mirror of
https://github.com/status-im/nim-libp2p.git
synced 2025-01-09 20:45:59 +00:00
166 lines
5.4 KiB
Nim
166 lines
5.4 KiB
Nim
## # Protobuf usage
|
|
##
|
|
## In the [previous tutorial](tutorial_2_customproto.md), we created a simple "ping" protocol.
|
|
## Most real protocol want their messages to be structured and extensible, which is why
|
|
## most real protocols use [protobuf](https://developers.google.com/protocol-buffers) to
|
|
## define their message structures.
|
|
##
|
|
## Here, we'll create a slightly more complex protocol, which parses & generate protobuf
|
|
## messages. Let's start by importing our dependencies, as usual:
|
|
import chronos
|
|
import stew/results # for Opt[T]
|
|
|
|
import libp2p
|
|
|
|
## ## Protobuf encoding & decoding
|
|
## This will be the structure of our messages:
|
|
## ```protobuf
|
|
## message MetricList {
|
|
## message Metric {
|
|
## string name = 1;
|
|
## float value = 2;
|
|
## }
|
|
##
|
|
## repeated Metric metrics = 2;
|
|
## }
|
|
## ```
|
|
## We'll create our protobuf types, encoders & decoders, according to this format.
|
|
## To create the encoders & decoders, we are going to use minprotobuf
|
|
## (included in libp2p).
|
|
##
|
|
## While more modern technics
|
|
## (such as [nim-protobuf-serialization](https://github.com/status-im/nim-protobuf-serialization))
|
|
## exists, minprotobuf is currently the recommended method to handle protobuf, since it has
|
|
## been used in production extensively, and audited.
|
|
type
|
|
Metric = object
|
|
name: string
|
|
value: float
|
|
|
|
MetricList = object
|
|
metrics: seq[Metric]
|
|
|
|
{.push raises: [].}
|
|
|
|
proc encode(m: Metric): ProtoBuffer =
|
|
result = initProtoBuffer()
|
|
result.write(1, m.name)
|
|
result.write(2, m.value)
|
|
result.finish()
|
|
|
|
proc decode(_: type Metric, buf: seq[byte]): Result[Metric, ProtoError] =
|
|
var res: Metric
|
|
let pb = initProtoBuffer(buf)
|
|
# "getField" will return a Result[bool, ProtoError].
|
|
# The Result will hold an error if the protobuf is invalid.
|
|
# The Result will hold "false" if the field is missing
|
|
#
|
|
# We are just checking the error, and ignoring whether the value
|
|
# is present or not (default values are valid).
|
|
discard ?pb.getField(1, res.name)
|
|
discard ?pb.getField(2, res.value)
|
|
ok(res)
|
|
|
|
proc encode(m: MetricList): ProtoBuffer =
|
|
result = initProtoBuffer()
|
|
for metric in m.metrics:
|
|
result.write(1, metric.encode())
|
|
result.finish()
|
|
|
|
proc decode(_: type MetricList, buf: seq[byte]): Result[MetricList, ProtoError] =
|
|
var
|
|
res: MetricList
|
|
metrics: seq[seq[byte]]
|
|
let pb = initProtoBuffer(buf)
|
|
discard ?pb.getRepeatedField(1, metrics)
|
|
|
|
for metric in metrics:
|
|
res.metrics &= ?Metric.decode(metric)
|
|
ok(res)
|
|
|
|
## ## Results instead of exceptions
|
|
## As you can see, this part of the program also uses Results instead of exceptions for error handling.
|
|
## We start by `{.push raises: [].}`, which will prevent every non-async function from raising
|
|
## exceptions.
|
|
##
|
|
## Then, we use [nim-result](https://github.com/arnetheduck/nim-result) to convey
|
|
## errors to function callers. A `Result[T, E]` will either hold a valid result of type
|
|
## T, or an error of type E.
|
|
##
|
|
## You can check if the call succeeded by using `res.isOk`, and then get the
|
|
## value using `res.value` or the error by using `res.error`.
|
|
##
|
|
## Another useful tool is `?`, which will unpack a Result if it succeeded,
|
|
## or if it failed, exit the current procedure returning the error.
|
|
##
|
|
## nim-result is packed with other functionalities that you'll find in the
|
|
## nim-result repository.
|
|
##
|
|
## Results and exception are generally interchangeable, but have different semantics
|
|
## that you may or may not prefer.
|
|
##
|
|
## ## Creating the protocol
|
|
## We'll next create a protocol, like in the last tutorial, to request these metrics from our host
|
|
type
|
|
MetricCallback = proc(): Future[MetricList] {.raises: [], gcsafe.}
|
|
MetricProto = ref object of LPProtocol
|
|
metricGetter: MetricCallback
|
|
|
|
proc new(_: typedesc[MetricProto], cb: MetricCallback): MetricProto =
|
|
var res: MetricProto
|
|
proc handle(conn: Connection, proto: string) {.async.} =
|
|
let
|
|
metrics = await res.metricGetter()
|
|
asProtobuf = metrics.encode()
|
|
await conn.writeLp(asProtobuf.buffer)
|
|
await conn.close()
|
|
|
|
res = MetricProto.new(@["/metric-getter/1.0.0"], handle)
|
|
res.metricGetter = cb
|
|
return res
|
|
|
|
proc fetch(p: MetricProto, conn: Connection): Future[MetricList] {.async.} =
|
|
let protobuf = await conn.readLp(2048)
|
|
# tryGet will raise an exception if the Result contains an error.
|
|
# It's useful to bridge between exception-world and result-world
|
|
return MetricList.decode(protobuf).tryGet()
|
|
|
|
## We can now create our main procedure:
|
|
proc main() {.async.} =
|
|
let rng = newRng()
|
|
proc randomMetricGenerator(): Future[MetricList] {.async.} =
|
|
let metricCount = rng[].generate(uint32) mod 16
|
|
for i in 0 ..< metricCount + 1:
|
|
result.metrics.add(
|
|
Metric(name: "metric_" & $i, value: float(rng[].generate(uint16)) / 1000.0)
|
|
)
|
|
return result
|
|
|
|
let
|
|
metricProto1 = MetricProto.new(randomMetricGenerator)
|
|
metricProto2 = MetricProto.new(randomMetricGenerator)
|
|
switch1 = newStandardSwitch(rng = rng)
|
|
switch2 = newStandardSwitch(rng = rng)
|
|
|
|
switch1.mount(metricProto1)
|
|
|
|
await switch1.start()
|
|
await switch2.start()
|
|
|
|
let
|
|
conn = await switch2.dial(
|
|
switch1.peerInfo.peerId, switch1.peerInfo.addrs, metricProto2.codecs
|
|
)
|
|
metrics = await metricProto2.fetch(conn)
|
|
await conn.close()
|
|
|
|
for metric in metrics.metrics:
|
|
echo metric.name, " = ", metric.value
|
|
|
|
await allFutures(switch1.stop(), switch2.stop())
|
|
# close connections and shutdown all transports
|
|
|
|
waitFor(main())
|
|
|
|
## If you run this program, you should see random metrics being sent from the switch1 to the switch2.
|