keyed_queue: avoid copies, lookups (#220)
This change avoids many superfluous data copies and lookups by exploiting `withValue` thus performing only one lookup with the same key (instead of hasKey + actual lookup). We also avoid several copies of the value which often is copied even though only the next/prev pointers from the item are needed, for examle during shifting and lru-appending.
This commit is contained in:
parent
a0a53c9116
commit
28743363ff
|
@ -22,17 +22,14 @@
|
|||
## semantics, this means that `=` performs a deep copy of the allocated queue
|
||||
## which is refered to the deep copy semantics of the underlying table driver.
|
||||
|
||||
import
|
||||
std/[math, tables],
|
||||
./results
|
||||
import std/tables, results
|
||||
|
||||
export
|
||||
results
|
||||
export results
|
||||
|
||||
{.push raises: [].}
|
||||
|
||||
type
|
||||
KeyedQueueItem*[K,V] = object ##\
|
||||
KeyedQueueItem*[K, V] = object
|
||||
## Data value container as stored in the queue.
|
||||
## There is a special requirements for `KeyedQueueItem` terminal nodes:
|
||||
## *prv == nxt* so that there is no dangling link. On the flip side,
|
||||
|
@ -41,33 +38,26 @@ type
|
|||
data*: V ## Some data value, can freely be modified.
|
||||
kPrv*, kNxt*: K ## Queue links, read-only.
|
||||
|
||||
KeyedQueuePair*[K,V] = object ##\
|
||||
## Key-value pair, typically used as return code.
|
||||
KeyedQueuePair*[K, V] = object ## Key-value pair, typically used as return code.
|
||||
key: K ## Sorter key (read-only for consistency with `SLstResult[K,V]`)
|
||||
data*: V ## Some data value, to be modified freely
|
||||
|
||||
KeyedQueueTab*[K,V] = ##\
|
||||
KeyedQueueTab*[K, V] = Table[K, KeyedQueueItem[K, V]]
|
||||
## Internal table type exposed for debugging.
|
||||
Table[K,KeyedQueueItem[K,V]]
|
||||
|
||||
KeyedQueue*[K,V] = object ##\
|
||||
## Data queue descriptor
|
||||
KeyedQueue*[K, V] = object ## Data queue descriptor
|
||||
tab*: KeyedQueueTab[K, V] ## Data table
|
||||
kFirst*, kLast*: K ## Doubly linked item list queue
|
||||
|
||||
BlindValue = ##\
|
||||
## Type name is syntactic sugar, used for key-only queues
|
||||
distinct byte
|
||||
BlindValue = distinct tuple[] ## Type name is syntactic sugar, used for key-only queues
|
||||
|
||||
KeyedQueueNV*[K] = ##\
|
||||
## Key-only queue, no values
|
||||
KeyedQueue[K,BlindValue]
|
||||
KeyedQueueNV*[K] = KeyedQueue[K, BlindValue] ## Key-only queue, no values
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# Private helpers
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
template noKeyError(info: static[string]; code: untyped) =
|
||||
template noKeyError(info: static[string], code: untyped) =
|
||||
try:
|
||||
code
|
||||
except KeyError as e:
|
||||
|
@ -81,180 +71,193 @@ proc shiftImpl[K,V](rq: var KeyedQueue[K,V]) =
|
|||
## Expects: rq.tab.len != 0
|
||||
assert rq.tab.len != 0 # debugging only
|
||||
|
||||
noKeyError("shiftImpl"):
|
||||
# Unqueue first item
|
||||
let item = rq.tab[rq.kFirst] # yes, crashes if `rq.tab.len == 0`
|
||||
rq.tab.del(rq.kFirst)
|
||||
|
||||
if rq.tab.len == 0:
|
||||
let first = rq.kFirst
|
||||
rq.tab.withValue(first, item):
|
||||
if rq.tab.len == 1: # item only
|
||||
rq.kFirst.reset
|
||||
rq.kLast.reset
|
||||
else:
|
||||
rq.kFirst = item.kNxt
|
||||
if rq.tab.len == 1:
|
||||
rq.tab[rq.kFirst].kNxt = rq.kFirst # node points to itself
|
||||
rq.tab[rq.kFirst].kPrv = rq.tab[rq.kFirst].kNxt # term nd has: nxt == prv
|
||||
rq.tab.withValue(item[].kNxt, next):
|
||||
if rq.tab.len == 2: # item and one more
|
||||
next[].kNxt = item[].kNxt # node points to itself
|
||||
next[].kPrv = next[].kNxt # term nd has: nxt == prv
|
||||
rq.kFirst = item[].kNxt
|
||||
do:
|
||||
raiseAssert "rq.kFirst missing"
|
||||
|
||||
rq.tab.del(first)
|
||||
|
||||
proc popImpl[K, V](rq: var KeyedQueue[K, V]) =
|
||||
## Expects: rq.tab.len != 0
|
||||
|
||||
# Pop last item
|
||||
noKeyError("popImpl"):
|
||||
let item = rq.tab[rq.kLast] # yes, crashes if `rq.tab.len == 0`
|
||||
rq.tab.del(rq.kLast)
|
||||
|
||||
if rq.tab.len == 0:
|
||||
let last = rq.kLast
|
||||
rq.tab.withValue(last, item):
|
||||
if rq.tab.len == 1: # item only
|
||||
rq.kFirst.reset
|
||||
rq.kLast.reset
|
||||
else:
|
||||
rq.kLast = item.kPrv
|
||||
if rq.tab.len == 1:
|
||||
rq.tab[rq.kLast].kPrv = rq.kLast # single node points to itself
|
||||
rq.tab[rq.kLast].kNxt = rq.tab[rq.kLast].kPrv # term node has: nxt == prv
|
||||
rq.tab.withValue(item[].kPrv, prev):
|
||||
if rq.tab.len == 2: # item and one more
|
||||
prev[].kPrv = item[].kPrv # single node points to itself
|
||||
prev[].kNxt = prev[].kPrv # term node has: nxt == prv
|
||||
rq.kLast = item[].kPrv
|
||||
do:
|
||||
raiseAssert "rq.kLast missing"
|
||||
|
||||
rq.tab.del(last)
