# Nimbus - Types, data structures and shared utilities used in network sync # # Copyright (c) 2018-2021 Status Research & Development GmbH # Licensed under either of # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or # http://www.apache.org/licenses/LICENSE-2.0) # * MIT license ([LICENSE-MIT](LICENSE-MIT) or # http://opensource.org/licenses/MIT) # at your option. This file may not be copied, modified, or # distributed except according to those terms. ## Efficient set of non-adjacent disjunct intervals ## ================================================ ## ## This molule efficiently manages a set `Q` of non-adjacent intervals `I` ## over a scalar type `S`. The elements of the intervals are not required to ## be scalar, yet they need to fulfil some ordering properties and must map ## into `S` by the `-` operator. ## ## Application examples ## -------------------- ## * Intervals `I` are sub-ranges of `distinct uint`, scalar `S` is `uint64` ## * Intervals `I` are sub-ranges of `distinct UInt256`, scalar `S` is `Uint256` ## * Intervals `I` art sub-ranges of `uint`, scalar `S` is `uint` ## ## Mathematical heuristic reasoning ## -------------------------------- ## Let `S` be a scalar structure isomorphic to a sub-ring of `Z`, the ring of ## integers. Typical representants would be `uint`, `uint64`, `UInt256` when ## seen as residue classes. `S` need not be bounded. We require `0` and `1` in ## `S`. ## ## Define `P` as a finite set of elements with the following properties: ## ## * There is an order relation defined on `P` (ie. `<`, `=` exists and is ## transitive.) ## ## * Define an interval `I` to be a set of elements of `P` with: ## + If `a`,`b` are in `I`, `w` in `P` with `a<=w<=b`, then `b` is in `I`. ## + We write `[a,b]` for the interval `I` with `a=min(I)` and `b=max(I)`. ## + We have `P=[min(P),max(P)]` (note that `P` is ordered.) ## ## * There is a binary *minus* operation `-:PxP -> S` with the following ## properties: ## + If `a`, `b` are in `P` and `a<=b`, then`b-a=card([a,b])-1`. So ## `a-a=0` for all `a`. ## + For any `a S`, ie. `b-a` is of scalar type `S`. ## * Right addition of scalar: `+:PxS -> P`, ie. `a+n` is a point `b` and ## `b-a` is `n`. ## * The function `$()` must be defined (used for debugging, only) ## ## Additional requirements for the scalar type `S`: ## ## * `S.default` must be the `0` element (of the additive group) ## * `S.default+1` must be the `1` element (of the implied multiplicative ## group) ## * The scalar space `S` must contain all the numbers `0 .. high(P)-low(P)` ## ## User interface considerations ## ----------------------------- ## The data set descriptor is implemented as an object reference. For deep ## copy and deep comparison, the functions `dup()` and `==` are provided. ## ## For any function, the argument points of `P` are assumed be in the ## range `low(P) .. high(P)`. This is not checked explicitely. Using points ## outside this range might have unintended side effects (applicable only ## if `P` is a proper sub-range of a larger data range.) ## ## The data set represents compact intervals `[a,b]` over a point space `P` ## where the length of the largest possible interval is `card(P)` which might ## exceed the highest available scalar `high(S)` from the *NIM* implementation ## of `S`. In order to handle the scalar equivalent of `card(P)`, this package ## always returns the scalar *zero* (from the scalar space `S`) for `card(S)`. ## This makes mathematically sense when `P` is seen as a residue class ## isomorpic to a subclass of `S`. ## import "."/[results, sorted_set] {.push raises: [Defect].