mirror of
https://github.com/status-im/nim-stew.git
synced 2025-01-25 03:20:26 +00:00
397 lines
14 KiB
Nim
397 lines
14 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2017 Nim Authors
|
|
# (c) Copyright 2019 Status Research
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## This module implements a series of low level methods for bit manipulation.
|
|
## By default, this module use compiler intrinsics to improve performance
|
|
## on supported compilers: ``GCC``, ``LLVM_GCC``, ``CLANG``, ``VCC``, ``ICC``.
|
|
##
|
|
## The module will fallback to pure nim procs incase the backend is not supported.
|
|
## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics.
|
|
##
|
|
## This module is also compatible with other backends: ``Javascript``, ``Nimscript``
|
|
## as well as the ``compiletime VM``.
|
|
|
|
const
|
|
useBuiltins = not defined(noIntrinsicsBitOpts)
|
|
arch64 = sizeof(int) == 8
|
|
|
|
template bitsof*(T: typedesc[SomeInteger]): int = 8 * sizeof(T)
|
|
template bitsof*(x: SomeInteger): int = 8 * sizeof(x)
|
|
|
|
# #### Pure Nim version ####
|
|
|
|
func nextPow2Nim(x: SomeUnsignedInt): SomeUnsignedInt =
|
|
var v = x - 1
|
|
|
|
# round down, make sure all bits are 1 below the threshold, then add 1
|
|
v = v or v shr 1
|
|
v = v or v shr 2
|
|
v = v or v shr 4
|
|
when bitsof(x) > 8:
|
|
v = v or v shr 8
|
|
when bitsof(x) > 16:
|
|
v = v or v shr 16
|
|
when bitsof(x) > 32:
|
|
v = v or v shr 32
|
|
|
|
v + 1
|
|
|
|
func firstOneNim(x: uint32): int =
|
|
## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
|
|
# https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
|
|
const lookup = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15,
|
|
25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
|
|
if x == 0:
|
|
0
|
|
else:
|
|
let k = not x + 1 # get two's complement
|
|
1 + lookup[((x and k) * 0x077CB531'u32) shr 27].int
|
|
|
|
func firstOneNim(x: uint8|uint16): int = firstOneNim(x.uint32)
|
|
func firstOneNim(x: uint64): int =
|
|
## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
|
|
# https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
|
|
|
|
if uint32(x) == 0:
|
|
32 + firstOneNim(uint32(x shr 32'u32))
|
|
else:
|
|
firstOneNim(uint32(x))
|
|
|
|
func log2truncNim(x: uint8|uint16|uint32): int =
|
|
## Quickly find the log base 2 of a 32-bit or less integer.
|
|
# https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
|
|
# https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
|
|
const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18,
|
|
22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31]
|
|
var v = x.uint32
|
|
v = v or v shr 1 # first round down to one less than a power of 2
|
|
v = v or v shr 2
|
|
v = v or v shr 4
|
|
v = v or v shr 8
|
|
v = v or v shr 16
|
|
lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int
|
|
|
|
func log2truncNim(x: uint64): int =
|
|
## Quickly find the log base 2 of a 64-bit integer.
|
|
# https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
|
|
# https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
|
|
const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54,
|
|
33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62,
|
|
57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
|
|
35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63]
|
|
var v = x
|
|
v = v or v shr 1 # first round down to one less than a power of 2
|
|
v = v or v shr 2
|
|
v = v or v shr 4
|
|
v = v or v shr 8
|
|
v = v or v shr 16
|
|
v = v or v shr 32
|
|
lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int
|
|
|
|
func countOnesNim(x: uint8|uint16|uint32): int =
|
|
## Counts the set bits in integer. (also called Hamming weight.)
|
|
# generic formula is from: https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
|
|
|
|
var v = x.uint32
|
|
v = v - ((v shr 1) and 0x55555555)
|
|
v = (v and 0x33333333) + ((v shr 2) and 0x33333333)