|
||||
|
||||
proc deleteImpl[K,V](rq: var KeyedQueue[K,V]; key: K) =
|
||||
proc deleteImpl[K, V](rq: var KeyedQueue[K, V], key: K) =
|
||||
## Expects: rq.tab.hesKey(key)
|
||||
|
||||
if rq.kFirst == key:
|
||||
rq.shiftImpl
|
||||
|
||||
elif rq.kLast == key:
|
||||
rq.popImpl
|
||||
|
||||
else:
|
||||
noKeyError("deleteImpl"):
|
||||
let item = rq.tab[key] # yes, crashes if `not rq.tab.hasKey(key)`
|
||||
rq.tab.withValue(key, item):
|
||||
# now: 2 < rq.tab.len (otherwise rq.kFirst == key or rq.kLast == key)
|
||||
rq.tab.withValue(rq.kFirst, first):
|
||||
if first[].kNxt == key:
|
||||
# item was the second one
|
||||
first[].kPrv = item[].kNxt
|
||||
rq.tab.withValue(rq.kLast, last):
|
||||
if last.kPrv == key:
|
||||
# item was one before last
|
||||
last.kNxt = item[].kPrv
|
||||
|
||||
rq.tab.withValue(item[].kPrv, other):
|
||||
other[].kNxt = item[].kNxt
|
||||
rq.tab.withValue(item[].kNxt, other):
|
||||
other[].kPrv = item[].kPrv
|
||||
do:
|
||||
raiseAssert "item missing"
|
||||
|
||||
rq.tab.del(key)
|
||||
|
||||
# now: 2 < rq.tab.len (otherwise rq.kFirst == key or rq.kLast == key)
|
||||
if rq.tab[rq.kFirst].kNxt == key:
|
||||
# item was the second one
|
||||
rq.tab[rq.kFirst].kPrv = item.kNxt
|
||||
if rq.tab[rq.kLast].kPrv == key:
|
||||
# item was one before last
|
||||
rq.tab[rq.kLast].kNxt = item.kPrv
|
||||
|
||||
rq.tab[item.kPrv].kNxt = item.kNxt
|
||||
rq.tab[item.kNxt].kPrv = item.kPrv
|
||||
|
||||
|
||||
proc appendImpl[K,V](rq: var KeyedQueue[K,V]; key: K; val: V) =
|
||||
proc appendImpl[K, V](rq: var KeyedQueue[K, V], key: K, val: V) =
|
||||
## Expects: not rq.tab.hasKey(key)
|
||||
|
||||
# Append queue item
|
||||
var item = KeyedQueueItem[K, V](data: val)
|
||||
|
||||
noKeyError("appendImpl"):
|
||||
if rq.tab.len == 0:
|
||||
rq.kFirst = key
|
||||
item.kPrv = key
|
||||
else:
|
||||
if rq.kFirst == rq.kLast:
|
||||
rq.tab[rq.kFirst].kPrv = key # first terminal node
|
||||
rq.tab[rq.kLast].kNxt = key
|
||||
rq.tab.withValue(rq.kFirst, first):
|
||||
first[].kPrv = key
|
||||
first[].kNxt = key
|
||||
else:
|
||||
rq.tab.withValue(rq.kLast, last):
|
||||
last[].kNxt = key
|
||||
|
||||
item.kPrv = rq.kLast
|
||||
|
||||
rq.kLast = key
|
||||
item.kNxt = item.kPrv # terminal node
|
||||
|
||||
rq.tab[key] = item # yes, makes `verify()` fail if `rq.tab.hasKey(key)`
|
||||
rq.tab[key] = move(item)
|
||||
|
||||
|
||||
proc prependImpl[K,V](rq: var KeyedQueue[K,V]; key: K; val: V) =
|
||||
proc prependImpl[K, V](rq: var KeyedQueue[K, V], key: K, val: V) =
|
||||
## Expects: not rq.tab.hasKey(key)
|
||||
|
||||
# Prepend queue item
|
||||
var item = KeyedQueueItem[K, V](data: val)
|
||||
|
||||
noKeyError("prependImpl"):
|
||||
if rq.tab.len == 0:
|
||||
rq.kLast = key
|
||||
item.kNxt = key
|
||||
else:
|
||||
if rq.kFirst == rq.kLast:
|
||||
rq.tab[rq.kLast].kNxt = key # first terminal node
|
||||
rq.tab[rq.kFirst].kPrv = key
|
||||
rq.tab.withValue(rq.kLast, last):
|
||||
last[].kNxt = key
|
||||
last[].kPrv = key
|
||||
else:
|
||||
rq.tab.withValue(rq.kFirst, first):
|
||||
first[].kPrv = key
|
||||
|
||||
item.kNxt = rq.kFirst
|
||||
|
||||
rq.kFirst = key
|
||||
item.kPrv = item.kNxt # terminal node has: nxt == prv
|
||||
|
||||
rq.tab[key] = item # yes, makes `verify()` fail if `rq.tab.hasKey(key)`
|
||||
rq.tab[key] = move(item)
|
||||
|
||||
# -----------
|
||||
|
||||
proc shiftKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
noKeyError("shiftKeyImpl"):
|
||||
proc shiftKeyImpl[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
if 0 < rq.tab.len:
|
||||
let key = rq.kFirst
|
||||
rq.shiftImpl
|
||||
return ok(key)
|
||||
err()
|
||||
Opt.some(key)
|
||||
else:
|
||||
Opt.none(K)
|
||||
|
||||
proc popKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
noKeyError("popKeyImpl"):
|
||||
proc popKeyImpl[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
if 0 < rq.tab.len:
|
||||
let key = rq.kLast
|
||||
rq.popImpl
|
||||
return ok(key)
|
||||
err()
|
||||
Opt.some(key)
|
||||
else:
|
||||
Opt.none(K)
|
||||
|
||||
# -----------
|
||||
|
||||
proc firstKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc firstKeyImpl[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
if rq.tab.len == 0:
|
||||
return err()
|
||||
ok(rq.kFirst)
|
||||
Opt.none(K)
|
||||
else:
|
||||
Opt.some(rq.kFirst)
|
||||
|
||||
proc secondKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc secondKeyImpl[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
if rq.tab.len < 2:
|
||||
return err()
|
||||
return Opt.none(K)
|
||||
noKeyError("secondKeyImpl"):
|
||||
return ok(rq.tab[rq.kFirst].kNxt)
|
||||
return Opt.some(rq.tab[rq.kFirst].kNxt)
|
||||
|
||||
proc beforeLastKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc beforeLastKeyImpl[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
