mirror of
https://github.com/status-im/nim-libp2p.git
synced 2025-01-25 20:29:13 +00:00
d47b2d805f
* Use constant-time hex encoding/decoding procedures explicitly. * Add comments.
1080 lines
34 KiB
Nim
1080 lines
34 KiB
Nim
## Nim-Libp2p
|
|
## Copyright (c) 2018 Status Research & Development GmbH
|
|
## Licensed under either of
|
|
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
|
|
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
|
|
## at your option.
|
|
## This file may not be copied, modified, or distributed except according to
|
|
## those terms.
|
|
|
|
## This module implements Public Key and Private Key interface for libp2p.
|
|
{.push raises: [Defect].}
|
|
from strutils import split, strip, cmpIgnoreCase
|
|
|
|
const libp2p_pki_schemes* {.strdefine.} = "rsa,ed25519,secp256k1,ecnist"
|
|
|
|
type
|
|
PKScheme* = enum
|
|
RSA = 0,
|
|
Ed25519,
|
|
Secp256k1,
|
|
ECDSA
|
|
|
|
proc initSupportedSchemes(list: static string): set[PKScheme] =
|
|
var res: set[PKScheme]
|
|
|
|
let schemes = split(list, {',', ';', '|'})
|
|
for item in schemes:
|
|
if cmpIgnoreCase(strip(item), "rsa") == 0:
|
|
res.incl(PKScheme.RSA)
|
|
elif cmpIgnoreCase(strip(item), "ed25519") == 0:
|
|
res.incl(PKScheme.Ed25519)
|
|
elif cmpIgnoreCase(strip(item), "secp256k1") == 0:
|
|
res.incl(PKScheme.Secp256k1)
|
|
elif cmpIgnoreCase(strip(item), "ecnist") == 0:
|
|
res.incl(PKScheme.ECDSA)
|
|
if len(res) == 0:
|
|
res = {PKScheme.RSA, PKScheme.Ed25519, PKScheme.Secp256k1, PKScheme.ECDSA}
|
|
res
|
|
|
|
proc initSupportedSchemes(schemes: static set[PKScheme]): set[int8] =
|
|
var res: set[int8]
|
|
if PKScheme.RSA in schemes:
|
|
res.incl(int8(PKScheme.RSA))
|
|
if PKScheme.Ed25519 in schemes:
|
|
res.incl(int8(PKScheme.Ed25519))
|
|
if PKScheme.Secp256k1 in schemes:
|
|
res.incl(int8(PKScheme.Secp256k1))
|
|
if PKScheme.ECDSA in schemes:
|
|
res.incl(int8(PKScheme.ECDSA))
|
|
res
|
|
|
|
const
|
|
SupportedSchemes* = initSupportedSchemes(libp2p_pki_schemes)
|
|
SupportedSchemesInt* = initSupportedSchemes(SupportedSchemes)
|
|
RsaDefaultKeySize* = 3072
|
|
|
|
template supported*(scheme: PKScheme): bool =
|
|
## Returns true if specified ``scheme`` is currently available.
|
|
scheme in SupportedSchemes
|
|
|
|
when supported(PKScheme.RSA):
|
|
import rsa
|
|
when supported(PKScheme.Ed25519):
|
|
import ed25519/ed25519
|
|
when supported(PKScheme.Secp256k1):
|
|
import secp
|
|
|
|
# We are still importing `ecnist` because, it is used for SECIO handshake,
|
|
# but it will be impossible to create ECNIST keys or import ECNIST keys.
|
|
|
|
import ecnist, bearssl
|
|
import ../protobuf/minprotobuf, ../vbuffer, ../multihash, ../multicodec
|
|
import nimcrypto/[rijndael, twofish, sha2, hash, hmac]
|
|
# We use `ncrutils` for constant-time hexadecimal encoding/decoding procedures.
|
|
import nimcrypto/utils as ncrutils
|
|
import ../utility
|
|
import stew/results
|
|
export results
|
|
|
|
# This is workaround for Nim's `import` bug
|
|
export rijndael, twofish, sha2, hash, hmac, ncrutils
|
|
|
|
from strutils import split
|
|
|
|
type
|
|
DigestSheme* = enum
|
|
Sha256,
|
|
Sha512
|
|
|
|
ECDHEScheme* = EcCurveKind
|
|
|
|
PublicKey* = object
|
|
case scheme*: PKScheme
|
|
of PKScheme.RSA:
|
|
when PKScheme.RSA in SupportedSchemes:
|
|
rsakey*: rsa.RsaPublicKey
|
|
else:
|
|
discard
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
edkey*: EdPublicKey
|
|
else:
|
|
discard
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
skkey*: SkPublicKey
|
|
else:
|
|
discard
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
eckey*: ecnist.EcPublicKey
|
|
else:
|
|
discard
|
|
|
|
PrivateKey* = object
|
|
case scheme*: PKScheme
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
rsakey*: rsa.RsaPrivateKey
|
|
else:
|
|
discard
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
edkey*: EdPrivateKey
|
|
else:
|
|
discard
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
skkey*: SkPrivateKey
|
|
else:
|
|
discard
|
|
of PKSCheme.ECDSA:
|
|
when supported(PKSCheme.ECDSA):
|
|
eckey*: ecnist.EcPrivateKey
|
|
else:
|
|
discard
|
|
|
|
KeyPair* = object
|
|
seckey*: PrivateKey
|
|
pubkey*: PublicKey
|
|
|
|
Secret* = object
|
|
ivsize*: int
|
|
keysize*: int
|
|
macsize*: int
|
|
data*: seq[byte]
|
|
|
|
Signature* = object
|
|
data*: seq[byte]
|
|
|
|
CryptoError* = enum
|
|
KeyError,
|
|
SigError,
|
|
HashError,
|
|
SchemeError
|
|
|
|
CryptoResult*[T] = Result[T, CryptoError]
|
|
|
|
template orError*(exp: untyped, err: untyped): untyped =
|
|
(exp.mapErr do (_: auto) -> auto: err)
|
|
|
|
proc newRng*(): ref BrHmacDrbgContext =
|
|
# You should only create one instance of the RNG per application / library
|
|
# Ref is used so that it can be shared between components
|
|
# TODO consider moving to bearssl
|
|
var seeder = brPrngSeederSystem(nil)
|
|
if seeder == nil:
|
|
return nil
|
|
|
|
var rng = (ref BrHmacDrbgContext)()
|
|
brHmacDrbgInit(addr rng[], addr sha256Vtable, nil, 0)
|
|
if seeder(addr rng.vtable) == 0:
|
|
return nil
|
|
rng
|
|
|
|
proc random*(T: typedesc[PrivateKey], scheme: PKScheme,
|
|
rng: var BrHmacDrbgContext,
|
|
bits = RsaDefaultKeySize): CryptoResult[PrivateKey] =
|
|
## Generate random private key for scheme ``scheme``.
|
|
##
|
|
## ``bits`` is number of bits for RSA key, ``bits`` value must be in
|
|
## [2048, 4096], default value is 3072 bits.
|
|
case scheme
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
let rsakey = ? RsaPrivateKey.random(rng, bits).orError(KeyError)
|
|
ok(PrivateKey(scheme: scheme, rsakey: rsakey))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
let edkey = EdPrivateKey.random(rng)
|
|
ok(PrivateKey(scheme: scheme, edkey: edkey))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
let eckey = ? ecnist.EcPrivateKey.random(Secp256r1, rng).orError(KeyError)
|
|
ok(PrivateKey(scheme: scheme, eckey: eckey))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
let skkey = SkPrivateKey.random(rng)
|
|
ok(PrivateKey(scheme: scheme, skkey: skkey))
|
|
else:
|
|
err(SchemeError)
|
|
|
|
proc random*(T: typedesc[PrivateKey], rng: var BrHmacDrbgContext,
|
|
bits = RsaDefaultKeySize): CryptoResult[PrivateKey] =
|
|
## Generate random private key using default public-key cryptography scheme.
|
|
##
|
|
## Default public-key cryptography schemes are following order:
|
|
## ed25519, secp256k1, RSA, secp256r1.
|
|
##
|
|
## So will be used first available (supported) method.
|
|
when supported(PKScheme.Ed25519):
|
|
let edkey = EdPrivateKey.random(rng)
|
|
ok(PrivateKey(scheme: PKScheme.Ed25519, edkey: edkey))
|
|
elif supported(PKScheme.Secp256k1):
|
|
let skkey = SkPrivateKey.random(rng)
|
|
ok(PrivateKey(scheme: PKScheme.Secp256k1, skkey: skkey))
|
|
elif supported(PKScheme.RSA):
|
|
let rsakey = ? RsaPrivateKey.random(rng, bits).orError(KeyError)
|
|
ok(PrivateKey(scheme: PKScheme.RSA, rsakey: rsakey))
|
|
elif supported(PKScheme.ECDSA):
|
|
let eckey = ? ecnist.EcPrivateKey.random(Secp256r1, rng).orError(KeyError)
|
|
ok(PrivateKey(scheme: PKScheme.ECDSA, eckey: eckey))
|
|
else:
|
|
err(SchemeError)
|
|
|
|
proc random*(T: typedesc[KeyPair], scheme: PKScheme,
|
|
rng: var BrHmacDrbgContext,
|
|
bits = RsaDefaultKeySize): CryptoResult[KeyPair] =
|
|
## Generate random key pair for scheme ``scheme``.
|
|
##
|
|
## ``bits`` is number of bits for RSA key, ``bits`` value must be in
|
|
## [512, 4096], default value is 2048 bits.
|
|
case scheme
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
let pair = ? RsaKeyPair.random(rng, bits).orError(KeyError)
|
|
ok(KeyPair(
|
|
seckey: PrivateKey(scheme: scheme, rsakey: pair.seckey),
|
|
pubkey: PublicKey(scheme: scheme, rsakey: pair.pubkey)))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
let pair = EdKeyPair.random(rng)
|
|
ok(KeyPair(
|
|
seckey: PrivateKey(scheme: scheme, edkey: pair.seckey),
|
|
pubkey: PublicKey(scheme: scheme, edkey: pair.pubkey)))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
let pair = ? EcKeyPair.random(Secp256r1, rng).orError(KeyError)
|
|
ok(KeyPair(
|
|
seckey: PrivateKey(scheme: scheme, eckey: pair.seckey),
|
|
pubkey: PublicKey(scheme: scheme, eckey: pair.pubkey)))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
let pair = SkKeyPair.random(rng)
|
|
ok(KeyPair(
|
|
seckey: PrivateKey(scheme: scheme, skkey: pair.seckey),
|
|
pubkey: PublicKey(scheme: scheme, skkey: pair.pubkey)))
|
|
else:
|
|
err(SchemeError)
