nim-stew/stew/ranges/typedranges.nim

254 lines
7.7 KiB
Nim

{.deprecated: "unattractive memory unsafety - use openArray and other techniques instead".}
import ../ptrops, typetraits, hashes
const rangesGCHoldEnabled = not defined(rangesDisableGCHold)
const unsafeAPIEnabled* = defined(rangesEnableUnsafeAPI)
type
# A view into immutable array
Range*[T] {.shallow.} = object
when rangesGCHoldEnabled:
gcHold: seq[T]
start: ptr T
mLen: int
# A view into mutable array
MutRange*[T] {.shallow.} = distinct Range[T]
ByteRange* = Range[byte]
MutByteRange* = MutRange[byte]
proc isLiteral[T](s: seq[T]): bool {.inline.} =
type
SeqHeader = object
length, reserved: int
(cast[ptr SeqHeader](s).reserved and (1 shl (sizeof(int) * 8 - 2))) != 0
proc toImmutableRange[T](a: seq[T]): Range[T] =
if a.len != 0:
when rangesGCHoldEnabled:
if not isLiteral(a):
shallowCopy(result.gcHold, a)
else:
result.gcHold = a
result.start = addr result.gcHold[0]
result.mLen = a.len
when unsafeAPIEnabled:
proc toImmutableRangeNoGCHold[T](a: openArray[T]): Range[T] =
if a.len != 0:
result.start = unsafeAddr a[0]
result.mLen = a.len
proc toImmutableRange[T](a: openArray[T]): Range[T] {.inline.} =
toImmutableRangeNoGCHold(a)
proc toRange*[T](a: var seq[T]): MutRange[T] {.inline.} =
MutRange[T](toImmutableRange(a))
when unsafeAPIEnabled:
proc toRange*[T](a: var openArray[T]): MutRange[T] {.inline.} =
MutRange[T](toImmutableRange(a))
template initStackRange*[T](sz: static[int]): MutRange[T] =
var data: array[sz, T]
data.toRange()
proc toRange*[T](a: openArray[T]): Range[T] {.inline.} = toImmutableRange(a)
proc unsafeRangeConstruction*[T](a: var openArray[T]): MutRange[T] {.inline.} =
MutRange[T](toImmutableRange(a))
proc unsafeRangeConstruction*[T](a: openArray[T]): Range[T] {.inline.} =
toImmutableRange(a)
proc newRange*[T](sz: int): MutRange[T] {.inline.} =
MutRange[T](toImmutableRange(newSeq[T](sz)))
proc toRange*[T](a: seq[T]): Range[T] {.inline.} = toImmutableRange(a)
converter toImmutableRange*[T](a: MutRange[T]): Range[T] {.inline.} = Range[T](a)
proc len*(r: Range): int {.inline.} = int(r.mLen)
proc high*(r: Range): int {.inline.} = r.len - 1
proc low*(r: Range): int {.inline.} = 0
proc elemAt[T](r: MutRange[T], idx: int): var T {.inline.} =
doAssert(idx < r.len)
Range[T](r).start.offset(idx)[]
proc `[]=`*[T](r: MutRange[T], idx: int, v: T) {.inline.} = r.elemAt(idx) = v
proc `[]`*[T](r: MutRange[T], i: int): var T = r.elemAt(i)
proc `[]`*[T](r: Range[T], idx: int): T {.inline.} =
doAssert(idx < r.len)
r.start.offset(idx)[]
proc `==`*[T](a, b: Range[T]): bool =
if a.len != b.len: return false
equalMem(a.start, b.start, sizeof(T) * a.len)
iterator ptrs[T](r: Range[T]): (int, ptr T) =
var p = r.start
var i = 0
let e = r.len
while i != e:
yield (i, p)
p = p.offset(1)
inc i
iterator items*[T](r: Range[T]): T =
for _, v in ptrs(r): yield v[]
iterator pairs*[T](r: Range[T]): (int, T) =
for i, v in ptrs(r): yield (i, v[])
iterator mitems*[T](r: MutRange[T]): var T =
for _, v in ptrs(r): yield v[]
iterator mpairs*[T](r: MutRange[T]): (int, var T) =
for i, v in ptrs(r): yield (i, v[])
proc toSeq*[T](r: Range[T]): seq[T] =
result = newSeqOfCap[T](r.len)
for i in r: result.add(i)
proc `$`*(r: Range): string =
result = "R["
for i, v in r:
if i != 0:
result &= ", "
result &= $v
result &= "]"
proc sliceNormalized[T](r: Range[T], ibegin, iend: int): Range[T] =
doAssert ibegin >= 0 and
ibegin < r.len and
iend < r.len and
iend + 1 >= ibegin # the +1 here allows the result to be
# an empty range
when rangesGCHoldEnabled:
shallowCopy(result.gcHold, r.gcHold)
result.start = r.start.offset(ibegin)
result.mLen = iend - ibegin + 1
proc slice*[T](r: Range[T], ibegin = 0, iend = -1): Range[T] =