} export `isRed=`, `linkLeft=`, `linkRight=`, results const NoisyDebuggingOk = false type IntervalSetError* = enum ## Used for debugging only, see `verify()` isNoError = 0 isErrorBogusInterval ## Illegal interval end points or zero size isErrorOverlapping ## Overlapping intervals in database isErrorAdjacent ## Adjacent intervals, should be joined isErrorTotalMismatch ## Total accumulator register is wrong isErrorTotalLastHigh ## Total accumulator mismatch counting `high(P)` Interval*[P,S] = object ## Compact interval `[least,last]` least, last: P IntervalRc*[P,S] = ##\ ## Handy shortcut, used for interval operation results Result[Interval[P,S],void] IntervalSetRef*[P,S] = ref object ## Set of non-adjacent intervals ptsCount: S ## data size covered leftPos: SortedSet[P,BlockRef[S]] ## list of segments, half-open intervals lastHigh: bool ## `true` iff `high(P)` is in the interval set # ----- Desc[P,S] = ##\ ## Internal shortcut, interval set IntervalSetRef[P,S] Segm[P,S] = object ## Half open interval `[start,start+size)` start: P ## Start point size: S ## Length of interval BlockRef[S] = ref object ## Internal, interval set database record reference size: S DataRef[P,S] = ##\ ## Internal, shortcut: The `value` part of a successful `SortedSet` ## operation, a reference to the stored data record. SortedSetItemRef[P,BlockRef[S]] Rc[P,S] = ##\ ## Internal shortcut Result[DataRef[P,S],void] # ------------------------------------------------------------------------------ # Private debugging # ------------------------------------------------------------------------------ when NoisyDebuggingOk: import std/[sequtils, strutils] # Forward declarations proc verify*[P,S]( ds: IntervalSetRef[P,S]): Result[void,(RbInfo,IntervalSetError)] proc sayImpl(noisy = false; pfx = "***"; args: varargs[string, `$`]) = if noisy: if args.len == 0: echo "*** ", pfx elif 0 < pfx.len and pfx[^1] != ' ': echo pfx, " ", args.toSeq.join else: echo pfx, args.toSeq.join proc pp[P,S](n: S): string = let lowS = S.default highS = S.default + (high(P) - low(P)) if highS <= n: return "high(S)" if (highS - 1) <= n: return "high(S)-1" if (highS - 1 - 1) == n: return "high(S)-2" if n <= lowS: return "low(S)" if n <= (lowS + 1): return "low(S)+1" if n <= (lowS + 1 + 1): return "low(S)+2" $n proc pp[P,S](pt: P): string = template one: untyped = (S.default + 1) if high(P) <= pt: return "high(P)" if (high(P) - one) <= pt: return "high(P)-1" if (high(P) - one - one) == pt: return "high(P)-2" if pt <= low(P): return "low(P)" if pt <= (low(P) + one): return "low(P)+1" if pt <= (low(P) + one + one): return "low(P)+2" $pt proc pp[P,S](ds: Desc[P,S]): string = if ds.isNil: "nil" else: cast[pointer](ds).repr.strip proc pp[P,S](seg: Segm[P,S]): string = template one: untyped = (S.default + 1) "[" & pp[P,S](seg.start) & "," & pp[P,S](seg.start + seg.size) & ")" proc pp[P,S](iv: Interval[P,S]): string = template one: untyped = (S.default + 1) "[" & pp[P,S](iv.least) & "," & pp[P,S](iv.last) & "]" proc pp[P,S](kvp: DataRef[P,S]): string = Segm[P,S](start: kvp.key, size: kvp.data.size).pp proc pp[P,S](p: var SortedSet[P,BlockRef[S]]): string = template one: untyped = (S.default + 1) result = "{" var rc = p.ge(low(P)) while rc.isOk: let (key,blk) = (rc.value.key,rc.value.data) if 1 < result.len: result &= "," result &= "[" & pp[P,S](key) & "," & pp[P,S](key + blk.size) & ")" rc = p.gt(key) result &= "}" var noisy* = false else: var noisy = false template say(noisy = false; pfx = "***"; v: varargs[untyped]): untyped = when NoisyDebuggingOk: sayImpl(noisy,pfx, v) discard # ------------------------------------------------------------------------------ # Private helpers # ------------------------------------------------------------------------------ template maxSegmSize(): untyped = (high(P) - low(P)) template scalarZero(): untyped = ## the value `0` from the scalar data type (S.default) template scalarOne(): untyped = ## the value `1` from the scalar data type (S.default + 1) proc blk[P,S](kvp: DataRef[P,S]): BlockRef[S] = kvp.data proc left[P,S](kvp: DataRef[P,S]): P = kvp.key proc right[P,S](kvp: DataRef[P,S]): P = kvp.key + kvp.blk.size proc len[P,S](kvp: DataRef[P,S]): S = kvp.data.size # ----- proc new[P,S](T: type Segm[P,S]; left, right: P): T = ## Constructor using `[left,right)` points representation T(start: left, size: right - left) proc brew[P,S](T: type Segm[P,S]; left, right: P): Result[T,void] = ## Constructor providing `[left, max(left,right)-left)` (if any.) if high(P) <= left: return err() let length = if right <= left: scalarOne elif right < high(P): (right - left) + scalarOne else: (high(P) - left) ok(T(start: left, size: length)) proc left[P,S](iv: Segm[P,S]): P = iv.start proc right[P,S](iv: Segm[P,S]): P = iv.start + iv.size proc len[P,S](iv: Segm[P,S]): S = iv.size # ------ proc inc[P,S](a: var P; n: S) = ## Might not be generally available for point `P` and scalar `S` a = a + n proc maxPt[P](a, b: P): P = ## Instead of max() which might not be generally available if a < b: b else: a proc minPt[P](a, b: P): P = ## Instead of min() which might not be generally available if a < b: a else: b # ------ proc new[P,S](T: type Interval[P,S]; kvp: DataRef[P,S]): T = T(least: kvp.left, last: kvp.right - scalarOne) # ------------------------------------------------------------------------------ # Private helpers # ------------------------------------------------------------------------------ proc overlapOrLeftJoin[P,S](ds: Desc[P,S]; l, r: P): Rc[P,S] = ## Find and return ## * either the rightmost `[l,r)` overlapping interval `[a,b)` ## * or `[a,b)` with `b==l` doAssert l < r let rc = ds.leftPos.le(r) # search for `max(a) <= r` if rc.isOk: # note that `b` is the first point outside right of `[a,b)` let b = rc.value.right if l <= b: return ok(rc.value) err() proc overlapOrLeftJoin[P,S](ds: Desc[P,S]; iv: Segm[P,S]): Rc[P,S] = ds.overlapOrLeftJoin(iv.left, iv.right) proc overlap[P,S](ds: Desc[P,S]; l, r: P): Rc[P,S] = ## Find and return the rightmost `[l,r)` overlapping interval `[a,b)`. doAssert l < r let rc = ds.leftPos.lt(r) # search for `max(a) < r` if rc.isOk: # note that `b` is the first point outside right of `[a,b)` let b = rc.value.right if l < b: return ok(rc.value) err() proc overlap[P,S](ds: Desc[P,S]; iv: Segm[P,S]): Rc[P,S] = ds.overlap(iv.left, iv.right) # ------------------------------------------------------------------------------ # Private transfer function helpers # ------------------------------------------------------------------------------ proc findInlet[P,S](ds: Desc[P,S]; iv: Segm[P,S]): Segm[P,S] = ## Find largest sub-segment of `iv` fully contained in another segment ## of the argument database. ## ## If the `src` argument is `nil`, the argument interval `iv` is returned. ## If there is no overlapping segment, the empty interval ##`[iv.start,iv.start)` is returned. # Handling edge cases if ds.isNil: return iv let rc = ds.overlap(iv) if rc.isErr: return Segm[P,S].new(iv.left, iv.left) let p = rc.value Segm[P,S].new(maxPt(p.left,iv.left), minPt(p.right,iv.right)) proc merge[P,S](ds: Desc[P,S]; iv: Segm[P,S]): Segm[P,S] = ## Merges argument interval into into database and returns ## the segment really added (if any) if ds.isNil: return iv let p = block: let rc = ds.overlapOrLeftJoin(iv) if rc.isErr: let rx = ds.leftPos.insert(iv.left) rx.value.data = BlockRef[S](size: iv.len) ds.ptsCount += iv.len return iv rc.value # `rc.value.data` is a reference to the database record doAssert p.blk.size <= ds.ptsCount if p.right < iv.right: # # iv: ...----------------) # p: ...-----) # p.blk.size += iv.len # update database ds.ptsCount += iv.len # update database # # iv: ...----------------) # p: ...----------------) # result: [---------) # return Segm[P,S].new(p.right, iv.right) # now: iv.right <= p.right and p.left <= iv.left: if p.left <= iv.left: # # iv: [--------) # p: [-------------------) # result: o # return Segm[P,S].new(iv.left, iv.left) # empty interval # now: iv.right <= p.right and iv.left < p.left if p.left < iv.right: # # iv: [-----------------) # p: [--------------) # result: [------) # result = Segm[P,S].new(iv.left, p.left) else: # iv: [------) # p: [--------------) # result: [------) # result = iv # No need for interval `p` anymore. doAssert p.left == result.right ds.ptsCount -= p.len discard ds.leftPos.delete(p.left) # Check whether