|
|
(((v + (v shr 4) and 0xF0F0F0F) * 0x1010101) shr 24).int
|
|
|
|
func countOnesNim(x: uint64): int =
|
|
## Counts the set bits in integer. (also called Hamming weight.)
|
|
# generic formula is from: https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
|
|
var v = x
|
|
v = v - ((v shr 1'u64) and 0x5555555555555555'u64)
|
|
v = (v and 0x3333333333333333'u64) + ((v shr 2'u64) and 0x3333333333333333'u64)
|
|
v = (v + (v shr 4'u64) and 0x0F0F0F0F0F0F0F0F'u64)
|
|
((v * 0x0101010101010101'u64) shr 56'u64).int
|
|
|
|
func parityNim(x: SomeUnsignedInt): int =
|
|
# formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel
|
|
var v = x
|
|
when sizeof(v) == 8:
|
|
v = v xor (v shr 32)
|
|
when sizeof(v) >= 4:
|
|
v = v xor (v shr 16)
|
|
when sizeof(v) >= 2:
|
|
v = v xor (v shr 8)
|
|
v = v xor (v shr 4)
|
|
v = v and 0xf
|
|
((0x6996'u shr v) and 1).int
|
|
|
|
when (defined(gcc) or defined(llvm_gcc) or defined(clang)) and useBuiltins:
|
|
|
|
# Returns the number of set 1-bits in value.
|
|
func builtin_popcount(x: cuint): cint {.importc: "__builtin_popcount", nodecl.}
|
|
func builtin_popcountll(x: culonglong): cint {.importc: "__builtin_popcountll", nodecl.}
|
|
|
|
# Returns the bit parity in value
|
|
func builtin_parity(x: cuint): cint {.importc: "__builtin_parity", nodecl.}
|
|
func builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", nodecl.}
|
|
|
|
# Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
|
|
func builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", nodecl.}
|
|
func builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", nodecl.}
|
|
|
|
# Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
|
|
func builtin_clz(x: cuint): cint {.importc: "__builtin_clz", nodecl.}
|
|
func builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", nodecl.}
|
|
|
|
func countOnesBuiltin(x: SomeUnsignedInt): int =
|
|
when bitsof(x) == bitsof(culonglong):
|
|
builtin_popcountll(x).int
|
|
else:
|
|
builtin_popcount(x).int
|
|
|
|
func parityBuiltin(x: SomeUnsignedInt): int =
|
|
when bitsof(x) == bitsof(culonglong):
|
|
builtin_parityll(x)
|
|
else:
|
|
builtin_parity(x)
|
|
|
|
func firstOneBuiltin(x: SomeUnsignedInt): int =
|
|
when bitsof(x) == bitsof(culonglong):
|
|
builtin_ffsll(x)
|
|
else:
|
|
builtin_ffs(x.cuint.cint)
|
|
|
|
func log2truncBuiltin(v: uint8|uint16|uint32): int = 31 - builtin_clz(v.uint32)
|
|
func log2truncBuiltin(v: uint64): int = 63 - builtin_clzll(v)
|
|
|
|
elif defined(icc) and useBuiltins:
|
|
|
|
# Counts the number of one bits (population count) in a 16-, 32-, or 64-byte unsigned integer.
|
|
func builtin_popcnt16(a2: uint16): uint16 {.importc: "__popcnt16" header: "<intrin.h>".}
|
|
func builtin_popcnt32(a2: uint32): uint32 {.importc: "__popcnt" header: "<intrin.h>".}
|
|
|
|
# Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1).
|
|
func bitScanReverse(index: ptr culong, mask: culong): cuchar {.importc: "_BitScanReverse", header: "<intrin.h>".}
|
|
|
|
# Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1).
|
|
func bitScanForward(index: ptr culong, mask: culong): cuchar {.importc: "_BitScanForward", header: "<intrin.h>".}
|
|
|
|
when defined(arch64):
|
|
func builtin_popcnt64(a2: uint64): uint64 {.importc: "__popcnt64" header: "<intrin.h>".}
|
|
func bitScanReverse64(index: ptr culong, mask: uint64): cuchar {.importc: "_BitScanReverse64", header: "<intrin.h>".}
|
|
func bitScanForward64(index: ptr culong, mask: uint64): cuchar {.importc: "_BitScanForward64", header: "<intrin.h>".}
|
|
|
|
template checkedScan(fnc: untyped, x: typed, def: typed): int =
|
|
var index{.noinit.}: culong
|
|
if fnc(index.addr, v) == 0: def
|
|
else: index.int
|
|
|
|
template checkedScan(fnc: untyped, x: typed, def: typed): int =
|
|
var index{.noinit.}: culong
|
|
discard fnc(index.addr, v)
|
|
index.int
|
|
|
|
func countOnesBuiltin(v: uint8|uint16): int = builtin_popcnt16(v.uint16).int
|
|
func countOnesBuiltin(v: uint32): int = builtin_popcnt32(v).int
|
|
func countOnesBuiltin(v: uint64): int =
|
|
when defined(arch64):
|
|
builtin_popcnt64(v).int
|
|
else:
|
|
builtin_popcnt32((v and 0xFFFFFFFF'u64).uint32).int +
|
|
builtin_popcnt32((v shr 32'u64).uint32).int
|
|
|
|
func firstOneBuiltin(v: uint8|uint16|uint32): int =
|
|
1 + checkedScan(bitScanForward, v.culong, -1)
|
|
|
|
func firstOneBuiltin(v: uint64): int =
|
|
when defined(arch64):
|
|
1 + checkedScan(bitScanForward64, v.culong, -1)
|
|
else:
|
|
firstOneNim(v)
|
|
|
|
func log2truncBuiltin(v: uint8|uint16|uint32): int =
|
|
bitScan(bitScanReverse, v.culong)
|
|
|
|
func log2truncBuiltin(v: uint64): int =
|
|
when defined(arch64):
|
|
bitScan(bitScanReverse64, v.culong)
|
|
else:
|
|
log2truncNim(v)
|
|
|
|
elif defined(vcc) and useBuiltins:
|
|
|
|
# Intel compiler intrinsics: http://fulla.fnal.gov/intel/compiler_c/main_cls/intref_cls/common/intref_allia_misc.htm
|
|
# see also: https://software.intel.com/en-us/node/523362
|
|
# Count the number of bits set to 1 in an integer a, and return that count in dst.
|
|
func builtin_popcnt32(x: cint): cint {.importc: "_popcnt" header: "<immintrin.h>".}
|
|
|
|
# Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
|
|
func bitScanForward(p: ptr uint32, b: uint32): cuchar {.importc: "_BitScanForward", header: "<immintrin.h>".}
|
|
|
|
# Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
|
|
func bitScanReverse(p: ptr uint32, b: uint32): cuchar {.importc: "_BitScanReverse", header: "<immintrin.h>".}
|
|
|
|
when defined(arch64):
|
|
func builtin_popcnt64(x: uint64): cint {.importc: "_popcnt64" header: "<immintrin.h>".}
|
|
func bitScanForward64(p: ptr uint32, b: uint64): cuchar {.importc: "_BitScanForward64", header: "<immintrin.h>".}
|
|
func bitScanReverse64(p: ptr uint32, b: uint64): cuchar {.importc: "_BitScanReverse64", header: "<immintrin.h>".}
|
|
|
|
template checkedScan(fnc: untyped, x: typed, def: typed): int =
|
|
var index{.noinit.}: culong
|
|
if fnc(index.addr, v) == 0: def
|
|
else: index.int
|
|
|
|
template bitScan(fnc: untyped, x: typed): int =
|
|
var index{.noinit.}: culong
|
|
if fnc(index.addr, v) == 0: 0
|
|
else: index.int
|
|
|
|
func countOnesBuiltin(v: uint8|uint16|uint32): int = builtin_popcnt32(v.uint32).int
|
|
func countOnesBuiltin(v: uint64): int =
|
|
when defined(arch64):
|
|
builtin_popcnt64(v).int
|
|
else:
|
|
builtin_popcnt32((v and 0xFFFFFFFF'u64).uint32).int +
|
|
builtin_popcnt32((v shr 32'u64).uint32).int
|
|
|
|
func firstOneBuiltin(v: uint8|uint16|uint32): int =
|
|
1 + checkedScan(bitScanForward, v.culong, -1)
|
|
|
|
func firstOneBuiltin(v: uint64): int =
|
|
when defined(arch64):
|
|
1 + checkedScan(bitScanForward64, v.culong, -1)
|
|
else:
|
|
firstOneNim(v)
|
|
|
|
func log2truncBuiltin(v: uint8|uint16|uint32): int =
|
|
bitScan(bitScanReverse, v.culong)
|
|
|
|
func log2truncBuiltin(v: uint64): int =
|
|
when defined(arch64):
|
|
bitScan(bitScanReverse64, v.culong)
|
|
else:
|
|
log2truncNim(v)
