Merge branch 'master' into gossip-one-one

This commit is contained in:
Giovanni Petrantoni 2020-07-23 09:14:06 +09:00
commit a7b1417fd7
6 changed files with 729 additions and 258 deletions

View File

@ -16,11 +16,13 @@ requires "nim >= 1.2.0",
"secp256k1",
"stew >= 0.1.0"
proc runTest(filename: string, verify: bool = true, sign: bool = true) =
proc runTest(filename: string, verify: bool = true, sign: bool = true,
moreoptions: string = "") =
var excstr = "nim c --opt:speed -d:debug --verbosity:0 --hints:off"
excstr.add(" --warning[CaseTransition]:off --warning[ObservableStores]:off --warning[LockLevel]:off")
excstr.add(" -d:libp2p_pubsub_sign=" & $sign)
excstr.add(" -d:libp2p_pubsub_verify=" & $verify)
excstr.add(" " & moreoptions & " ")
if verify and sign:
# build it with TRACE and JSON logs
exec excstr & " -d:chronicles_log_level=TRACE -d:chronicles_sinks:json" & " tests/" & filename
@ -48,11 +50,22 @@ task testpubsub, "Runs pubsub tests":
runTest("pubsub/testpubsub")
runTest("pubsub/testpubsub", sign = false, verify = false)
task testfilter, "Run PKI filter test":
runTest("testpkifilter",
moreoptions = "-d:libp2p_pki_schemes=\"secp256k1\"")
runTest("testpkifilter",
moreoptions = "-d:libp2p_pki_schemes=\"secp256k1;ed25519\"")
runTest("testpkifilter",
moreoptions = "-d:libp2p_pki_schemes=\"secp256k1;ed25519;ecnist\"")
runTest("testpkifilter",
moreoptions = "-d:libp2p_pki_schemes=")
task test, "Runs the test suite":
exec "nimble testnative"
exec "nimble testpubsub"
exec "nimble testdaemon"
exec "nimble testinterop"
exec "nimble testfilter"
task examples_build, "Build the samples":
buildSample("directchat")