there is an `iv` left overlapping interval `q` that can be # merged. # # Note that the deleted `p` was not fully contained in `iv`. So any overlap # must be a predecessor. Also, the right end point of the `iv` interval is # not part of any predecessor because it was adjacent to, or overlapping with # the deleted interval `p`. let rc = ds.overlapOrLeftJoin(iv.left, iv.right - scalarOne) if rc.isOk and iv.left <= rc.value.right: let q = rc.value # # iv: [------... # p: [------) // deleted # q: [----) # result: [------) # result = Segm[P,S].new(q.right, result.right) # # iv: [------... # p: [------) // deleted # q: [----) # result: [---) # # extend `q` to join `result` and `p`, now let exLen = result.len + p.len q.blk.size += exLen ds.ptsCount += exLen # # iv: [------... # p: [------) // deleted # q: [-----------------) # result: [----) # else: # So `iv` is fully isolated, i.e. there is no join or overlap. And `iv` # joins or overlaps the deleted `p` but does not exceed its right end. # # iv: [-----------) # p: [------) // deleted # result: [----) # let s = BlockRef[S](size: p.right - iv.left) ds.leftPos.insert(iv.left).value.data = s ds.ptsCount += s.size # # iv: [------) # p: [------) // deleted # result: [----) # s: [--------------) proc deleteInlet[P,S](ds: Desc[P,S]; iv: Segm[P,S]) = ## Delete fully contained interval if not ds.isNil and 0 < iv.len: let p = ds.overlap(iv).value # `p.blk` is a reference into database right = p.right # fix the right end for later trailer handling # [iv) fully contained in [p) doAssert p.left <= iv.left and iv.right <= p.right if p.left == iv.left: # # iv: [--------------) # p: [---------------... // deleting # discard ds.leftPos.delete(p.left) ds.ptsCount -= p.len else: # iv: [-------) # p: [----------------... # let chop = p.right - iv.left # positive as iv.left [pfx) + [fromIv) pfx = Segm[P,S].new(pfx.left, fromIv.left) # Move the `fromIv` interval from `src` to `trg` database while 0 < fromIv.len: # Merge sub-interval `[fromIv)` into `trg` database let toIv = trg.merge(fromIv) # Chop right end from [fromIv) -> [fromIv) + [toIv) fromIv = Segm[P,S].new(fromIv.left, toIv.left) # Delete merged sub-interval from `src` database (if any) src.deleteInlet(toIv) result += toIv.len # ------------------------------------------------------------------------------ # Private covered() function implementation # ------------------------------------------------------------------------------ proc coveredImpl[P,S](ds: IntervalSetRef[P,S]; start: P; length: S): S = ## Calulate the accumulated size of the interval `[start,start+length)` ## covered by intervals in the set `ds`. The result cannot exceed the ## argument `length` (of course.) var iv = Segm[P,S](start: start, size: length) while 0 < iv.len: let rc = ds.overlap(iv) if rc.isErr: break let p = rc.value # Now `p` is the right most interval overlapping `iv` if p.left <= iv.left: if p.right <= iv.right: # # iv: [----------------) # p: [-------------) # overlap: <-------> # result.inc p.right - iv.left else: # iv: [--------) # p: [--------------------) # overlap: <-------> # result.inc iv.len break else: if iv.right < p.right: # # iv: [--------------) # p: [--------------) # overlap: <--------> # result.inc iv.right - p.left else: # iv: [----------------------) # p: [----------) # overlap: <---------> # result.inc p.len iv.size = p.left - iv.left # iv: [---) # p: [----------) # ------------------------------------------------------------------------------ # Public constructor, clone, etc. # ------------------------------------------------------------------------------ proc init*[P,S](T: type IntervalSetRef[P,S]): T = ## Interval set constructor. new result result.leftPos.init() proc clone*[P,S](ds: IntervalSetRef[P,S]): IntervalSetRef[P,S] = ## Return a copy of the interval list. Beware, this might be slow as it ## needs to copy every interval record. result = Desc[P,S].init() result.ptsCount = ds.ptsCount result.lastHigh = ds.lastHigh var # using