
|
|
rq.nextKeyImpl(key)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public traversal functions, data container items
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc firstValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
|
## Retrieve first value item from the queue unless it is empty.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## value item returned is the *left-most* one.
|
|
if rq.tab.len == 0:
|
|
return err()
|
|
noKeyError("firstValue"):
|
|
return ok(rq.tab[rq.kFirst].data)
|
|
|
|
proc secondValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
|
## Retrieve the value item next to the first one from the queue unless it
|
|
## is empty.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## value item returned is the one to the *right* of the *left-most* one.
|
|
if rq.tab.len < 2:
|
|
return err()
|
|
noKeyError("secondValue"):
|
|
return ok(rq.tab[rq.tab[rq.kFirst].kNxt].data)
|
|
|
|
proc beforeLastValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
|
## Retrieve the value item just before the last item from the queue
|
|
## unless it is empty.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## value item returned is the one to the *left* of the *right-most* one.
|
|
if rq.tab.len < 2:
|
|
return err()
|
|
noKeyError("beforeLastValue"):
|
|
return ok(rq.tab[rq.tab[rq.kLast].kPrv].data)
|
|
|
|
proc lastValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
|
## Retrieve the last value item from the queue if there is any.
|
|
##
|
|
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
|
## value item returned is the *right-most* one.
|
|
if rq.tab.len == 0:
|
|
return err()
|
|
noKeyError("lastValue"):
|
|
return ok(rq.tab[rq.kLast].data)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions, miscellaneous
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc `==`*[K,V](a, b: var KeyedQueue[K,V]): bool =
|
|
## Returns `true` if both argument queues contain the same data. Note that
|
|
## this is a slow operation as all `(key,data)` pairs will to be compared.
|
|
if a.tab.len == b.tab.len and a.kFirst == b.kFirst and a.kLast == b.kLast:
|
|
for (k,av) in a.tab.pairs:
|
|
if not b.tab.hasKey(k):
|
|
return false
|
|
noKeyError("=="):
|
|
let bv = b.tab[k]
|
|
# bv.data might be a reference, so dive into it explicitely.
|
|
if av.kPrv != bv.kPrv or av.kNxt != bv.kNxt or bv.data != av.data:
|
|
return false
|
|
return true
|
|
|
|
proc key*[K,V](kqp: KeyedQueuePair[K,V]): K =
|
|
## Getter
|
|
kqp.key
|
|
|
|
proc len*[K,V](rq: var KeyedQueue[K,V]): int =
|
|
## Returns the number of items in the queue
|
|
rq.tab.len
|
|
|
|
proc clear*[K,V](rq: var KeyedQueue[K,V]) =
|
|
## Clear the queue
|
|
rq.tab.clear
|
|
rq.kFirst.reset
|
|
rq.kLast.reset
|
|
|
|
proc toKeyedQueueResult*[K,V](key: K; data: V):
|
|
Result[KeyedQueuePair[K,V],void] =
|
|
## Helper, chreate `ok()` result
|
|
ok(KeyedQueuePair[K,V](key: key, data: data))
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public iterators
|
|
# ------------------------------------------------------------------------------
|
|
|
|
iterator nextKeys*[K,V](rq: var KeyedQueue[K,V]): K =
|
|
## Iterate over all keys in the queue starting with the `rq.firstKey.value`
|
|
## key (if any). Using the notation introduced with `rq.append` and
|
|
## `rq.prepend`, the iterator processes *left* to *right*.
|
|
##
|
|
## :Note:
|
|
## When running in a loop it is *ok* to delete the current item and all
|
|
## the items already visited. Items not visited yet must not be deleted
|
|
## as the loop would be come unpredictable, then.
|
|
if 0 < rq.tab.len:
|
|
var
|
|
key = rq.kFirst
|
|
loopOK = true
|
|
while loopOK:
|
|
let yKey = key
|
|
loopOK = key != rq.kLast
|
|
noKeyError("nextKeys"):