if rq.tab.len < 2:
|
||||
return err()
|
||||
return Opt.none(K)
|
||||
noKeyError("lastKeyImpl"):
|
||||
return ok(rq.tab[rq.kLast].kPrv)
|
||||
return Opt.some(rq.tab[rq.kLast].kPrv)
|
||||
|
||||
proc lastKeyImpl[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc lastKeyImpl[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
if rq.tab.len == 0:
|
||||
return err()
|
||||
ok(rq.kLast)
|
||||
Opt.none(K)
|
||||
else:
|
||||
Opt.some(rq.kLast)
|
||||
|
||||
proc nextKeyImpl[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
||||
proc nextKeyImpl[K, V](rq: var KeyedQueue[K, V], key: K): Opt[K] =
|
||||
if not rq.tab.hasKey(key) or rq.kLast == key:
|
||||
return err()
|
||||
return Opt.none(K)
|
||||
noKeyError("nextKeyImpl"):
|
||||
return ok(rq.tab[key].kNxt)
|
||||
return Opt.some(rq.tab[key].kNxt)
|
||||
|
||||
proc prevKeyImpl[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
||||
proc prevKeyImpl[K, V](rq: var KeyedQueue[K, V], key: K): Opt[K] =
|
||||
if not rq.tab.hasKey(key) or rq.kFirst == key:
|
||||
return err()
|
||||
return Opt.none(K)
|
||||
noKeyError("prevKeyImpl"):
|
||||
return ok(rq.tab[key].kPrv)
|
||||
return Opt.some(rq.tab[key].kPrv)
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# Public functions, constructor
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
proc init*[K,V](rq: var KeyedQueue[K,V]; initSize = 10) =
|
||||
proc init*[K, V](rq: var KeyedQueue[K, V], initSize = defaultInitialSize) =
|
||||
## Optional initaliser for the queue setting the inital size of the
|
||||
## underlying table object.
|
||||
rq.tab = initTable[K,KeyedQueueItem[K,V]](initSize.nextPowerOfTwo)
|
||||
rq.tab = initTable[K, KeyedQueueItem[K, V]](initSize)
|
||||
|
||||
proc init*[K,V](T: type KeyedQueue[K,V]; initSize = 10): T =
|
||||
proc init*[K, V](T: type KeyedQueue[K, V], initSize = defaultInitialSize): T =
|
||||
## Initaliser variant.
|
||||
result.init(initSize)
|
||||
|
||||
proc init*[K](rq: var KeyedQueueNV[K]; initSize = 10) =
|
||||
proc init*[K](rq: var KeyedQueueNV[K], initSize = defaultInitialSize) =
|
||||
## Key-only queue, no explicit values
|
||||
rq.tab = initTable[K,KeyedQueueItem[K,BlindValue]](initSize.nextPowerOfTwo)
|
||||
rq.tab = initTable[K, KeyedQueueItem[K, BlindValue]](initSize)
|
||||
|
||||
proc init*[K](T: type KeyedQueueNV[K]; initSize = 10): T =
|
||||
proc init*[K](T: type KeyedQueueNV[K], initSize = defaultInitialSize): T =
|
||||
## Initaliser variant.
|
||||
result.init(initSize)
|
||||
|
||||
|
@ -262,61 +265,62 @@ proc init*[K](T: type KeyedQueueNV[K]; initSize = 10): T =
|
|||
# Public functions, list operations
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
proc append*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
||||
proc append*[K, V](rq: var KeyedQueue[K, V], key: K, val: V): bool =
|
||||
## Append new `key`. The function will succeed returning `true` unless the
|
||||
## `key` argument exists in the queue, already.
|
||||
##
|
||||
## All the items on the queue different from the one just added are
|
||||
## called *previous* or *left hand* items while the item just added
|
||||
## is the *right-most* item.
|
||||
if not rq.tab.hasKey(key):
|
||||
rq.tab.withValue(key, item):
|
||||
return false
|
||||
do:
|
||||
rq.appendImpl(key, val)
|
||||
return true
|
||||
|
||||
template push*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
||||
template push*[K, V](rq: var KeyedQueue[K, V], key: K, val: V): bool =
|
||||
## Same as `append()`
|
||||
rq.append(key, val)
|
||||
|
||||
|
||||
proc replace*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
||||
proc replace*[K, V](rq: var KeyedQueue[K, V], key: K, val: V): bool =
|
||||
## Replace value for entry associated with the key argument `key`. Returns
|
||||
## `true` on success, and `false` otherwise.
|
||||
if rq.tab.hasKey(key):
|
||||
noKeyError("replace"):
|
||||
rq.tab[key].data = val
|
||||
rq.tab.withValue(key, item):
|
||||
item[].data = val
|
||||
return true
|
||||
do:
|
||||
return false
|
||||
|
||||
proc `[]=`*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V) =
|
||||
proc `[]=`*[K, V](rq: var KeyedQueue[K, V], key: K, val: V) =
|
||||
## This function provides a combined append/replace action with table
|
||||
## semantics:
|
||||
## * If the argument `key` is not in the queue yet, append the `(key,val)`
|
||||
## pair as in `rq.append(key,val)`
|
||||
## * Otherwise replace the value entry of the queue item by the argument
|
||||
## `val` as in `rq.replace(key,val)`
|
||||
if rq.tab.hasKey(key):
|
||||
noKeyError("[]="):
|
||||
rq.tab[key].data = val
|
||||
else:
|
||||
rq.tab.withValue(key, item):
|
||||
item[].data = val
|
||||
do:
|
||||
rq.appendImpl(key, val)