fast traversal walk = SortedSetWalkRef[P,BlockRef[S]].init(ds.leftPos) rc = walk.first while rc.isOk: result.leftPos.insert(rc.value.key) .value.data = BlockRef[S](size: rc.value.data.size) rc = walk.next # optional clean up, see comments on the destroy() directive walk.destroy proc `==`*[P,S](a, b: IntervalSetRef[P,S]): bool = ## Compare interval sets for equality. Beware, this can be slow. Every ## interval record has to be checked. if a.ptsCount == b.ptsCount and a.leftPos.len == b.leftPos.len and a.lastHigh == b.lastHigh: result = true if 0 < a.ptsCount and addr(a.leftPos) != addr(b.leftPos): var # using fast traversal aWalk = SortedSetWalkRef[P,BlockRef[S]].init(a.leftPos) aRc = aWalk.first() while aRc.isOk: let bRc = b.leftPos.eq(aRc.value.key) if bRc.isErr or aRc.value.data.size != bRc.value.data.size: result = false break aRc = aWalk.next() # optional clean up, see comments on the destroy() directive aWalk.destroy() proc clear*[P,S](ds: IntervalSetRef[P,S]) = ## Clear the interval set. ds.ptsCount = scalarZero ds.lastHigh = false ds.leftPos.clear() proc new*[P,S](T: type Interval[P,S]; minPt, maxPt: P): T = ## Create interval `[minPt,max(minPt,maxPt)]` Interval[P,S](least: minPt, last: max(minPt, maxPt)) # ------------------------------------------------------------------------------ # Public interval operations add, remove, erc. # ------------------------------------------------------------------------------ proc merge*[P,S](ds: IntervalSetRef[P,S]; minPt, maxPt: P): S = ## For the argument interval `I` implied as `[minPt,max(minPt,maxPt)]`, ## merge `I` with the intervals of the argument set `ds`. The function ## returns the accumulated number of points that were added to some ## interval (i.e. which were not contained in any interval of `ds`.) ## ## If the argument interval `I` is `[low(P),high(P)]` and is fully merged, ## the scalar *zero* is returned instead of `high(P)-low(P)+1` (which might ## not exisit in `S`.). let rc = Segm[P,S].brew(minPt, maxPt) if rc.isOk: result = transferImpl[P,S](src=nil, trg=ds, iv=rc.value) if not ds.lastHigh and high(P) <= max(minPt,maxPt): ds.lastHigh = true if result < maxSegmSize: result += scalarOne else: result = scalarZero proc merge*[P,S](ds: IntervalSetRef[P,S]; iv: Interval[P,S]): S = ## Variant of `merge()` ds.merge(iv.least, iv.last) proc reduce*[P,S](ds: IntervalSetRef[P,S]; minPt, maxPt: P): S = ## For the argument interval `I` implied as `[minPt,max(minPt,maxPt)]`, ## remove the points from `I` from intervals of the argument set `ds`. ## The function returns the accumulated number of elements removed (i.e. ## which were previously contained in some interval of `ds`.) ## ## If the argument interval `I` is `[low(P),high(P)]` and is fully removed, ## the scalar *zero* is returned instead of `high(P)-low(P)+1` (which might ## not exisit in `S`.). let rc = Segm[P,S].brew(minPt, maxPt) if rc.isOk: result = transferImpl[P,S](src=ds, trg=nil, iv=rc.value) if ds.lastHigh and high(P) <= max(minPt,maxPt): ds.lastHigh = false if result < maxSegmSize: result += scalarOne else: result = scalarZero proc reduce*[P,S](ds: IntervalSetRef[P,S]; iv: Interval[P,S]): S = ## Variant of `reduce()` ds.reduce(iv.least, iv.last) proc covered*[P,S](ds: IntervalSetRef[P,S]; minPt, maxPt: P): S = ## For the argument interval `I` implied as `[minPt,max(minPt,maxPt)]`, ## calulate the accumulated points `I` contained in some interval in the ## set `ds`. The return value is the same as that for `reduce()` (only ## that `ds` is left unchanged, here.) let rc = Segm[P,S].brew(minPt, maxPt) if rc.isOk: result = ds.coveredImpl(rc.value.left, rc.value.size) if ds.lastHigh and high(P) <= max(minPt,maxPt): if result < maxSegmSize: result += scalarOne else: result = scalarZero proc covered*[P,S](ds: IntervalSetRef[P,S]; iv: Interval[P,S]): S = ## Variant of `covered()` ds.covered(iv.least, iv.last) proc ge*[P,S](ds: IntervalSetRef[P,S]; minPt: P): IntervalRc[P,S] = ## Find smallest interval in the set `ds` with start point (i.e. minimal ## value in the interval as a set) greater or equal the argument `minPt`. let rc = ds.leftPos.ge(minPt) if rc.isOk: # Check for fringe case intervals [a,b] + [high(P),high(P)] if high(P) <= rc.value.right and ds.lastHigh: return ok(Interval[P,S].new(rc.value.left, high(P))) return ok(Interval[P,S].new(rc.value)) if ds.lastHigh: return ok(Interval[P,S].new(high(P),high(P))) err() proc ge*[P,S](ds: IntervalSetRef[P,S]): IntervalRc[P,S] = ## Find the interval with the least elements of type `P` (if any.) ds.ge(low(P)) proc le*[P,S](ds: IntervalSetRef[P,S]; maxPt: P): IntervalRc[P,S] = ## Find largest interval in the set `ds` with end point (i.e. maximal ## value in the interval as a set) smaller or equal to the argument `maxPt`. let rc = ds.leftPos.le(maxPt) if rc.isOk: # only the left end of segment [left,right) is guaranteed to be <= maxPt if rc.value.right - scalarOne <= maxPt: if high(P) <= maxPt and ds.lastHigh: # Check for fringe case intervals [a,b] gap [high(P),high(P)] <= maxPt if rc.value.right < high(P): return ok(Interval[P,S].new(high(P),high(P))) # Check for fringe case intervals [a,b] + [high(P),high(P)] <= maxPt if high(P) <= rc.value.right: return ok(Interval[P,S].new(rc.value.left,high(P))) return ok(Interval[P,S].new(rc.value)) # find the next smaller one let xc = ds.leftPos.lt(rc.value.key) if xc.isOk: return ok(Interval[P,S].new(xc.value)) # lone interval if high(P) <= maxPt and ds.lastHigh: return ok(Interval[P,S].new(high(P),high(P))) err() proc le*[P,S](ds: IntervalSetRef[P,S]): IntervalRc[P,S] = ## Find the interval with the largest elements of type `P` (if any.) ds.le(high(P)) proc delete*[P,S](ds: IntervalSetRef[P,S]; minPt: P): IntervalRc[P,S] = ## Find the interval `[minPt,maxPt]` for some point `maxPt` in the interval ## set `ds` and remove it from `ds`. The function returns the deleted ## interval (if any.) block: let rc = ds.leftPos.delete(minPt) if rc.isOk: ds.ptsCount -= rc.value.len # Check for fringe case intervals [a,b]+[high(P),high(P)] if high(P) <= rc.value.right and ds.lastHigh: ds.lastHigh = false return ok(Interval[P,S].new(rc.value.left,high(P))) return ok(Interval[P,S].new(rc.value)) if high(P) <= minPt and ds.lastHigh: # delete isolated point let rc = ds.leftPos.lt(minPt) if rc.isErr or rc.value.right < high(P): ds.lastHigh = false return ok(Interval[P,S].new(high(P),high(P))) err() iterator increasing*[P,S]( ds: IntervalSetRef[P,S]; minPt = low(P) ): Interval[P,S] = ## Iterate in increasing order through intervals with points greater or ## equal than the argument point `minPt`. ## ## :Note: ## When running in a loop it is *ok* to delete the current interval and ## any interval already visited. Intervals not visited yet must not be ## deleted as the loop would become unpredictable. var rc = ds.leftPos.ge(minPt) while rc.isOk: let key = rc.value.key if high(P) <= rc.value.right and ds.lastHigh: yield Interval[P,S].new(rc.value.left,high(P)) else: yield Interval[P,S].new(rc.value) rc = ds.leftPos.gt(key) iterator decreasing*[P,S]( ds: IntervalSetRef[P,S]; maxPt = high(P) ): Interval[P,S] = ## Iterate in decreasing order through intervals with points less or equal ## than the argument point `maxPt`. ## ## See the note at the `increasing()` function comment about deleting items. var rc = ds.leftPos.le(maxPt) if rc.isOk: let key = rc.value.key # last entry: check for additional point if high(P) <= rc.value.right and ds.lastHigh: yield Interval[P,S].new(rc.value.left,high(P)) else: yield Interval[P,S].new(rc.value) # find the next smaller one rc = ds.leftPos.lt(key) while rc.isOk: let key = rc.value.key yield Interval[P,S].new(rc.value) rc = ds.leftPos.lt(key) # ------------------------------------------------------------------------------ # Public interval operators # ------------------------------------------------------------------------------ proc `==`*[P,S](iv, jv: Interval[P,S]): bool = ## Compare intervals for equality iv.least == jv.least