|
|
|
|
proc random*(T: typedesc[KeyPair], rng: var BrHmacDrbgContext,
|
|
bits = RsaDefaultKeySize): CryptoResult[KeyPair] =
|
|
## Generate random private pair of keys using default public-key cryptography
|
|
## scheme.
|
|
##
|
|
## Default public-key cryptography schemes are following order:
|
|
## ed25519, secp256k1, RSA, secp256r1.
|
|
##
|
|
## So will be used first available (supported) method.
|
|
when supported(PKScheme.Ed25519):
|
|
let pair = EdKeyPair.random(rng)
|
|
ok(KeyPair(
|
|
seckey: PrivateKey(scheme: PKScheme.Ed25519, edkey: pair.seckey),
|
|
pubkey: PublicKey(scheme: PKScheme.Ed25519, edkey: pair.pubkey)))
|
|
elif supported(PKScheme.Secp256k1):
|
|
let pair = SkKeyPair.random(rng)
|
|
ok(KeyPair(
|
|
seckey: PrivateKey(scheme: PKScheme.Secp256k1, skkey: pair.seckey),
|
|
pubkey: PublicKey(scheme: PKScheme.Secp256k1, skkey: pair.pubkey)))
|
|
elif supported(PKScheme.RSA):
|
|
let pair = ? RsaKeyPair.random(rng, bits).orError(KeyError)
|
|
ok(KeyPair(
|
|
seckey: PrivateKey(scheme: PKScheme.RSA, rsakey: pair.seckey),
|
|
pubkey: PublicKey(scheme: PKScheme.RSA, rsakey: pair.pubkey)))
|
|
elif supported(PKScheme.ECDSA):
|
|
let pair = ? EcKeyPair.random(Secp256r1, rng).orError(KeyError)
|
|
ok(KeyPair(
|
|
seckey: PrivateKey(scheme: PKScheme.ECDSA, eckey: pair.seckey),
|
|
pubkey: PublicKey(scheme: PKScheme.ECDSA, eckey: pair.pubkey)))
|
|
else:
|
|
err(SchemeError)
|
|
|
|
proc getKey*(key: PrivateKey): CryptoResult[PublicKey] =
|
|
## Get public key from corresponding private key ``key``.
|
|
case key.scheme
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
let rsakey = key.rsakey.getKey()
|
|
ok(PublicKey(scheme: RSA, rsakey: rsakey))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
let edkey = key.edkey.getKey()
|
|
ok(PublicKey(scheme: Ed25519, edkey: edkey))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
let eckey = ? key.eckey.getKey().orError(KeyError)
|
|
ok(PublicKey(scheme: ECDSA, eckey: eckey))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
let skkey = key.skkey.getKey()
|
|
ok(PublicKey(scheme: Secp256k1, skkey: skkey))
|
|
else:
|
|
err(SchemeError)
|
|
|
|
proc toRawBytes*(key: PrivateKey | PublicKey,
|
|
data: var openarray[byte]): CryptoResult[int] =
|
|
## Serialize private key ``key`` (using scheme's own serialization) and store
|
|
## it to ``data``.
|
|
##
|
|
## Returns number of bytes (octets) needed to store private key ``key``.
|
|
case key.scheme
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
key.rsakey.toBytes(data).orError(KeyError)
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
ok(key.edkey.toBytes(data))
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
key.eckey.toBytes(data).orError(KeyError)
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
key.skkey.toBytes(data).orError(KeyError)
|
|
else:
|
|
err(SchemeError)
|
|
|
|
proc getRawBytes*(key: PrivateKey | PublicKey): CryptoResult[seq[byte]] =
|
|
## Return private key ``key`` in binary form (using scheme's own
|
|
## serialization).
|
|
case key.scheme
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
key.rsakey.getBytes().orError(KeyError)
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
ok(key.edkey.getBytes())
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
key.eckey.getBytes().orError(KeyError)
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
ok(key.skkey.getBytes())
|
|
else:
|
|
err(SchemeError)
|
|
|
|
proc toBytes*(key: PrivateKey, data: var openarray[byte]): CryptoResult[int] =
|
|
## Serialize private key ``key`` (using libp2p protobuf scheme) and store
|
|
## it to ``data``.
|
|
##
|
|
## Returns number of bytes (octets) needed to store private key ``key``.
|
|
var msg = initProtoBuffer()
|
|
msg.write(1, uint64(key.scheme))
|
|
msg.write(2, ? key.getRawBytes())
|
|
msg.finish()
|
|
var blen = len(msg.buffer)
|
|
if len(data) >= blen:
|
|
copyMem(addr data[0], addr msg.buffer[0], blen)
|
|
ok(blen)
|
|
|
|
proc toBytes*(key: PublicKey, data: var openarray[byte]): CryptoResult[int] =
|
|
## Serialize public key ``key`` (using libp2p protobuf scheme) and store
|
|
## it to ``data``.
|
|
##
|
|
## Returns number of bytes (octets) needed to store public key ``key``.
|
|
var msg = initProtoBuffer()
|
|
msg.write(1, uint64(key.scheme))
|
|
msg.write(2, ? key.getRawBytes())
|
|
msg.finish()
|
|
var blen = len(msg.buffer)
|
|
if len(data) >= blen and blen > 0:
|
|
copyMem(addr data[0], addr msg.buffer[0], blen)
|
|
ok(blen)