View File

@ -8,29 +8,79 @@
## those terms.
## This module implements Public Key and Private Key interface for libp2p.
{.push raises: [Defect].}
from strutils import split, strip, cmpIgnoreCase
import rsa, ecnist, ed25519/ed25519, secp, bearssl
import ../protobuf/minprotobuf, ../vbuffer, ../multihash, ../multicodec
import nimcrypto/[rijndael, blowfish, twofish, sha2, hash, hmac, utils]
import ../utility
import stew/results
export results
# This is workaround for Nim's `import` bug
export rijndael, blowfish, twofish, sha2, hash, hmac, utils
from strutils import split
const libp2p_pki_schemes* {.strdefine.} = "rsa,ed25519,secp256k1,ecnist"
type
PKScheme* = enum
RSA = 0,
Ed25519,
Secp256k1,
ECDSA,
NoSupport
ECDSA
proc initSupportedSchemes(list: static string): set[PKScheme] =
var res: set[PKScheme]
let schemes = split(list, {',', ';', '|'})
for item in schemes:
if cmpIgnoreCase(strip(item), "rsa") == 0:
res.incl(PKScheme.RSA)
elif cmpIgnoreCase(strip(item), "ed25519") == 0:
res.incl(PKScheme.Ed25519)
elif cmpIgnoreCase(strip(item), "secp256k1") == 0:
res.incl(PKScheme.Secp256k1)
elif cmpIgnoreCase(strip(item), "ecnist") == 0:
res.incl(PKScheme.ECDSA)
if len(res) == 0:
res = {PKScheme.RSA, PKScheme.Ed25519, PKScheme.Secp256k1, PKScheme.ECDSA}
res
proc initSupportedSchemes(schemes: static set[PKScheme]): set[int8] =
var res: set[int8]
if PKScheme.RSA in schemes:
res.incl(int8(PKScheme.RSA))
if PKScheme.Ed25519 in schemes:
res.incl(int8(PKScheme.Ed25519))
if PKScheme.Secp256k1 in schemes:
res.incl(int8(PKScheme.Secp256k1))
if PKScheme.ECDSA in schemes:
res.incl(int8(PKScheme.ECDSA))
res
const
SupportedSchemes* = initSupportedSchemes(libp2p_pki_schemes)
SupportedSchemesInt* = initSupportedSchemes(SupportedSchemes)
RsaDefaultKeySize* = 3072
template supported*(scheme: PKScheme): bool =
## Returns true if specified ``scheme`` is currently available.
scheme in SupportedSchemes
when supported(PKScheme.RSA):
import rsa
when supported(PKScheme.Ed25519):
import ed25519/ed25519
when supported(PKScheme.Secp256k1):
import secp
# We are still importing `ecnist` because, it is used for SECIO handshake,
# but it will be impossible to create ECNIST keys or import ECNIST keys.
import ecnist, bearssl
import ../protobuf/minprotobuf, ../vbuffer, ../multihash, ../multicodec
import nimcrypto/[rijndael, twofish, sha2, hash, hmac, utils]
import ../utility
import stew/results
export results
# This is workaround for Nim's `import` bug
export rijndael, twofish, sha2, hash, hmac, utils
from strutils import split
type
DigestSheme* = enum
Sha256,
Sha512
@ -39,29 +89,49 @@ type
PublicKey* = object
case scheme*: PKScheme
of RSA:
rsakey*: rsa.RsaPublicKey
of Ed25519:
edkey*: EdPublicKey
of Secp256k1:
skkey*: SkPublicKey
of ECDSA:
eckey*: ecnist.EcPublicKey
of NoSupport:
discard
of PKScheme.RSA:
when PKScheme.RSA in SupportedSchemes:
rsakey*: rsa.RsaPublicKey
else:
discard
of PKScheme.Ed25519:
when supported(PKScheme.Ed25519):
edkey*: EdPublicKey
else:
discard
of PKScheme.Secp256k1:
when supported(PKScheme.Secp256k1):
skkey*: SkPublicKey
else:
discard
of PKScheme.ECDSA:
when supported(PKScheme.ECDSA):
eckey*: ecnist.EcPublicKey
else:
discard
PrivateKey* = object
case scheme*: PKScheme
of RSA:
rsakey*: rsa.RsaPrivateKey
of Ed25519:
edkey*: EdPrivateKey
of Secp256k1:
skkey*: SkPrivateKey
of ECDSA:
eckey*: ecnist.EcPrivateKey
of NoSupport:
discard
of PKScheme.RSA:
when supported(PKScheme.RSA):
rsakey*: rsa.RsaPrivateKey
else:
discard
of PKScheme.Ed25519:
when supported(PKScheme.Ed25519):
edkey*: EdPrivateKey
else:
discard
of PKScheme.Secp256k1:
when supported(PKScheme.Secp256k1):
skkey*: SkPrivateKey
else:
discard
of PKSCheme.ECDSA:
when supported(PKSCheme.ECDSA):
eckey*: ecnist.EcPrivateKey
else:
discard
KeyPair* = object
seckey*: PrivateKey