and iv.last == jv.last proc `==`*[P,S](iv: IntervalRc[P,S]; jv: Interval[P,S]): bool = ## Variant of `==` if iv.isOk: return iv.value == jv proc `==`*[P,S](iv: Interval[P,S]; jv: IntervalRc[P,S]): bool = ## Variant of `==` if jv.isOk: return iv == jv.value proc `==`*[P,S](iv, jv: IntervalRc[P,S]): bool = ## Variant of `==` if iv.isOk: if jv.isOk: return iv.value == jv.value # false else: return jv.isErr # false # ------ proc `*`*[P,S](iv, jv: Interval[P,S]): IntervalRc[P,S] = ## Intersect itervals `iv` and `jv` if this operation results in a ## non-emty interval. Note that the `*` operation is associative, i.e. ## :: ## iv * jv * kv == (iv * jv) * kv == iv * (jv * kv) ## if jv.least <= iv.last and iv.least <= jv.last: # intervals overlap return ok(Interval[P,S].new( maxPt(jv.least,iv.least), minPt(jv.last,iv.last))) err() proc `*`*[P,S](iv: IntervalRc[P,S]; jv: Interval[P,S]): IntervalRc[P,S] = ## Variant of `*` if iv.isOk: return iv.value * jv err() proc `*`*[P,S](iv: Interval[P,S]; jv: IntervalRc[P,S]): IntervalRc[P,S] = ## Variant of `*` if jv.isOk: return iv * jv.value err() proc `*`*[P,S](iv, jv: IntervalRc[P,S]): IntervalRc[P,S] = ## Variant of `*` if iv.isOk and jv.isOk: return iv.value * jv.value err() # ------ proc `+`*[P,S](iv, jv: Interval[P,S]): IntervalRc[P,S] = ## Merge intervals `iv` and `jv` if this operation results in an interval. ## Note that the `+` operation is *not* associative, i.e. ## :: ## iv + jv + kv == (iv + jv) + kv is not necessarly iv + (jv + kv) ## if iv.least <= jv.least: if jv.least - scalarOne <= iv.last: # # iv: [--------] # jv: [...[-----... # return ok(Interval[P,S].new(iv.least, maxPt(iv.last,jv.last))) else: # jv.least < iv.least if iv.least - scalarOne <= jv.last: # # iv: [...[-----... # jv: [--------] # return ok(Interval[P,S].new(jv.least, maxPt(iv.last,jv.last))) err() proc `+`*[P,S](iv: IntervalRc[P,S]; jv: Interval[P,S]): IntervalRc[P,S] = ## Variant of `+` if iv.isOk: return iv.value + jv err() proc `+`*[P,S](iv: Interval[P,S]; jv: IntervalRc[P,S]): IntervalRc[P,S] = ## Variant of `+` if jv.isOk: return iv + jv.value err() proc `+`*[P,S](iv, jv: IntervalRc[P,S]): IntervalRc[P,S] = ## Variant of `+` if iv.isOk and jv.isOk: return iv.value + jv.value err() # ------ proc `-`*[P,S](iv, jv: Interval[P,S]): IntervalRc[P,S] = ## Return the interval `iv` reduced by elements of `jv` if this operation ## results in a non-empty interval. ## Note that the `-` operation is *not* associative, i.e. ## :: ## iv - jv - kv == (iv - jv) - kv is not necessarly iv - (jv - kv) ## if iv.least <= jv.least: if jv.least <= iv.last and iv.last <= jv.last: # # iv: [--------------] # jv: [------------] # if iv.least < jv.least: return ok(Interval[P,S].new(iv.least, jv.least - scalarOne)) # otherwise empty set => error elif iv.last < jv.least: # # iv: [--------] # jv: [------------] # return ok(iv) else: # so jv.least <= iv.last and jv.last < iv.last # # iv: [--------------] # jv: [------] # discard # error else: # jv.least < iv.least if iv.least <= jv.last and jv.last <= iv.last: # # iv: [------------] # jv: [--------------] # if jv.last < iv.last: return ok(Interval[P,S].new(jv.last + scalarOne, iv.last)) # otherwise empty set => error elif jv.last < iv.least: # # iv: [------------] # jv: [--------] # return ok(iv) else: # so iv.least <= jv.last and iv.last < jv.last # # iv: [------] # jv: [--------------] # discard # error err() proc `-`*[P,S](iv: IntervalRc[P,S]; jv: Interval[P,S]): IntervalRc[P,S] = ## Variant of `-` if iv.isOk: return iv.value - jv err() proc `-`*[P,S](iv: Interval[P,S]; jv: IntervalRc[P,S]): IntervalRc[P,S] = ## Variant of `-` if jv.isOk: return iv - jv.value err() proc `-`*[P,S](iv, jv: IntervalRc[P,S]): IntervalRc[P,S] = ## Variant of `-` if iv.isOk and jv.isOk: return iv.value - jv.valu err() # ------------------------------------------------------------------------------ # Public getters # ------------------------------------------------------------------------------ proc