|
|
|
|
proc toBytes*(sig: Signature, data: var openarray[byte]): int =
|
|
## Serialize signature ``sig`` and store it to ``data``.
|
|
##
|
|
## Returns number of bytes (octets) needed to store signature ``sig``.
|
|
result = len(sig.data)
|
|
if len(data) >= result and result > 0:
|
|
copyMem(addr data[0], unsafeAddr sig.data[0], len(sig.data))
|
|
|
|
proc getBytes*(key: PrivateKey): CryptoResult[seq[byte]] =
|
|
## Return private key ``key`` in binary form (using libp2p's protobuf
|
|
## serialization).
|
|
var msg = initProtoBuffer()
|
|
msg.write(1, uint64(key.scheme))
|
|
msg.write(2, ? key.getRawBytes())
|
|
msg.finish()
|
|
ok(msg.buffer)
|
|
|
|
proc getBytes*(key: PublicKey): CryptoResult[seq[byte]] =
|
|
## Return public key ``key`` in binary form (using libp2p's protobuf
|
|
## serialization).
|
|
var msg = initProtoBuffer()
|
|
msg.write(1, uint64(key.scheme))
|
|
msg.write(2, ? key.getRawBytes())
|
|
msg.finish()
|
|
ok(msg.buffer)
|
|
|
|
proc getBytes*(sig: Signature): seq[byte] =
|
|
## Return signature ``sig`` in binary form.
|
|
result = sig.data
|
|
|
|
proc init*[T: PrivateKey|PublicKey](key: var T, data: openarray[byte]): bool =
|
|
## Initialize private key ``key`` from libp2p's protobuf serialized raw
|
|
## binary form.
|
|
##
|
|
## Returns ``true`` on success.
|
|
var id: uint64
|
|
var buffer: seq[byte]
|
|
if len(data) <= 0:
|
|
false
|
|
else:
|
|
var pb = initProtoBuffer(@data)
|
|
let r1 = pb.getField(1, id)
|
|
let r2 = pb.getField(2, buffer)
|
|
if not(r1.isOk() and r1.get() and r2.isOk() and r2.get()):
|
|
false
|
|
else:
|
|
if cast[int8](id) notin SupportedSchemesInt or len(buffer) <= 0:
|
|
false
|
|
else:
|
|
var scheme = cast[PKScheme](cast[int8](id))
|
|
when key is PrivateKey:
|
|
var nkey = PrivateKey(scheme: scheme)
|
|
else:
|
|
var nkey = PublicKey(scheme: scheme)
|
|
case scheme:
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
if init(nkey.rsakey, buffer).isOk:
|
|
key = nkey
|
|
true
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
if init(nkey.edkey, buffer):
|
|
key = nkey
|
|
true
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
if init(nkey.eckey, buffer).isOk:
|
|
key = nkey
|
|
true
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
if init(nkey.skkey, buffer).isOk:
|
|
key = nkey
|
|
true
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
|
|
proc init*(sig: var Signature, data: openarray[byte]): bool =
|
|
## Initialize signature ``sig`` from raw binary form.
|
|
##
|
|
## Returns ``true`` on success.
|
|
if len(data) > 0:
|
|
sig.data = @data
|
|
result = true
|
|
|
|
proc init*[T: PrivateKey|PublicKey](key: var T, data: string): bool =
|
|
## Initialize private/public key ``key`` from libp2p's protobuf serialized
|
|
## hexadecimal string representation.
|
|
##
|
|
## Returns ``true`` on success.
|
|
key.init(ncrutils.fromHex(data))
|
|
|
|
proc init*(sig: var Signature, data: string): bool =
|
|
## Initialize signature ``sig`` from serialized hexadecimal string
|
|
## representation.
|
|
##
|
|
## Returns ``true`` on success.
|
|
sig.init(ncrutils.fromHex(data))
|
|
|
|
proc init*(t: typedesc[PrivateKey],
|
|
data: openarray[byte]): CryptoResult[PrivateKey] =
|
|
## Create new private key from libp2p's protobuf serialized binary form.
|
|
var res: t
|
|
if not res.init(data):
|
|
err(KeyError)
|
|
else:
|
|
ok(res)
|
|
|
|
proc init*(t: typedesc[PublicKey],
|
|
data: openarray[byte]): CryptoResult[PublicKey] =
|
|
## Create new public key from libp2p's protobuf serialized binary form.
|
|
var res: t
|
|
if not res.init(data):
|
|
err(KeyError)
|
|
else:
|
|
ok(res)
|
|
|
|
proc init*(t: typedesc[Signature],
|
|
data: openarray[byte]): CryptoResult[Signature] =
|
|
## Create new public key from libp2p's protobuf serialized binary form.
|
|
var res: t
|
|
if not res.init(data):
|
|
err(SigError)
|
|
else:
|
|
ok(res)
