use external rng instead of nimcrypto (#23)
* use external rng instead of nimcrypto allows passing in different RNG's to generate keys * pass in array of random data to random keygen function * back to a proc * docs * gcsafe rng callback needed * introduce foolproofrng that can't fail * silence compiler warning * hint at random not being good enough in defect
This commit is contained in:
parent
be98963599
commit
bf6cc94a3c
|
@ -10,9 +10,8 @@
|
|||
{.push raises: [Defect].}
|
||||
|
||||
import
|
||||
strformat,
|
||||
strformat, typetraits,
|
||||
stew/[byteutils, objects, results],
|
||||
nimcrypto/[hash, sysrand],
|
||||
./secp256k1_abi
|
||||
|
||||
from nimcrypto/utils import burnMem
|
||||
|
@ -93,7 +92,7 @@ type
|
|||
## Representation of Secp256k1 context object.
|
||||
context: ptr secp256k1_context
|
||||
|
||||
SkMessage* = MDigest[SkMessageSize * 8]
|
||||
SkMessage* = distinct array[SkMessageSize, byte]
|
||||
## Message that can be signed or verified
|
||||
|
||||
SkEcdhSecret* {.requiresInit.} = object
|
||||
|
@ -130,6 +129,9 @@ proc errorCallback(message: cstring, data: pointer) {.cdecl, raises: [].} =
|
|||
template ptr0(v: array|openArray): ptr cuchar =
|
||||
cast[ptr cuchar](unsafeAddr v[0])
|
||||
|
||||
template ptr0(v: SkMessage): ptr cuchar =
|
||||
ptr0(distinctBase(v))
|
||||
|
||||
func shutdownLibsecp256k1(ctx: SkContext) =
|
||||
# TODO: use destructor when finalizer are deprecated for destructors
|
||||
if not(isNil(ctx.context)):
|
||||
|
@ -165,16 +167,57 @@ func fromHex*(T: type seq[byte], s: string): SkResult[T] =
|
|||
except CatchableError:
|
||||
err("secp: cannot parse hex string")
|
||||
|
||||
proc random*(T: type SkSecretKey): SkResult[T] =
|
||||
## Generates new random private key.
|
||||
type
|
||||
Rng* = proc(data: var openArray[byte]): bool {.raises: [Defect], gcsafe.}
|
||||
## A function that fills data with random bytes from a cryptographically
|
||||
## secure source or returns false
|
||||
|
||||
FoolproofRng* = proc(data: var openArray[byte]) {.raises: [Defect], gcsafe.}
|
||||
## The world will run out of fools before this RNG fails!
|
||||
|
||||
proc random*(T: type SkSecretKey, rng: Rng): SkResult[T] =
|
||||
## Generates new random private key - a cryptographically secure RNG should be
|
||||
## used - see nimcrypto or bearssl for good RNG's.
|
||||
##
|
||||
## The random number generator in the Nim standard library `random` module is
|
||||
## not cryptographically secure.
|
||||
##
|
||||
## This function may fail to generate a valid key if the RNG fails. In the
|
||||
## current version, the random number generation will be called in a loop
|
||||
## which may be vulnerable to timing attacks. Generate your keys elsewhere
|
||||
## if this is a issue.
|
||||
var data{.noinit.}: array[SkRawSecretKeySize, byte]
|
||||
|
||||
while randomBytes(data) == SkRawSecretKeySize:
|
||||
while rng(data):
|
||||
if secp256k1_ec_seckey_verify(secp256k1_context_no_precomp, data.ptr0) == 1:
|
||||
return ok(T(data: data))
|
||||
|
||||
return err("secp: cannot get random bytes for key")