len*[P,S](iv: Interval[P,S]): S = ## Cardinality (ie. length) of argument interval `iv`. If the argument ## interval `iv` is `[low(P),high(P)]`, the return value will be the scalar ## *zero* (there are no empty intervals in this implementation.) if low(P) == iv.least and high(P) == iv.last: scalarZero else: (iv.last - iv.least) + scalarOne proc minPt*[P,S](iv: Interval[P,S]): P = ## Left end, smallest point of `P` contained in the interval iv.least proc maxPt*[P,S](iv: Interval[P,S]): P = ## Right end, largest point of `P` contained in the interval iv.last proc total*[P,S](ds: IntervalSetRef[P,S]): S = ## Accumulated size covered by intervals in the interval set `ds`. ## ## In the special case when there is only the single interval ## `[low(P),high(P)]` in the interval set, the return value will be the ## scalar *zero* (there are no empty intervals in this implementation.) if not ds.lastHigh: ds.ptsCount elif maxSegmSize <= ds.ptsCount: scalarZero else: ds.ptsCount + scalarOne proc chunks*[P,S](ds: IntervalSetRef[P,S]): int = ## Number of disjunkt intervals (aka chunks) in the interval set `ds`. result = ds.leftPos.len if ds.lastHigh: # check for isolated interval [high(P),high(P)] if result == 0 or ds.leftPos.le(high(P)).value.right < high(P): result.inc # ------------------------------------------------------------------------------ # Public debugging functions # ------------------------------------------------------------------------------ proc `$`*[P,S](p: DataRef[P,S]): string = ## Needed by `ds.verify()` for printing error messages "[" & $p.left & "," & $p.right & ")" proc verify*[P,S]( ds: IntervalSetRef[P,S] ): Result[void,(RbInfo,IntervalSetError)] = ## Verifyn interval set data structure try: let rc = ds.leftPos.verify if rc.isErr: return err((rc.error[1],isNoError)) except CatchableError as e: raiseAssert $e.name & ": " & e.msg block: var count = scalarZero maxPt: P first = true for iv in ds.increasing: noisy.say "***", "verify(fwd)", " maxPt=", maxPt, " iv=", iv.pp if not(low(P) <= iv.least and iv.least <= iv.last and iv.last <= high(P)): noisy.say "***", "verify(fwd)", " error=", isErrorBogusInterval return err((rbOk,isErrorBogusInterval)) if first: first = false elif iv.least <= maxPt: noisy.say "***", "verify(fwd)", " error=", isErrorOverlapping return err((rbOk,isErrorOverlapping)) elif iv.least <= maxPt + scalarOne: noisy.say "***", "verify(fwd)", " error=", isErrorAdjacent return err((rbOk,isErrorAdjacent)) maxPt = iv.last if iv.least == low(P) and iv.last == high(P): if ds.lastHigh and 0 < count or not ds.lastHigh and count == 0: return err((rbOk,isErrorTotalLastHigh)) count += high(P) - low(P) elif iv.last == high(P) and ds.lastHigh: count += (iv.len - 1) else: count += iv.len if count != ds.ptsCount: noisy.say "***", "verify(fwd)", " error=", isErrorTotalMismatch, " count=", pp[P,S](ds.ptsCount), " expected=", pp[P,S](count) return err((rbOk,isErrorTotalMismatch)) block: var count = scalarZero minPt: P last = true for iv in ds.decreasing: #noisy.say "***", "verify(rev)", " minPt=", minPt, " iv=", iv.pp if not(low(P) <= iv.least and iv.least <= iv.last and iv.last <= high(P)): return err((rbOk,isErrorBogusInterval)) if last: last = false elif minPt <= iv.least: return err((rbOk,isErrorOverlapping)) elif minPt + scalarOne <= iv.least: return err((rbOk,isErrorAdjacent)) minPt = iv.least if iv.least == low(P) and iv.last == high(P): if ds.lastHigh and 0 < count or not ds.lastHigh and count == 0: return err((rbOk,isErrorTotalLastHigh)) count += high(P) - low(P) elif iv.last == high(P) and ds.lastHigh: count += (iv.len - 1) else: count += iv.len if count != ds.ptsCount: noisy.say "***", "verify(rev)", " error=", isErrorTotalMismatch, " count=", pp[P,S](ds.ptsCount), " expected=", pp[P,S](count) return err((rbOk,isErrorTotalMismatch)) ok() # ------------------------------------------------------------------------------ # End # ------------------------------------------------------------------------------