|
|
|
|
proc init*(t: typedesc[PrivateKey], data: string): CryptoResult[PrivateKey] =
|
|
## Create new private key from libp2p's protobuf serialized hexadecimal string
|
|
## form.
|
|
t.init(ncrutils.fromHex(data))
|
|
|
|
when supported(PKScheme.RSA):
|
|
proc init*(t: typedesc[PrivateKey], key: rsa.RsaPrivateKey): PrivateKey =
|
|
PrivateKey(scheme: RSA, rsakey: key)
|
|
proc init*(t: typedesc[PublicKey], key: rsa.RsaPublicKey): PublicKey =
|
|
PublicKey(scheme: RSA, rsakey: key)
|
|
|
|
when supported(PKScheme.Ed25519):
|
|
proc init*(t: typedesc[PrivateKey], key: EdPrivateKey): PrivateKey =
|
|
PrivateKey(scheme: Ed25519, edkey: key)
|
|
proc init*(t: typedesc[PublicKey], key: EdPublicKey): PublicKey =
|
|
PublicKey(scheme: Ed25519, edkey: key)
|
|
|
|
when supported(PKScheme.Secp256k1):
|
|
proc init*(t: typedesc[PrivateKey], key: SkPrivateKey): PrivateKey =
|
|
PrivateKey(scheme: Secp256k1, skkey: key)
|
|
proc init*(t: typedesc[PublicKey], key: SkPublicKey): PublicKey =
|
|
PublicKey(scheme: Secp256k1, skkey: key)
|
|
|
|
when supported(PKScheme.ECDSA):
|
|
proc init*(t: typedesc[PrivateKey], key: ecnist.EcPrivateKey): PrivateKey =
|
|
PrivateKey(scheme: ECDSA, eckey: key)
|
|
proc init*(t: typedesc[PublicKey], key: ecnist.EcPublicKey): PublicKey =
|
|
PublicKey(scheme: ECDSA, eckey: key)
|
|
|
|
proc init*(t: typedesc[PublicKey], data: string): CryptoResult[PublicKey] =
|
|
## Create new public key from libp2p's protobuf serialized hexadecimal string
|
|
## form.
|
|
t.init(ncrutils.fromHex(data))
|
|
|
|
proc init*(t: typedesc[Signature], data: string): CryptoResult[Signature] =
|
|
## Create new signature from serialized hexadecimal string form.
|
|
t.init(ncrutils.fromHex(data))
|
|
|
|
proc `==`*(key1, key2: PublicKey): bool {.inline.} =
|
|
## Return ``true`` if two public keys ``key1`` and ``key2`` of the same
|
|
## scheme and equal.
|
|
if key1.scheme == key2.scheme:
|
|
case key1.scheme
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
(key1.rsakey == key2.rsakey)
|
|
else:
|
|
false
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
(key1.edkey == key2.edkey)
|
|
else:
|
|
false
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
(key1.eckey == key2.eckey)
|
|
else:
|
|
false
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
(key1.skkey == key2.skkey)
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
|
|
proc `==`*(key1, key2: PrivateKey): bool =
|
|
## Return ``true`` if two private keys ``key1`` and ``key2`` of the same
|
|
## scheme and equal.
|
|
if key1.scheme == key2.scheme:
|
|
case key1.scheme
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
(key1.rsakey == key2.rsakey)
|
|
else:
|
|
false
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
(key1.edkey == key2.edkey)
|
|
else:
|
|
false
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
(key1.eckey == key2.eckey)
|
|
else:
|
|
false
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
(key1.skkey == key2.skkey)
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
|
|
proc `$`*(key: PrivateKey|PublicKey): string =
|
|
## Get string representation of private/public key ``key``.
|
|
case key.scheme:
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
$(key.rsakey)
|
|
else:
|
|
"unsupported RSA key"
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
"ed25519 key (" & $key.edkey & ")"
|
|
else:
|
|
"unsupported ed25519 key"
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
"secp256r1 key (" & $key.eckey & ")"
|
|
else:
|
|
"unsupported secp256r1 key"
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
"secp256k1 key (" & $key.skkey & ")"
|
|
else:
|
|
"unsupported secp256k1 key"
|
|
|
|
func shortLog*(key: PrivateKey|PublicKey): string =
|
|
## Get short string representation of private/public key ``key``.
|
|
case key.scheme:
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
($key.rsakey).shortLog
|
|
else:
|
|
"unsupported RSA key"
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
"ed25519 key (" & ($key.edkey).shortLog & ")"
|
|
else:
|
|
"unsupported ed25519 key"
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
"secp256r1 key (" & ($key.eckey).shortLog & ")"
|
|
else:
|
|
"unsupported secp256r1 key"
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
"secp256k1 key (" & ($key.skkey).shortLog & ")"
|
|
else:
|
|
"unsupported secp256k1 key"
|
|
|
|
proc `$`*(sig: Signature): string =
|
|
## Get string representation of signature ``sig``.
|
|
result = ncrutils.toHex(sig.data)
|
|
|
|
proc sign*(key: PrivateKey,
|
|
data: openarray[byte]): CryptoResult[Signature] {.gcsafe.} =
|
|
## Sign message ``data`` using private key ``key`` and return generated
|
|
## signature in raw binary form.
|
|
var res: Signature
|
|
case key.scheme:
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
let sig = ? key.rsakey.sign(data).orError(SigError)
|
|
res.data = ? sig.getBytes().orError(SigError)
|
|
ok(res)
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
let sig = key.edkey.sign(data)
|
|
res.data = sig.getBytes()
|
|
ok(res)
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
let sig = ? key.eckey.sign(data).orError(SigError)
|
|
res.data = ? sig.getBytes().orError(SigError)
|
|
ok(res)
|
|
else:
|
|
err(SchemeError)
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
let sig = key.skkey.sign(data)
|
|
res.data = sig.getBytes()
|
|
ok(res)
|
|
else:
|
|
err(SchemeError)