let e = if iend < 0: r.len + iend
else: iend
sliceNormalized(r, ibegin, e)
proc slice*[T](r: MutRange[T], ibegin = 0, iend = -1): MutRange[T] {.inline.} =
MutRange[T](Range[T](r).slice(ibegin, iend))
template `^^`(s, i: untyped): untyped =
(when i is BackwardsIndex: s.len - int(i) else: int(i))
proc `[]`*[T, U, V](r: Range[T], s: HSlice[U, V]): Range[T] {.inline.} =
sliceNormalized(r, r ^^ s.a, r ^^ s.b)
proc `[]`*[T, U, V](r: MutRange[T], s: HSlice[U, V]): MutRange[T] {.inline.} =
MutRange[T](sliceNormalized(r, r ^^ s.a, r ^^ s.b))
proc `[]=`*[T, U, V](r: MutRange[T], s: HSlice[U, V], v: openArray[T]) =
let a = r ^^ s.a
let b = r ^^ s.b
let L = b - a + 1
if L == v.len:
for i in 0..<L: r[i + a] = v[i]
else:
raise newException(RangeError, "different lengths for slice assignment")
template toOpenArray*[T](r: Range[T]): auto =
when false:
# when (NimMajor,NimMinor,NimPatch)>=(0,19,9):
# error message in Nim HEAD 2019-01-02:
# "for a 'var' type a variable needs to be passed, but 'toOpenArray(cast[ptr UncheckedArray[T]](curHash.start), 0, high(curHash))' is immutable"
toOpenArray(cast[ptr UncheckedArray[T]](r.start), 0, r.high)
else:
# NOTE: `0` in `array[0, T]` is irrelevant
toOpenArray(cast[ptr array[0, T]](r.start)[], 0, r.high)
proc `[]=`*[T, U, V](r: MutRange[T], s: HSlice[U, V], v: Range[T]) {.inline.} =
r[s] = toOpenArray(v)
proc baseAddr*[T](r: Range[T]): ptr T {.inline.} = r.start
proc gcHolder*[T](r: Range[T]): ptr T {.inline.} =
## This procedure is used only for shallow test, do not use it
## in production.
when rangesGCHoldEnabled:
if r.len > 0:
result = unsafeAddr r.gcHold[0]
template toRange*[T](a: Range[T]): Range[T] = a
# this preferred syntax doesn't work
# see https://github.com/nim-lang/Nim/issues/7995
#template copyRange[T](dest: seq[T], destOffset: int, src: Range[T]) =
# when supportsCopyMem(T):
template copyRange[T](E: typedesc, dest: seq[T], destOffset: int, src: Range[T]) =
when supportsCopyMem(E):
if dest.len != 0 and src.len != 0:
copyMem(dest[destOffset].unsafeAddr, src.start, sizeof(T) * src.len)
else:
for i in 0..<src.len:
dest[i + destOffset] = src[i]
proc concat*[T](v: varargs[Range[T], toRange]): seq[T] =
var len = 0
for c in v: inc(len, c.len)
result = newSeq[T](len)
len = 0
for c in v:
copyRange(T, result, len, c)
inc(len, c.len)
proc `&`*[T](a, b: Range[T]): seq[T] =
result = newSeq[T](a.len + b.len)
copyRange(T, result, 0, a)
copyRange(T, result, a.len, b)
proc hash*(x: Range): Hash =
result = hash(toOpenArray(x))
template advanceImpl(a, b: untyped): bool =
var res = false
if b == 0:
res = true
elif b > 0:
if isNil(a.start) or a.mLen <= 0:
res = false
else:
if a.mLen - b < 0:
res = false
else:
a.start = a.start.offset(b)
a.mLen -= b
res = true
res
proc tryAdvance*[T](x: var Range[T], idx: int): bool =
## Move internal start offset of range ``x`` by ``idx`` elements forward.
##
## Returns ``true`` if operation got completed successfully, or
## ``false`` if you are trying to overrun range ``x``.
result = x.advanceImpl(idx)
proc tryAdvance*[T](x: var MutRange[T], idx: int): bool {.inline.} =
## Move internal start offset of range ``x`` by ``idx`` elements forward.
##
## Returns ``true`` if operation got completed successfully, or
## ``false`` if you are trying to overrun range ``x``.
result = tryAdvance(Range[T](x), idx)
proc advance*[T](x: var Range[T], idx: int) =
## Move internal start offset of range ``x`` by ``idx`` elements forward.
let res = x.advanceImpl(idx)
if not res: raise newException(IndexError, "Advance Error")
proc advance*[T](x: var MutRange[T], idx: int) {.inline.} =
## Move internal start offset of range ``x`` by ``idx`` elements forward.
advance(Range[T](x), idx)