|
||||
|
||||
proc random*(T: type SkSecretKey, rng: FoolproofRng): T =
|
||||
## Generates new random private key - a cryptographically secure RNG should be
|
||||
## used - see nimcrypto or bearssl for good RNG's.
|
||||
##
|
||||
## The random number generator in the Nim standard library `random` module is
|
||||
## not cryptographically secure.
|
||||
##
|
||||
## This function may fail to generate a valid key if the RNG fails, in which
|
||||
## case it will raise a Defect.
|
||||
##
|
||||
## In the current version, the random number generation will be called in a
|
||||
## loop which may be vulnerable to timing attacks. Generate your keys
|
||||
## elsewhere if this is a issue.
|
||||
var data{.noinit.}: array[SkRawSecretKeySize, byte]
|
||||
|
||||
for _ in 0..1000*1000:
|
||||
rng(data)
|
||||
if secp256k1_ec_seckey_verify(secp256k1_context_no_precomp, data.ptr0) == 1:
|
||||
return T(data: data)
|
||||
|
||||
result = T(data: default(array[32, byte])) # Silence compiler
|
||||
# All-zeroes all the time for example will break this function
|
||||
raiseAssert "RNG not giving random enough bytes, can't create valid key"
|
||||
|
||||
func fromRaw*(T: type SkSecretKey, data: openArray[byte]): SkResult[T] =
|
||||
## Load a valid private key, as created by `toRaw`
|
||||
if len(data) < SkRawSecretKeySize:
|
||||
|
@ -357,14 +400,22 @@ func toRaw*(sig: SkRecoverableSignature): array[SkRawRecoverableSignatureSize, b
|
|||
func toHex*(sig: SkRecoverableSignature): string =
|
||||
toHex(toRaw(sig))
|
||||
|
||||
proc random*(T: type SkKeyPair): SkResult[T] =
|
||||
proc random*(T: type SkKeyPair, rng: Rng): SkResult[T] =
|
||||
## Generates new random key pair.
|
||||
let seckey = ? SkSecretKey.random()
|
||||
let seckey = ? SkSecretKey.random(rng)
|
||||
ok(T(
|
||||
seckey: seckey,
|
||||
pubkey: seckey.toPublicKey()
|
||||
))
|
||||
|
||||
proc random*(T: type SkKeyPair, rng: FoolproofRng): T =
|
||||
## Generates new random key pair.
|
||||
let seckey = SkSecretKey.random(rng)
|
||||
T(
|
||||
seckey: seckey,
|
||||
pubkey: seckey.toPublicKey()
|
||||
)
|
||||
|
||||
func `==`*(lhs, rhs: SkPublicKey): bool =
|
||||
## Compare Secp256k1 `public key` objects for equality.
|
||||
lhs.toRaw() == rhs.toRaw()
|
||||
|
@ -379,9 +430,11 @@ func `==`*(lhs, rhs: SkRecoverableSignature): bool =
|
|||
|
||||
func sign*(key: SkSecretKey, msg: SkMessage): SkSignature =
|
||||
## Sign message `msg` using private key `key` and return signature object.
|
||||
## It is recommended that `msg` is produced by hashing the input data to
|
||||
## a 32-byte hash, like sha256.
|
||||
var data {.noinit.}: secp256k1_ecdsa_signature
|
||||
let res = secp256k1_ecdsa_sign(
|
||||
getContext(), addr data, msg.data.ptr0, key.data.ptr0, nil, nil)
|
||||
getContext(), addr data, msg.ptr0, key.data.ptr0, nil, nil)
|
||||
doAssert res == 1, "cannot create signature, key invalid?"
|
||||
SkSignature(data: data)
|
||||
|
||||
|
@ -389,18 +442,18 @@ func signRecoverable*(key: SkSecretKey, msg: SkMessage): SkRecoverableSignature
|
|||
## Sign message `msg` using private key `key` and return signature object.
|
||||
var data {.noinit.}: secp256k1_ecdsa_recoverable_signature
|
||||
let res = secp256k1_ecdsa_sign_recoverable(
|
||||
getContext(), addr data, msg.data.ptr0, key.data.ptr0, nil, nil)
|
||||
getContext(), addr data, msg.ptr0, key.data.ptr0, nil, nil)
|
||||
doAssert res == 1, "cannot create recoverable signature, key invalid?"