|
|
|
|
proc verify*(sig: Signature, message: openarray[byte], key: PublicKey): bool =
|
|
## Verify signature ``sig`` using message ``message`` and public key ``key``.
|
|
## Return ``true`` if message signature is valid.
|
|
case key.scheme:
|
|
of PKScheme.RSA:
|
|
when supported(PKScheme.RSA):
|
|
var signature: RsaSignature
|
|
if signature.init(sig.data).isOk:
|
|
signature.verify(message, key.rsakey)
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
of PKScheme.Ed25519:
|
|
when supported(PKScheme.Ed25519):
|
|
var signature: EdSignature
|
|
if signature.init(sig.data):
|
|
signature.verify(message, key.edkey)
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
of PKScheme.ECDSA:
|
|
when supported(PKScheme.ECDSA):
|
|
var signature: EcSignature
|
|
if signature.init(sig.data).isOk:
|
|
signature.verify(message, key.eckey)
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
of PKScheme.Secp256k1:
|
|
when supported(PKScheme.Secp256k1):
|
|
var signature: SkSignature
|
|
if signature.init(sig.data).isOk:
|
|
signature.verify(message, key.skkey)
|
|
else:
|
|
false
|
|
else:
|
|
false
|
|
|
|
template makeSecret(buffer, hmactype, secret, seed: untyped) {.dirty.}=
|
|
var ctx: hmactype
|
|
var j = 0
|
|
# We need to strip leading zeros, because Go bigint serialization do it.
|
|
var offset = 0
|
|
for i in 0..<len(secret):
|
|
if secret[i] != 0x00'u8:
|
|
break
|
|
inc(offset)
|
|
ctx.init(secret.toOpenArray(offset, secret.high))
|
|
ctx.update(seed)
|
|
var a = ctx.finish()
|
|
while j < len(buffer):
|
|
ctx.init(secret.toOpenArray(offset, secret.high))
|
|
ctx.update(a.data)
|
|
ctx.update(seed)
|
|
var b = ctx.finish()
|
|
var todo = len(b.data)
|
|
if j + todo > len(buffer):
|
|
todo = len(buffer) - j
|
|
copyMem(addr buffer[j], addr b.data[0], todo)
|
|
j += todo
|
|
ctx.init(secret.toOpenArray(offset, secret.high))
|
|
ctx.update(a.data)
|
|
a = ctx.finish()
|
|
|
|
proc stretchKeys*(cipherType: string, hashType: string,
|
|
sharedSecret: seq[byte]): Secret =
|
|
## Expand shared secret to cryptographic keys.
|
|
if cipherType == "AES-128":
|
|
result.ivsize = aes128.sizeBlock
|
|
result.keysize = aes128.sizeKey
|
|
elif cipherType == "AES-256":
|
|
result.ivsize = aes256.sizeBlock
|
|
result.keysize = aes256.sizeKey
|
|
elif cipherType == "TwofishCTR":
|
|
result.ivsize = twofish256.sizeBlock
|
|
result.keysize = twofish256.sizeKey
|
|
|
|
var seed = "key expansion"
|
|
result.macsize = 20
|
|
let length = result.ivsize + result.keysize + result.macsize
|
|
result.data = newSeq[byte](2 * length)
|
|
|
|
if hashType == "SHA256":
|
|
makeSecret(result.data, HMAC[sha256], sharedSecret, seed)
|
|
elif hashType == "SHA512":
|
|
makeSecret(result.data, HMAC[sha512], sharedSecret, seed)
|
|
|
|
template goffset*(secret, id, o: untyped): untyped =
|
|
id * (len(secret.data) shr 1) + o
|
|
|
|
template ivOpenArray*(secret: Secret, id: int): untyped =
|
|
toOpenArray(secret.data, goffset(secret, id, 0),
|
|
goffset(secret, id, secret.ivsize - 1))
|
|
|
|
template keyOpenArray*(secret: Secret, id: int): untyped =
|
|
toOpenArray(secret.data, goffset(secret, id, secret.ivsize),
|
|
goffset(secret, id, secret.ivsize + secret.keysize - 1))
|
|
|
|
template macOpenArray*(secret: Secret, id: int): untyped =
|
|
toOpenArray(secret.data, goffset(secret, id, secret.ivsize + secret.keysize),
|
|
goffset(secret, id, secret.ivsize + secret.keysize + secret.macsize - 1))
|
|
|
|
proc iv*(secret: Secret, id: int): seq[byte] {.inline.} =
|
|
## Get array of bytes with with initial vector.
|
|
result = newSeq[byte](secret.ivsize)
|
|
var offset = if id == 0: 0 else: (len(secret.data) div 2)
|
|
copyMem(addr result[0], unsafeAddr secret.data[offset], secret.ivsize)
|
|
|
|
proc key*(secret: Secret, id: int): seq[byte] {.inline.} =
|
|
result = newSeq[byte](secret.keysize)
|
|
var offset = if id == 0: 0 else: (len(secret.data) div 2)
|
|
offset += secret.ivsize
|
|
copyMem(addr result[0], unsafeAddr secret.data[offset], secret.keysize)
|
|
|
|
proc mac*(secret: Secret, id: int): seq[byte] {.inline.} =
|
|
result = newSeq[byte](secret.macsize)
|
|
var offset = if id == 0: 0 else: (len(secret.data) div 2)
|
|
offset += secret.ivsize + secret.keysize
|
|
copyMem(addr result[0], unsafeAddr secret.data[offset], secret.macsize)