|
||||
|
||||
|
||||
proc prepend*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
||||
proc prepend*[K, V](rq: var KeyedQueue[K, V], key: K, val: V): bool =
|
||||
## Prepend new `key`. The function will succeed returning `true` unless the
|
||||
## `key` argument exists in the queue, already.
|
||||
##
|
||||
## All the items on the queue different from the item just added are
|
||||
## called *following* or *right hand* items while the item just added
|
||||
## is the *left-most* item.
|
||||
if not rq.tab.hasKey(key):
|
||||
rq.tab.withValue(key, item):
|
||||
return false
|
||||
do:
|
||||
rq.prependImpl(key, val)
|
||||
return true
|
||||
|
||||
template unshift*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
||||
template unshift*[K, V](rq: var KeyedQueue[K, V], key: K, val: V): bool =
|
||||
## Same as `prepend()`
|
||||
rq.prepend(key, val)
|
||||
|
||||
|
||||
proc shift*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
||||
proc shift*[K, V](rq: var KeyedQueue[K, V]): Opt[KeyedQueuePair[K, V]] =
|
||||
## Deletes the *first* queue item and returns the key-value item pair just
|
||||
## deleted. For a non-empty queue this function is the same as
|
||||
## `rq.firstKey.value.delele`.
|
||||
|
@ -325,32 +329,26 @@ proc shift*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
|||
## item returned and deleted is the *left-most* item.
|
||||
type T = KeyedQueuePair[K, V]
|
||||
if 0 < rq.tab.len:
|
||||
noKeyError("shift"):
|
||||
let kvp = KeyedQueuePair[K,V](
|
||||
key: rq.kFirst,
|
||||
data: rq.tab[rq.kFirst].data)
|
||||
rq.tab.withValue(rq.kFirst, item):
|
||||
let res = Opt.some KeyedQueuePair[K, V](key: rq.kFirst, data: move(item[].data))
|
||||
rq.shiftImpl
|
||||
when kvp is T:
|
||||
return ok(kvp)
|
||||
else:
|
||||
return ok(T(kvp))
|
||||
err()
|
||||
return res
|
||||
Opt.none(KeyedQueuePair[K, V])
|
||||
|
||||
proc shiftKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc shiftKey*[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
## Similar to `shift()` but with different return value.
|
||||
rq.shiftKeyImpl
|
||||
|
||||
proc shiftValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
||||
proc shiftValue*[K, V](rq: var KeyedQueue[K, V]): Opt[V] =
|
||||
## Similar to `shift()` but with different return value.
|
||||
if 0 < rq.tab.len:
|
||||
noKeyError("shiftValue"):
|
||||
let val = rq.tab[rq.kFirst].data
|
||||
rq.tab.withValue(rq.kFirst, item):
|
||||
let res = Opt.some(move(item[].data))
|
||||
rq.shiftImpl
|
||||
return ok(val)
|
||||
err()
|
||||
return res
|
||||
Opt.none(V)
|
||||
|
||||
|
||||
proc pop*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
||||
proc pop*[K, V](rq: var KeyedQueue[K, V]): Opt[KeyedQueuePair[K, V]] =
|
||||
## Deletes the *last* queue item and returns the key-value item pair just
|
||||
## deleted. For a non-empty queue this function is the same as
|
||||
## `rq.lastKey.value.delele`.
|
||||
|
@ -359,104 +357,84 @@ proc pop*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
|||
## item returned and deleted is the *right-most* item.
|
||||
type T = KeyedQueuePair[K, V]
|
||||
if 0 < rq.tab.len:
|
||||
noKeyError("pop"):
|
||||
let kvp = KeyedQueuePair[K,V](
|
||||
key: rq.kLast,
|
||||
data: rq.tab[rq.kLast].data)
|
||||
rq.tab.withValue(rq.kLast, item):
|
||||
let res = Opt.some T(key: rq.kLast, data: move(item[].data))
|
||||
rq.popImpl
|
||||
when kvp is T:
|
||||
return ok(kvp)
|
||||
else:
|
||||
return ok(T(kvp))
|
||||
err()
|
||||
return res
|
||||
Opt.none(T)
|
||||
|
||||
proc popKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc popKey*[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
## Similar to `pop()` but with different return value.
|
||||
rq.popKeyImpl
|
||||
|
||||
proc popValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
||||
proc popValue*[K, V](rq: var KeyedQueue[K, V]): Opt[V] =
|
||||
## Similar to `pop()` but with different return value.
|
||||
if 0 < rq.tab.len:
|
||||
noKeyError("popValue"):
|
||||
let val = rq.tab[rq.kLast].data
|
||||
rq.tab.withValue(rq.kLast, item):
|
||||
let res = Opt.some move(item[].data)
|
||||
rq.popImpl
|
||||
return ok(val)
|
||||
err()
|
||||
return res
|
||||
Opt.none(V)
|
||||
|
||||
|
||||
proc delete*[K,V](rq: var KeyedQueue[K,V]; key: K):
|
||||
Result[KeyedQueuePair[K,V], void] =
|
||||
proc delete*[K, V](rq: var KeyedQueue[K, V], key: K): Opt[KeyedQueuePair[K, V]] =