|
|
key = rq.tab[key].kNxt
|
|
yield yKey
|
|
|
|
iterator nextValues*[K,V](rq: var KeyedQueue[K,V]): V =
|
|
## Iterate over all values in the queue starting with the
|
|
## `rq.kFirst.value.value` item value (if any). Using the notation introduced
|
|
## with `rq.append` and `rq.prepend`, the iterator processes *left* to
|
|
## *right*.
|
|
##
|
|
## See the note at the `nextKeys()` function comment about deleting items.
|
|
if 0 < rq.tab.len:
|
|
var
|
|
key = rq.kFirst
|
|
loopOK = true
|
|
while loopOK:
|
|
var item: KeyedQueueItem[K,V]
|
|
noKeyError("nextValues"):
|
|
item = rq.tab[key]
|
|
loopOK = key != rq.kLast
|
|
key = item.kNxt
|
|
yield item.data
|
|
|
|
iterator nextPairs*[K,V](rq: var KeyedQueue[K,V]): KeyedQueuePair[K,V] =
|
|
## Iterate over all (key,value) pairs in the queue starting with the
|
|
## `(rq.firstKey.value,rq.first.value.value)` key/item pair (if any). Using
|
|
## the notation introduced with `rq.append` and `rq.prepend`, the iterator
|
|
## processes *left* to *right*.
|
|
##
|
|
## See the note at the `nextKeys()` function comment about deleting items.
|
|
if 0 < rq.tab.len:
|
|
var
|
|
key = rq.kFirst
|
|
loopOK = true
|
|
while loopOK:
|
|
let yKey = key
|
|
var item: KeyedQueueItem[K,V]
|
|
noKeyError("nextPairs"):
|
|
item = rq.tab[key]
|
|
loopOK = key != rq.kLast
|
|
key = item.kNxt
|
|
yield KeyedQueuePair[K,V](key: yKey, data: item.data)
|
|
|
|
iterator prevKeys*[K,V](rq: var KeyedQueue[K,V]): K =
|
|
## Reverse iterate over all keys in the queue starting with the
|
|
## `rq.lastKey.value` key (if any). Using the notation introduced with
|
|
## `rq.append` and `rq.prepend`, the iterator processes *right* to *left*.
|
|
##
|
|
## See the note at the `nextKeys()` function comment about deleting items.
|
|
if 0 < rq.tab.len:
|
|
var
|
|
key = rq.kLast
|
|
loopOK = true
|
|
while loopOK:
|
|
let yKey = key
|
|
loopOK = key != rq.kFirst
|
|
noKeyError("prevKeys"):
|
|
key = rq.tab[key].kPrv
|
|
yield yKey
|
|
|
|
iterator prevValues*[K,V](rq: var KeyedQueue[K,V]): V =
|
|
## Reverse iterate over all values in the queue starting with the
|
|
## `rq.kLast.value.value` item value (if any). Using the notation introduced
|
|
## with `rq.append` and `rq.prepend`, the iterator processes *right* to
|
|
## *left*.
|
|
##
|
|
## See the note at the `nextKeys()` function comment about deleting items.
|
|
if 0 < rq.tab.len:
|
|
var
|
|
key = rq.kLast
|
|
loopOK = true
|
|
while loopOK:
|
|
var item: KeyedQueueItem[K,V]
|
|
noKeyError("prevValues"):
|
|
item = rq.tab[key]
|
|
loopOK = key != rq.kFirst
|
|
key = item.kPrv
|
|
yield item.data
|
|
|
|
iterator prevPairs*[K,V](rq: var KeyedQueue[K,V]): KeyedQueuePair[K,V] =
|
|
## Reverse iterate over all (key,value) pairs in the queue starting with the
|
|
## `(rq.lastKey.value,rq.last.value.value)` key/item pair (if any). Using
|
|
## the notation introduced with `rq.append` and `rq.prepend`, the iterator
|
|
## processes *right* to *left*.
|
|
##
|
|
## See the note at the `nextKeys()` function comment about deleting items.
|
|
if 0 < rq.tab.len:
|
|
var
|
|
key = rq.kLast
|
|
loopOK = true
|
|
while loopOK:
|
|
let yKey = key
|
|
var item: KeyedQueueItem[K,V]
|
|
noKeyError("prevPairs"):
|
|
item = rq.tab[key]
|
|
loopOK = key != rq.kFirst
|
|
key = item.kPrv
|
|
yield KeyedQueuePair[K,V](key: yKey, data: item.data)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# End
|
|
# ------------------------------------------------------------------------------
|