|
|
|
|
proc ephemeral*(
|
|
scheme: ECDHEScheme,
|
|
rng: var BrHmacDrbgContext): CryptoResult[EcKeyPair] =
|
|
## Generate ephemeral keys used to perform ECDHE.
|
|
var keypair: EcKeyPair
|
|
if scheme == Secp256r1:
|
|
keypair = ? EcKeyPair.random(Secp256r1, rng).orError(KeyError)
|
|
elif scheme == Secp384r1:
|
|
keypair = ? EcKeyPair.random(Secp384r1, rng).orError(KeyError)
|
|
elif scheme == Secp521r1:
|
|
keypair = ? EcKeyPair.random(Secp521r1, rng).orError(KeyError)
|
|
ok(EcKeyPair(keypair))
|
|
|
|
proc ephemeral*(
|
|
scheme: string, rng: var BrHmacDrbgContext): CryptoResult[EcKeyPair] =
|
|
## Generate ephemeral keys used to perform ECDHE using string encoding.
|
|
##
|
|
## Currently supported encoding strings are P-256, P-384, P-521, if encoding
|
|
## string is not supported P-521 key will be generated.
|
|
if scheme == "P-256":
|
|
ephemeral(Secp256r1, rng)
|
|
elif scheme == "P-384":
|
|
ephemeral(Secp384r1, rng)
|
|
elif scheme == "P-521":
|
|
ephemeral(Secp521r1, rng)
|
|
else:
|
|
ephemeral(Secp521r1, rng)
|
|
|
|
proc getOrder*(remotePubkey, localNonce: openarray[byte],
|
|
localPubkey, remoteNonce: openarray[byte]): CryptoResult[int] =
|
|
## Compare values and calculate `order` parameter.
|
|
var ctx: sha256
|
|
ctx.init()
|
|
ctx.update(remotePubkey)
|
|
ctx.update(localNonce)
|
|
var digest1 = ctx.finish()
|
|
ctx.init()
|
|
ctx.update(localPubkey)
|
|
ctx.update(remoteNonce)
|
|
var digest2 = ctx.finish()
|
|
var mh1 = ? MultiHash.init(multiCodec("sha2-256"), digest1).orError(HashError)
|
|
var mh2 = ? MultiHash.init(multiCodec("sha2-256"), digest2).orError(HashError)
|
|
var res = 0;
|
|
for i in 0 ..< len(mh1.data.buffer):
|
|
res = int(mh1.data.buffer[i]) - int(mh2.data.buffer[i])
|
|
if res != 0:
|
|
if res < 0:
|
|
res = -1
|
|
elif res > 0:
|
|
res = 1
|
|
break
|
|
ok(res)
|
|
|
|
proc selectBest*(order: int, p1, p2: string): string =
|
|
## Determines which algorithm to use from list `p1` and `p2`.
|
|
##
|
|
## Returns empty string if there no algorithms in common.
|
|
var f, s: seq[string]
|
|
if order < 0:
|
|
f = strutils.split(p2, ",")
|
|
s = strutils.split(p1, ",")
|
|
elif order > 0:
|
|
f = strutils.split(p1, ",")
|
|
s = strutils.split(p2, ",")
|
|
else:
|
|
var p = strutils.split(p1, ",")
|
|
return p[0]
|
|
|
|
for felement in f:
|
|
for selement in s:
|
|
if felement == selement:
|
|
return felement
|
|
|
|
proc createProposal*(nonce, pubkey: openarray[byte],
|
|
exchanges, ciphers, hashes: string): seq[byte] =
|
|
## Create SecIO proposal message using random ``nonce``, local public key
|
|
## ``pubkey``, comma-delimieted list of supported exchange schemes
|
|
## ``exchanges``, comma-delimeted list of supported ciphers ``ciphers`` and
|
|
## comma-delimeted list of supported hashes ``hashes``.
|
|
var msg = initProtoBuffer({WithUint32BeLength})
|
|
msg.write(1, nonce)
|
|
msg.write(2, pubkey)
|
|
msg.write(3, exchanges)
|
|
msg.write(4, ciphers)
|
|
msg.write(5, hashes)
|
|
msg.finish()
|
|
msg.buffer
|
|
|
|
proc decodeProposal*(message: seq[byte], nonce, pubkey: var seq[byte],
|
|
exchanges, ciphers, hashes: var string): bool =
|
|
## Parse incoming proposal message and decode remote random nonce ``nonce``,
|
|
## remote public key ``pubkey``, comma-delimieted list of supported exchange
|
|
## schemes ``exchanges``, comma-delimeted list of supported ciphers
|
|
## ``ciphers`` and comma-delimeted list of supported hashes ``hashes``.
|
|
##
|
|
## Procedure returns ``true`` on success and ``false`` on error.
|
|
var pb = initProtoBuffer(message)
|
|
let r1 = pb.getField(1, nonce)
|
|
let r2 = pb.getField(2, pubkey)
|
|
let r3 = pb.getField(3, exchanges)
|
|
let r4 = pb.getField(4, ciphers)
|
|
let r5 = pb.getField(5, hashes)
|
|
|
|
r1.isOk() and r1.get() and r2.isOk() and r2.get() and
|
|
r3.isOk() and r3.get() and r4.isOk() and r4.get() and
|
|
r5.isOk() and r5.get()