|
||||
## Delete the item with key `key` from the queue and returns the key-value
|
||||
## item pair just deleted (if any).
|
||||
if rq.tab.hasKey(key):
|
||||
noKeyError("delete"):
|
||||
let kvp = KeyedQueuePair[K,V](
|
||||
key: key,
|
||||
data: rq.tab[key].data)
|
||||
type T = KeyedQueuePair[K, V]
|
||||
rq.tab.withValue(key, item):
|
||||
let res = Opt.some T(key: key, data: move(item[].data))
|
||||
rq.deleteImpl(key)
|
||||
return ok(kvp)
|
||||
err()
|
||||
return res
|
||||
|
||||
proc del*[K,V](rq: var KeyedQueue[K,V]; key: K) =
|
||||
Opt.none(T)
|
||||
|
||||
proc del*[K, V](rq: var KeyedQueue[K, V], key: K) =
|
||||
## Similar to `delete()` but without return code.
|
||||
if rq.tab.hasKey(key):
|
||||
rq.deleteImpl(key)
|
||||
|
||||
# --------
|
||||
|
||||
proc append*[K](rq: var KeyedQueueNV[K]; key: K): bool =
|
||||
proc append*[K](rq: var KeyedQueueNV[K], key: K): bool =
|
||||
## Key-only queue variant
|
||||
rq.append(key,BlindValue(0))
|
||||
rq.append(key, default(BlindValue))
|
||||
|
||||
template push*[K](rq: var KeyedQueueNV[K]; key: K): bool =
|
||||
template push*[K](rq: var KeyedQueueNV[K], key: K): bool =
|
||||
## Key-only queue variant
|
||||
rq.append(key)
|
||||
|
||||
|
||||
proc prepend*[K](rq: var KeyedQueueNV[K]; key: K): bool =
|
||||
proc prepend*[K](rq: var KeyedQueueNV[K], key: K): bool =
|
||||
## Key-only queue variant
|
||||
rq.prepend(key,BlindValue(0))
|
||||
rq.prepend(key, default(BlindValue))
|
||||
|
||||
template unshift*[K](rq: var KeyedQueueNV[K]; key: K): bool =
|
||||
template unshift*[K](rq: var KeyedQueueNV[K], key: K): bool =
|
||||
## Key-only queue variant
|
||||
rq.prepend(key)
|
||||
|
||||
|
||||
proc shift*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
||||
proc shift*[K](rq: var KeyedQueueNV[K]): Opt[K] =
|
||||
## Key-only queue variant
|
||||
rq.shiftKeyImpl
|
||||
|
||||
proc shiftKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
||||
{.gcsafe, deprecated: "use shift() for key-only queue".} =
|
||||
rq.shiftKeyImpl
|
||||
|
||||
|
||||
proc pop*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
||||
proc pop*[K](rq: var KeyedQueueNV[K]): Opt[K] =
|
||||
## Key-only variant of `pop()` (same as `popKey()`)
|
||||
rq.popKeyImpl
|
||||
|
||||
proc popKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
||||
{.gcsafe, deprecated: "use pop() for key-only queue".} =
|
||||
rq.popKeyImpl
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# Public functions, fetch
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
proc hasKey*[K,V](rq: var KeyedQueue[K,V]; key: K): bool =
|
||||
proc hasKey*[K, V](rq: var KeyedQueue[K, V], key: K): bool =
|
||||
## Check whether the argument `key` has been queued, already
|
||||
rq.tab.hasKey(key)
|
||||
|
||||
proc eq*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[V,void] =
|
||||
proc eq*[K, V](rq: var KeyedQueue[K, V], key: K): Opt[V] =
|
||||
## Retrieve the value data stored with the argument `key` from
|
||||
## the queue if there is any.
|
||||
if not rq.tab.hasKey(key):
|
||||
return err()
|
||||
return Opt.none(V)
|
||||
noKeyError("eq"):
|
||||
return ok(rq.tab[key].data)
|
||||
return Opt.some(rq.tab[key].data)
|
||||
|
||||
proc `[]`*[K,V](rq: var KeyedQueue[K,V]; key: K): V
|
||||
{.gcsafe,raises: [KeyError].} =
|
||||
proc `[]`*[K, V](rq: var KeyedQueue[K, V], key: K): var V {.raises: [KeyError].} =
|
||||
## This function provides a simplified version of the `eq()` function with
|
||||
## table semantics. Note that this finction throws a `KeyError` exception
|
||||
## unless the argument `key` exists in the queue.
|
||||
|
@ -466,38 +444,39 @@ proc `[]`*[K,V](rq: var KeyedQueue[K,V]; key: K): V
|
|||
# Public functions, LRU mode
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
proc lruFetch*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[V,void] =
|
||||
proc lruFetch*[K, V](rq: var KeyedQueue[K, V], key: K): Opt[V] =
|
||||
## Fetch in *last-recently-used* mode: If the argument `key` exists in the
|
||||
## queue, move the key-value item pair to the *right end* (see `append()`)
|
||||
## of the queue and return the value associated with the key.
|
||||
if not rq.tab.hasKey(key):
|
||||
return err()
|
||||
|
||||
noKeyError("lruFetch"):
|
||||
let item = rq.tab[key]
|
||||
rq.tab.withValue(key, item):
|
||||
if rq.kLast != key:
|
||||
# Now, `key` is in the table and does not refer to the last `item`,
|
||||
# so the table has at least two entries.
|
||||
|
||||
# unlink item
|
||||
if rq.kFirst == key:
|
||||
rq.kFirst = item.kNxt
|
||||
rq.tab[rq.kFirst].kPrv = rq.tab[rq.kFirst].kNxt # term node: nxt == prv
|
||||
|
||||
rq.kFirst = item[].kNxt
|
||||
rq.tab.withValue(rq.kFirst, first):
|
||||
first[].kPrv = first[].kNxt # term node: nxt == prv
|
||||
else: # Now, there are at least three entries
|
||||
if rq.tab[rq.kFirst].kNxt == key:
|
||||
rq.tab[rq.kFirst].kPrv = item.kNxt # item was the 2nd one
|
||||
rq.tab[item.kPrv].kNxt = item.kNxt
|
||||
rq.tab[item.kNxt].kPrv = item.kPrv
|
||||
rq.tab.withValue(rq.kFirst, first):
|
||||
if first[].kNxt == key:
|
||||
first[].kPrv = item[].kNxt # item was the 2nd one
|
||||
rq.tab.withValue(item[].kPrv, prev):
|
||||
prev[].kNxt = item[].kNxt
|
||||
rq.tab.withValue(item[].kNxt, next):