|
||||
SkRecoverableSignature(data: data)
|
||||
|
||||
func verify*(sig: SkSignature, msg: SkMessage, key: SkPublicKey): bool =
|
||||
secp256k1_ecdsa_verify(
|
||||
getContext(), unsafeAddr sig.data, msg.data.ptr0, unsafeAddr key.data) == 1
|
||||
getContext(), unsafeAddr sig.data, msg.ptr0, unsafeAddr key.data) == 1
|
||||
|
||||
func recover*(sig: SkRecoverableSignature, msg: SkMessage): SkResult[SkPublicKey] =
|
||||
var data {.noinit.}: secp256k1_pubkey
|
||||
if secp256k1_ecdsa_recover(
|
||||
getContext(), addr data, unsafeAddr sig.data, msg.data.ptr0) != 1:
|
||||
getContext(), addr data, unsafeAddr sig.data, msg.ptr0) != 1:
|
||||
return err("secp: cannot recover public key from signature")
|
||||
|
||||
ok(SkPublicKey(data: data))
|
||||
|
@ -454,7 +507,7 @@ func fromBytes*(T: type SkMessage, data: openArray[byte]): SkResult[SkMessage] =
|
|||
if data.len() != SkMessageSize:
|
||||
return err("Message must be 32 bytes")
|
||||
|
||||
ok(SkMessage(data: toArray(SkMessageSize, data)))
|
||||
ok(SkMessage(toArray(SkMessageSize, data)))
|
||||
|
||||
# Close `requiresInit` loophole
|
||||
# TODO replace `requiresInit` with a pragma that does the expected thing
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mode = ScriptMode.Verbose
|
||||
|
||||
packageName = "secp256k1"
|
||||
version = "0.2.0"
|
||||
version = "0.5.0"
|
||||
author = "Status Research & Development GmbH"
|
||||
description = "A wrapper for the libsecp256k1 C library"
|
||||
license = "Apache License 2.0"
|
||||
|
|
|
@ -3,18 +3,29 @@ import ../secp256k1, unittest
|
|||
{.used.}
|
||||
|
||||
const
|
||||
msg0 = SkMessage()
|
||||
msg1 = SkMessage(data: [
|
||||
msg0 = SkMessage([
|
||||
0'u8, 0, 0, 0, 0, 0, 0, 0,
|
||||
0'u8, 0, 0, 0, 0, 0, 0, 0,
|
||||
0'u8, 0, 0, 0, 0, 0, 0, 0,
|
||||
0'u8, 0, 0, 0, 0, 0, 0, 0,
|
||||
])
|
||||
msg1 = SkMessage([
|
||||
1'u8, 0, 0, 0, 0, 0, 0, 0,
|
||||
1'u8, 0, 0, 0, 0, 0, 0, 0,
|
||||
1'u8, 0, 0, 0, 0, 0, 0, 0,
|
||||
1'u8, 0, 0, 0, 0, 0, 0, 0,
|
||||
])
|
||||
|
||||
proc workingRng(data: var openArray[byte]): bool =
|
||||
data[0] += 1
|
||||
true
|
||||
|
||||
proc brokenRng(data: var openArray[byte]): bool = false
|
||||
|
||||
suite "secp256k1":
|
||||
test "Key ops":
|
||||
let
|
||||
sk = SkSecretKey.random().expect("should get a key")
|
||||
sk = SkSecretKey.random(workingRng).expect("should get a key")
|
||||
pk = sk.toPublicKey()
|
||||
|
||||
check:
|
||||
|
@ -23,12 +34,13 @@ suite "secp256k1":
|
|||
SkPublicKey.fromRaw(pk.toRaw())[].toHex() == pk.toHex()
|
||||
SkPublicKey.fromRaw(pk.toRawCompressed())[].toHex() == pk.toHex()
|
||||
SkPublicKey.fromHex(pk.toHex())[].toHex() == pk.toHex()
|
||||
SkSecretKey.random(brokenRng).isErr
|
||||
|
||||
test "Signatures":
|
||||
let
|
||||
sk = SkSecretKey.random()[]
|
||||
sk = SkSecretKey.random(workingRng)[]
|
||||
pk = sk.toPublicKey()
|
||||
otherPk = SkSecretKey.random()[].toPublicKey()
|
||||
otherPk = SkSecretKey.random(workingRng)[].toPublicKey()
|
||||
sig = sign(sk, msg0)
|
||||
sig2 = signRecoverable(sk, msg0)
|
||||
|
||||
|
@ -44,4 +56,4 @@ suite "secp256k1":
|
|||
check:
|
||||
SkMessage.fromBytes([]).isErr()
|
||||
SkMessage.fromBytes([0'u8]).isErr()
|
||||
SkMessage.fromBytes(msg0.data).isOk()
|
||||
SkMessage.fromBytes(array[32, byte](msg0)).isOk()
|
||||
|
|
Loading…
Reference in New Issue