|
|
|
|
proc createExchange*(epubkey, signature: openarray[byte]): seq[byte] =
|
|
## Create SecIO exchange message using ephemeral public key ``epubkey`` and
|
|
## signature of proposal blocks ``signature``.
|
|
var msg = initProtoBuffer({WithUint32BeLength})
|
|
msg.write(1, epubkey)
|
|
msg.write(2, signature)
|
|
msg.finish()
|
|
msg.buffer
|
|
|
|
proc decodeExchange*(message: seq[byte],
|
|
pubkey, signature: var seq[byte]): bool =
|
|
## Parse incoming exchange message and decode remote ephemeral public key
|
|
## ``pubkey`` and signature ``signature``.
|
|
##
|
|
## Procedure returns ``true`` on success and ``false`` on error.
|
|
var pb = initProtoBuffer(message)
|
|
let r1 = pb.getField(1, pubkey)
|
|
let r2 = pb.getField(2, signature)
|
|
r1.isOk() and r1.get() and r2.isOk() and r2.get()
|
|
|
|
## Serialization/Deserialization helpers
|
|
|
|
proc write*(vb: var VBuffer, pubkey: PublicKey) {.
|
|
inline, raises: [Defect, ResultError[CryptoError]].} =
|
|
## Write PublicKey value ``pubkey`` to buffer ``vb``.
|
|
vb.writeSeq(pubkey.getBytes().tryGet())
|
|
|
|
proc write*(vb: var VBuffer, seckey: PrivateKey) {.
|
|
inline, raises: [Defect, ResultError[CryptoError]].} =
|
|
## Write PrivateKey value ``seckey`` to buffer ``vb``.
|
|
vb.writeSeq(seckey.getBytes().tryGet())
|
|
|
|
proc write*(vb: var VBuffer, sig: PrivateKey) {.
|
|
inline, raises: [Defect, ResultError[CryptoError]].} =
|
|
## Write Signature value ``sig`` to buffer ``vb``.
|
|
vb.writeSeq(sig.getBytes().tryGet())
|
|
|
|
proc write*[T: PublicKey|PrivateKey](pb: var ProtoBuffer, field: int,
|
|
key: T) {.
|
|
inline, raises: [Defect, ResultError[CryptoError]].} =
|
|
write(pb, field, key.getBytes().tryGet())
|
|
|
|
proc write*(pb: var ProtoBuffer, field: int, sig: Signature) {.
|
|
inline, raises: [Defect, ResultError[CryptoError]].} =
|
|
write(pb, field, sig.getBytes())
|
|
|
|
proc initProtoField*(index: int, key: PublicKey|PrivateKey): ProtoField {.
|
|
deprecated, raises: [Defect, ResultError[CryptoError]].} =
|
|
## Initialize ProtoField with PublicKey/PrivateKey ``key``.
|
|
result = initProtoField(index, key.getBytes().tryGet())
|
|
|
|
proc initProtoField*(index: int, sig: Signature): ProtoField {.deprecated.} =
|
|
## Initialize ProtoField with Signature ``sig``.
|
|
result = initProtoField(index, sig.getBytes())
|
|
|
|
proc getValue*[T: PublicKey|PrivateKey](data: var ProtoBuffer, field: int,
|
|
value: var T): int {.deprecated.} =
|
|
## Read PublicKey/PrivateKey from ProtoBuf's message and validate it.
|
|
var buf: seq[byte]
|
|
var key: PublicKey
|
|
result = getLengthValue(data, field, buf)
|
|
if result > 0:
|
|
if not key.init(buf):
|
|
result = -1
|
|
else:
|
|
value = key
|
|
|
|
proc getValue*(data: var ProtoBuffer, field: int, value: var Signature): int {.
|
|
deprecated.} =
|
|
## Read ``Signature`` from ProtoBuf's message and validate it.
|
|
var buf: seq[byte]
|
|
var sig: Signature
|
|
result = getLengthValue(data, field, buf)
|
|
if result > 0:
|
|
if not sig.init(buf):
|
|
result = -1
|
|
else:
|
|
value = sig
|
|
|
|
proc getField*[T: PublicKey|PrivateKey](pb: ProtoBuffer, field: int,
|
|
value: var T): ProtoResult[bool] =
|
|
## Deserialize public/private key from protobuf's message ``pb`` using field
|
|
## index ``field``.
|
|
##
|
|
## On success deserialized key will be stored in ``value``.
|
|
var buffer: seq[byte]
|
|
var key: T
|
|
let res = ? pb.getField(field, buffer)
|
|
if not(res):
|
|
ok(false)
|
|
else:
|
|
if key.init(buffer):
|
|
value = key
|
|
ok(true)
|
|
else:
|
|
err(ProtoError.IncorrectBlob)
|
|
|
|
proc getField*(pb: ProtoBuffer, field: int,
|
|
value: var Signature): ProtoResult[bool] =
|
|
## Deserialize signature from protobuf's message ``pb`` using field index
|
|
## ``field``.
|
|
##
|
|
## On success deserialized signature will be stored in ``value``.
|
|
var buffer: seq[byte]
|
|
var sig: Signature
|
|
let res = ? pb.getField(field, buffer)
|
|
if not(res):
|
|
ok(false)
|
|
else:
|
|
if sig.init(buffer):
|
|
value = sig
|
|
ok(true)
|
|
else:
|
|
err(ProtoError.IncorrectBlob)
|