|
||||
next[].kPrv = item[].kPrv
|
||||
|
||||
# Re-append item, i.e. appendImpl() without adding item.
|
||||
rq.tab[rq.kLast].kNxt = key
|
||||
rq.tab[key].kPrv = rq.kLast
|
||||
rq.kLast = key
|
||||
rq.tab[key].kNxt = rq.tab[key].kPrv # term node: nxt == prv
|
||||
return ok(item.data)
|
||||
rq.tab.withValue(rq.kLast, last):
|
||||
last[].kNxt = key
|
||||
|
||||
proc lruUpdate*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
||||
item[].kPrv = rq.kLast
|
||||
rq.kLast = key
|
||||
item[].kNxt = item[].kPrv # term node: nxt == prv
|
||||
return Opt.some(item[].data)
|
||||
|
||||
proc lruUpdate*[K, V](rq: var KeyedQueue[K, V], key: K, val: V): bool =
|
||||
## Similar to `lruFetch()` with the difference that the item value is
|
||||
## updated (i.e. set to `val`) if it is found on the queue. In that case,
|
||||
## `true` is returned.
|
||||
|
@ -505,11 +484,11 @@ proc lruUpdate*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V): bool =
|
|||
## Otherwise `false` is returned.
|
||||
##
|
||||
rq.tab.withValue(key, w):
|
||||
w.data = val
|
||||
w[].data = val
|
||||
discard rq.lruFetch key
|
||||
return true
|
||||
|
||||
proc lruAppend*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V; maxItems: int): V =
|
||||
proc lruAppend*[K, V](rq: var KeyedQueue[K, V], key: K, val: V, maxItems: int): V =
|
||||
## Append in *last-recently-used* mode: If the queue has at least `maxItems`
|
||||
## item entries, do `shift()` out the *left-most* one. Then `append()` the
|
||||
## key-value argument pair `(key,val)` to the *right end*. Together with
|
||||
|
@ -527,12 +506,12 @@ proc lruAppend*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V; maxItems: int): V
|
|||
## block:
|
||||
## let rc = q.lruFetch(key)
|
||||
## if rc.isOK:
|
||||
## return ok(rc.value)
|
||||
## return Opt.some(rc.value)
|
||||
## block:
|
||||
## let rc = expensiveCalculation(key)
|
||||
## if rc.isOK:
|
||||
## return ok(q.lruAppend(key, rc.value, queueMax))
|
||||
## err()
|
||||
## return Opt.some(q.lruAppend(key, rc.value, queueMax))
|
||||
## Opt.none(K)
|
||||
##
|
||||
## Caveat:
|
||||
## This fuction must always be used in combination with `lruFetch()` or
|
||||
|
@ -542,7 +521,6 @@ proc lruAppend*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V; maxItems: int): V
|
|||
# Make sure that there is no such key. Otherwise the optimised `appendImpl()`
|
||||
# function might garble the list of links.
|
||||
doAssert not rq.tab.hasKey key
|
||||
|
||||
# Limit number of cached items
|
||||
try:
|
||||
if maxItems <= rq.tab.len:
|
||||
|
@ -557,35 +535,35 @@ proc lruAppend*[K,V](rq: var KeyedQueue[K,V]; key: K; val: V; maxItems: int): V
|
|||
# Public traversal functions, fetch keys
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
proc firstKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc firstKey*[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
## Retrieve first key from the queue unless it is empty.
|
||||
##
|
||||
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
||||
## key returned is the *left-most* one.
|
||||
rq.firstKeyImpl
|
||||
|
||||
proc secondKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc secondKey*[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
## Retrieve the key next after the first key from queue unless it is empty.
|
||||
##
|
||||
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
||||
## key returned is the one ti the right of the *left-most* one.
|
||||
rq.secondKeyImpl
|
||||
|
||||
proc beforeLastKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc beforeLastKey*[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
## Retrieve the key just before the last one from queue unless it is empty.
|
||||
##
|
||||
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
||||
## key returned is the one to the left of the *right-most* one.
|
||||
rq.beforeLastKeyImpl
|
||||
|
||||
proc lastKey*[K,V](rq: var KeyedQueue[K,V]): Result[K,void] =
|
||||
proc lastKey*[K, V](rq: var KeyedQueue[K, V]): Opt[K] =
|
||||
## Retrieve last key from queue unless it is empty.
|
||||
##
|
||||
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
||||
## key returned is the *right-most* one.
|
||||
rq.lastKeyImpl
|
||||
|
||||
proc nextKey*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
||||
proc nextKey*[K, V](rq: var KeyedQueue[K, V], key: K): Opt[K] =
|
||||
## Retrieve the key following the argument `key` from queue if
|
||||
## there is any.
|
||||
##
|
||||
|
@ -593,7 +571,7 @@ proc nextKey*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
|||
## key returned is the next one to the *right*.
|
||||
rq.nextKeyImpl(key)