|
|
|
|
func countOnes*(x: SomeUnsignedInt): int {.inline.} =
|
|
## Counts the set bits in integer. (also called `Hamming weight`:idx:.)
|
|
##
|
|
## Example:
|
|
## doAssert countOnes(0b01000100'u8) == 2
|
|
# TODO: figure out if ICC support _popcnt32/_popcnt64 on platform without POPCNT.
|
|
# like GCC and MSVC
|
|
when nimvm:
|
|
countOnesNim(x)
|
|
else:
|
|
when defined(countOnesBuiltin):
|
|
countOnesBuiltin(x)
|
|
else:
|
|
countOnesNim(x)
|
|
|
|
func countZeros*(x: SomeUnsignedInt): int {.inline.} =
|
|
sizeof(x) - countOnes(x)
|
|
|
|
func parity*(x: SomeUnsignedInt): int {.inline.} =
|
|
## Calculate the bit parity in integer. If number of 1-bit
|
|
## is odd parity is 1, otherwise 0.
|
|
##
|
|
## Example:
|
|
## doAssert parity(0b00000001'u8) == 1
|
|
# Can be used a base if creating ASM version.
|
|
# https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd
|
|
when nimvm:
|
|
parityNim(x)
|
|
else:
|
|
when defined parityBuiltin:
|
|
parityBuiltin(x)
|
|
else:
|
|
parityNim(x)
|
|
|
|
func firstOne*(x: SomeUnsignedInt): int {.inline.} =
|
|
## Returns the 1-based index of the least significant set bit of x.
|
|
## If `x` is zero result is 0
|
|
##
|
|
## firstOne(x) == trailingZeros(x) + 1
|
|
##
|
|
## Example:
|
|
## doAssert firstOneBit(0b00000010'u8) == 2
|
|
##
|
|
when nimvm:
|
|
firstOneNim(x)
|
|
else:
|
|
when defined(firstOneBuiltin):
|
|
firstOneBuiltin(x)
|
|
else:
|
|
firstOneNim(x)
|
|
|
|
func log2trunc*(x: SomeUnsignedInt): int {.inline.} =
|
|
## Return the truncated base 2 logarithm of `x` - this is the zero-based
|
|
## index of the last set bit.
|
|
##
|
|
## If `x` is zero result is -1
|
|
##
|
|
## log2trunc(x) == bitsof(x) - leadingZeros(x) - 1.
|
|
##
|
|
## Example:
|
|
## doAssert log2trunc(0b01001000'u8) == 6
|
|
if x == 0: -1
|
|
else:
|
|
when nimvm:
|
|
log2truncNim(x)
|
|
else:
|
|
when defined(log2truncBuiltin):
|
|
log2truncBuiltin(x)
|
|
else:
|
|
log2truncNim(x)
|
|
|
|
func leadingZeros*(x: SomeInteger): int {.inline.} =
|
|
## Returns the number of leading zero bits in integer.
|
|
## If `x` is zero, result is bitsof(x)
|
|
##
|
|
## Example:
|
|
## doAssert leadingZeros(0b00000000'u8) == 8
|
|
## doAssert leadingZeros(0b00100000'u8) == 2
|
|
##
|
|
# Performance note:
|
|
# On recent x86_64 cpu's, this translates to the LZCNT instruction
|
|
bitsof(x) - 1 - log2trunc(x)
|
|
|
|
func trailingZeros*(x: SomeUnsignedInt): int {.inline.} =
|
|
## Returns the number of trailing zeros in integer.
|
|
## If `x` is zero, result is sizeof(x) * 8
|
|
##
|
|
## Example:
|
|
## doAssert trailingZeros(0b00000010'u8) == 1
|
|
##
|
|
# Performance note:
|
|
# On recent x86_64 cpu's, this translates to the TZCNT instruction
|
|
if x == 0:
|
|
bitsof(x)
|
|
else:
|
|
firstOne(x) - 1
|
|
|
|
func nextPow2*(x: SomeUnsignedInt): SomeUnsignedInt {.inline.} =
|
|
## Calculate the next power-of-2 of x - wraps to 0
|
|
##
|
|
## Examples:
|
|
## doAssert nextPow2(3) == 4
|
|
## doAssert nextPow2(4) == 4
|
|
nextPow2Nim(x)
|
|
|
|
func rotateLeft*(v: SomeUnsignedInt, amount: SomeInteger):
|
|
SomeUnsignedInt {.inline.} =
|
|
## Left-rotate bits in an unsigned value
|
|
# using this form instead of the one below should handle any value
|
|
# out of range as well as negative values.
|
|
# taken from: https://en.wikipedia.org/wiki/Circular_shift#Implementing_circular_shifts
|
|
const mask = 8 * sizeof(v) - 1
|
|
let amount = int(amount and mask)
|
|
(v shl amount) or (v shr ( (-amount) and mask))
|
|
|
|
func rotateRight*(v: SomeUnsignedInt, amount: SomeInteger):
|
|
SomeUnsignedInt {.inline.} =
|
|
## Right-rotate bits in an unsigned value.
|
|
const mask = bitsof(v) - 1
|
|
let amount = int(amount and mask)
|
|
(v shr amount) or (v shl ( (-amount) and mask))
|