|
||||
|
||||
proc prevKey*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
||||
proc prevKey*[K, V](rq: var KeyedQueue[K, V], key: K): Opt[K] =
|
||||
## Retrieve the key preceeding the argument `key` from queue if
|
||||
## there is any.
|
||||
##
|
||||
|
@ -603,108 +581,111 @@ proc prevKey*[K,V](rq: var KeyedQueue[K,V]; key: K): Result[K,void] =
|
|||
|
||||
# ----------
|
||||
|
||||
proc firstKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
||||
{.gcsafe, deprecated: "use first() for key-only queue".} =
|
||||
proc firstKey*[K](
|
||||
rq: var KeyedQueueNV[K]
|
||||
): Opt[K] {.gcsafe, deprecated: "use first() for key-only queue".} =
|
||||
rq.firstKeyImpl
|
||||
|
||||
proc secondKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
||||
{.gcsafe, deprecated: "use second() for key-only queue".} =
|
||||
proc secondKey*[K](
|
||||
rq: var KeyedQueueNV[K]
|
||||
): Opt[K] {.gcsafe, deprecated: "use second() for key-only queue".} =
|
||||
rq.secondKeyImpl
|
||||
|
||||
proc beforeLastKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
||||
{.gcsafe, deprecated: "use beforeLast() for key-only queue".} =
|
||||
proc beforeLastKey*[K](
|
||||
rq: var KeyedQueueNV[K]
|
||||
): Opt[K] {.gcsafe, deprecated: "use beforeLast() for key-only queue".} =
|
||||
rq.beforeLastKeyImpl
|
||||
|
||||
proc lastKey*[K](rq: var KeyedQueueNV[K]): Result[K,void]
|
||||
{.gcsafe, deprecated: "use last() for key-only queue".} =
|
||||
proc lastKey*[K](
|
||||
rq: var KeyedQueueNV[K]
|
||||
): Opt[K] {.gcsafe, deprecated: "use last() for key-only queue".} =
|
||||
rq.lastKeyImpl
|
||||
|
||||
proc nextKey*[K](rq: var KeyedQueueNV[K]; key: K): Result[K,void]
|
||||
{.gcsafe, deprecated: "use next() for key-only queue".} =
|
||||
proc nextKey*[K](
|
||||
rq: var KeyedQueueNV[K], key: K
|
||||
): Opt[K] {.gcsafe, deprecated: "use next() for key-only queue".} =
|
||||
rq.nextKeyImpl(key)
|
||||
|
||||
proc prevKey*[K](rq: var KeyedQueueNV[K]; key: K): Result[K,void]
|
||||
{.gcsafe, deprecated: "use prev() for key-only queue".} =
|
||||
proc prevKey*[K](
|
||||
rq: var KeyedQueueNV[K], key: K
|
||||
): Opt[K] {.gcsafe, deprecated: "use prev() for key-only queue".} =
|
||||
rq.nextKeyImpl(key)
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# Public traversal functions, fetch key/value pairs
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
proc first*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
||||
proc first*[K, V](rq: var KeyedQueue[K, V]): Opt[KeyedQueuePair[K, V]] =
|
||||
## Similar to `firstKey()` but with key-value item pair return value.
|
||||
if rq.tab.len == 0:
|
||||
return err()
|
||||
return Opt.none(KeyedQueuePair[K, V])
|
||||
noKeyError("first"):
|
||||
let key = rq.kFirst
|
||||
return ok(KeyedQueuePair[K,V](key: key, data: rq.tab[key].data))
|
||||
return Opt.some(KeyedQueuePair[K, V](key: key, data: rq.tab[key].data))
|
||||
|
||||
proc second*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
||||
proc second*[K, V](rq: var KeyedQueue[K, V]): Opt[KeyedQueuePair[K, V]] =
|
||||
## Similar to `secondKey()` but with key-value item pair return value.
|
||||
if rq.tab.len < 2:
|
||||
return err()
|
||||
return Opt.none(KeyedQueuePair[K, V])
|
||||
noKeyError("second"):
|
||||
let key = rq.tab[rq.kFirst].kNxt
|
||||
return ok(KeyedQueuePair[K,V](key: key, data: rq.tab[key].data))
|
||||
return Opt.some(KeyedQueuePair[K, V](key: key, data: rq.tab[key].data))
|
||||
|
||||
proc beforeLast*[K,V](rq: var KeyedQueue[K,V]):
|
||||
Result[KeyedQueuePair[K,V],void] =
|
||||
proc beforeLast*[K, V](rq: var KeyedQueue[K, V]): Opt[KeyedQueuePair[K, V]] =
|
||||
## Similar to `beforeLastKey()` but with key-value item pair return value.
|
||||
if rq.tab.len < 2:
|
||||
return err()
|
||||
return Opt.none(KeyedQueuePair[K, V])
|
||||
noKeyError("beforeLast"):
|
||||
let key = rq.tab[rq.kLast].kPrv
|
||||
return ok(KeyedQueuePair[K,V](key: key, data: rq.tab[key].data))
|
||||
return Opt.some(KeyedQueuePair[K, V](key: key, data: rq.tab[key].data))
|
||||
|
||||
proc last*[K,V](rq: var KeyedQueue[K,V]): Result[KeyedQueuePair[K,V],void] =
|
||||
proc last*[K, V](rq: var KeyedQueue[K, V]): Opt[KeyedQueuePair[K, V]] =
|
||||
## Similar to `lastKey()` but with key-value item pair return value.
|
||||
if rq.tab.len == 0:
|
||||
return err()
|
||||
return Opt.none(KeyedQueuePair[K, V])
|
||||
noKeyError("last"):
|
||||
let key = rq.kLast
|
||||
return ok(KeyedQueuePair[K,V](key: key, data: rq.tab[key].data))
|
||||
return Opt.some(KeyedQueuePair[K, V](key: key, data: rq.tab[key].data))
|
||||
|
||||
proc next*[K,V](rq: var KeyedQueue[K,V]; key: K):
|
||||
Result[KeyedQueuePair[K,V],void] =
|
||||
proc next*[K, V](rq: var KeyedQueue[K, V], key: K): Opt[KeyedQueuePair[K, V]] =
|
||||
## Similar to `nextKey()` but with key-value item pair return value.
|
||||
if not rq.tab.hasKey(key) or rq.kLast == key:
|
||||
return err()
|
||||
return Opt.none(KeyedQueuePair[K, V])
|
||||
noKeyError("next"):
|
||||
let nKey = rq.tab[key].kNxt
|
||||
return ok(KeyedQueuePair[K,V](key: nKey, data: rq.tab[nKey].data))
|
||||
return Opt.some(KeyedQueuePair[K, V](key: nKey, data: rq.tab[nKey].data))
|
||||
|
||||
proc prev*[K,V](rq: var KeyedQueue[K,V]; key: K):
|
||||
Result[KeyedQueuePair[K,V],void] =
|
||||
proc prev*[K, V](rq: var KeyedQueue[K, V], key: K): Opt[KeyedQueuePair[K, V]] =
|
||||
## Similar to `prevKey()` but with key-value item pair return value.
|
||||
if not rq.tab.hasKey(key) or rq.kFirst == key:
|
||||
return err()
|
||||
return Opt.none(KeyedQueuePair[K, V])
|
||||
noKeyError("prev"):
|
||||
let pKey = rq.tab[key].kPrv
|
||||
return ok(KeyedQueuePair[K,V](key: pKey, data: rq.tab[pKey].data))
|
||||
return Opt.some(KeyedQueuePair[K, V](key: pKey, data: rq.tab[pKey].data))
|
||||
|
||||
# ------------
|
||||
|
||||
proc first*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
||||
proc first*[K](rq: var KeyedQueueNV[K]): Opt[K] =
|
||||
## Key-only queue variant
|
||||
rq.firstKeyImpl
|
||||
|
||||
proc second*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
||||
proc second*[K](rq: var KeyedQueueNV[K]): Opt[K] =
|
||||
## Key-only queue variant
|
||||
rq.secondKeyImpl
|
||||
|
||||
proc beforeLast*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
||||
proc beforeLast*[K](rq: var KeyedQueueNV[K]): Opt[K] =
|
||||
## Key-only queue variant
|
||||
rq.beforeLastKeyImpl
|
||||
|
||||
proc last*[K](rq: var KeyedQueueNV[K]): Result[K,void] =
|
||||
proc last*[K](rq: var KeyedQueueNV[K]): Opt[K] =
|
||||
## Key-only queue variant
|
||||
rq.lastKeyImpl
|
||||
|
||||
proc next*[K](rq: var KeyedQueueNV[K]; key: K): Result[K,void] =
|
||||
proc next*[K](rq: var KeyedQueueNV[K], key: K): Opt[K] =
|
||||
## Key-only queue variant
|
||||
rq.nextKeyImpl(key)
|
||||
|
||||
proc prev*[K](rq: var KeyedQueueNV[K]; key: K): Result[K,void] =
|
||||
proc prev*[K](rq: var KeyedQueueNV[K], key: K): Opt[K] =
|
||||
## Key-only queue variant
|
||||
rq.nextKeyImpl(key)
|
||||
|
||||
|
@ -712,47 +693,47 @@ proc prev*[K](rq: var KeyedQueueNV[K]; key: K): Result[K,void] =
|
|||
# Public traversal functions, data container items
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
proc firstValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
||||
proc firstValue*[K, V](rq: var KeyedQueue[K, V]): Opt[V] =
|
||||
## Retrieve first value item from the queue unless it is empty.
|
||||
##
|
||||
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
||||
## value item returned is the *left-most* one.
|
||||
if rq.tab.len == 0:
|
||||
return err()
|
||||
return Opt.none(V)
|
||||
noKeyError("firstValue"):
|
||||
return ok(rq.tab[rq.kFirst].data)
|
||||
return Opt.some(rq.tab[rq.kFirst].data)
|
||||
|
||||
proc secondValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
||||
proc secondValue*[K, V](rq: var KeyedQueue[K, V]): Opt[V] =
|
||||
## Retrieve the value item next to the first one from the queue unless it
|
||||
## is empty.
|
||||
##
|
||||
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
||||
## value item returned is the one to the *right* of the *left-most* one.
|
||||
if rq.tab.len < 2:
|
||||
return err()
|
||||
return Opt.none(K)
|
||||
noKeyError("secondValue"):
|
||||
return ok(rq.tab[rq.tab[rq.kFirst].kNxt].data)
|
||||
return Opt.some(rq.tab[rq.tab[rq.kFirst].kNxt].data)
|
||||
|
||||
proc beforeLastValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
||||
proc beforeLastValue*[K, V](rq: var KeyedQueue[K, V]): Opt[V] =
|
||||
## Retrieve the value item just before the last item from the queue
|
||||
## unless it is empty.
|
||||
##
|
||||
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
||||
## value item returned is the one to the *left* of the *right-most* one.
|
||||
if rq.tab.len < 2:
|
||||
return err()
|
||||
return Opt.none(V)
|
||||
noKeyError("beforeLastValue"):
|
||||
return ok(rq.tab[rq.tab[rq.kLast].kPrv].data)
|
||||
return Opt.some(rq.tab[rq.tab[rq.kLast].kPrv].data)
|
||||
|
||||
proc lastValue*[K,V](rq: var KeyedQueue[K,V]): Result[V,void] =
|
||||
proc lastValue*[K, V](rq: var KeyedQueue[K, V]): Opt[V] =
|
||||
## Retrieve the last value item from the queue if there is any.
|
||||
##
|
||||
## Using the notation introduced with `rq.append` and `rq.prepend`, the
|
||||
## value item returned is the *right-most* one.
|
||||
if rq.tab.len == 0:
|
||||
return err()
|
||||
return Opt.none(V)
|
||||
noKeyError("lastValue"):
|
||||
return ok(rq.tab[rq.kLast].data)
|
||||
return Opt.some(rq.tab[rq.kLast].data)
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# Public functions, miscellaneous
|
||||
|
@ -786,10 +767,9 @@ proc clear*[K,V](rq: var KeyedQueue[K,V]) =
|
|||
rq.kFirst.reset
|
||||
rq.kLast.reset
|
||||
|
||||
proc toKeyedQueueResult*[K,V](key: K; data: V):
|
||||
Result[KeyedQueuePair[K,V],void] =
|
||||
## Helper, chreate `ok()` result
|
||||
ok(KeyedQueuePair[K,V](key: key, data: data))
|
||||
proc toKeyedQueueResult*[K, V](key: K, data: V): Opt[KeyedQueuePair[K, V]] =
|
||||
## Helper, chreate `Opt.some()` result
|
||||
Opt.some(KeyedQueuePair[K, V](key: key, data: data))
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# Public iterators
|
||||
|
|
Loading…
Reference in New Issue