@ -84,11 +154,6 @@ type
CryptoResult*[T] = Result[T, CryptoError]
const
SupportedSchemes* = {RSA, Ed25519, Secp256k1, ECDSA}
SupportedSchemesInt* = {int8(RSA), int8(Ed25519), int8(Secp256k1),
int8(ECDSA)}
template orError*(exp: untyped, err: untyped): untyped =
(exp.mapErr do (_: auto) -> auto: err)
@ -106,77 +171,162 @@ proc newRng*(): ref BrHmacDrbgContext =
return nil
rng
proc random*(
T: typedesc[PrivateKey], scheme: PKScheme,
rng: var BrHmacDrbgContext, bits = DefaultKeySize): CryptoResult[PrivateKey] =
proc random*(T: typedesc[PrivateKey], scheme: PKScheme,
rng: var BrHmacDrbgContext,
bits = RsaDefaultKeySize): CryptoResult[PrivateKey] =
## Generate random private key for scheme ``scheme``.
##
## ``bits`` is number of bits for RSA key, ``bits`` value must be in
## [512, 4096], default value is 2048 bits.
## [2048, 4096], default value is 3072 bits.
case scheme
of RSA:
let rsakey = ? RsaPrivateKey.random(rng, bits).orError(KeyError)
ok(PrivateKey(scheme: scheme, rsakey: rsakey))
of Ed25519:
of PKScheme.RSA:
when supported(PKScheme.RSA):
let rsakey = ? RsaPrivateKey.random(rng, bits).orError(KeyError)
ok(PrivateKey(scheme: scheme, rsakey: rsakey))
else:
err(SchemeError)
of PKScheme.Ed25519:
when supported(PKScheme.Ed25519):
let edkey = EdPrivateKey.random(rng)
ok(PrivateKey(scheme: scheme, edkey: edkey))
else:
err(SchemeError)
of PKScheme.ECDSA:
when supported(PKScheme.ECDSA):
let eckey = ? ecnist.EcPrivateKey.random(Secp256r1, rng).orError(KeyError)
ok(PrivateKey(scheme: scheme, eckey: eckey))
else:
err(SchemeError)
of PKScheme.Secp256k1:
when supported(PKScheme.Secp256k1):
let skkey = SkPrivateKey.random(rng)
ok(PrivateKey(scheme: scheme, skkey: skkey))
else:
err(SchemeError)
proc random*(T: typedesc[PrivateKey], rng: var BrHmacDrbgContext,
bits = RsaDefaultKeySize): CryptoResult[PrivateKey] =
## Generate random private key using default public-key cryptography scheme.
##
## Default public-key cryptography schemes are following order:
## ed25519, secp256k1, RSA, secp256r1.
##
## So will be used first available (supported) method.
when supported(PKScheme.Ed25519):
let edkey = EdPrivateKey.random(rng)
ok(PrivateKey(scheme: scheme, edkey: edkey))
of ECDSA:
let eckey = ? ecnist.EcPrivateKey.random(Secp256r1, rng).orError(KeyError)
ok(PrivateKey(scheme: scheme, eckey: eckey))
of Secp256k1:
ok(PrivateKey(scheme: PKScheme.Ed25519, edkey: edkey))
elif supported(PKScheme.Secp256k1):
let skkey = SkPrivateKey.random(rng)
ok(PrivateKey(scheme: scheme, skkey: skkey))
ok(PrivateKey(scheme: PKScheme.Secp256k1, skkey: skkey))
elif supported(PKScheme.RSA):
let rsakey = ? RsaPrivateKey.random(rng, bits).orError(KeyError)
ok(PrivateKey(scheme: PKScheme.RSA, rsakey: rsakey))
elif supported(PKScheme.ECDSA):
let eckey = ? ecnist.EcPrivateKey.random(Secp256r1, rng).orError(KeyError)
ok(PrivateKey(scheme: PKScheme.ECDSA, eckey: eckey))
else:
err(SchemeError)
proc random*(
T: typedesc[KeyPair], scheme: PKScheme,
rng: var BrHmacDrbgContext, bits = DefaultKeySize): CryptoResult[KeyPair] =
proc random*(T: typedesc[KeyPair], scheme: PKScheme,
rng: var BrHmacDrbgContext,
bits = RsaDefaultKeySize): CryptoResult[KeyPair] =
## Generate random key pair for scheme ``scheme``.
##
## ``bits`` is number of bits for RSA key, ``bits`` value must be in
## [512, 4096], default value is 2048 bits.
case scheme
of RSA:
let pair = ? RsaKeyPair.random(rng, bits).orError(KeyError)
ok(KeyPair(
seckey: PrivateKey(scheme: scheme, rsakey: pair.seckey),
pubkey: PublicKey(scheme: scheme, rsakey: pair.pubkey)))
of Ed25519:
of PKScheme.RSA:
when supported(PKScheme.RSA):
let pair = ? RsaKeyPair.random(rng, bits).orError(KeyError)
ok(KeyPair(
seckey: PrivateKey(scheme: scheme, rsakey: pair.seckey),
pubkey: PublicKey(scheme: scheme, rsakey: pair.pubkey)))
else:
err(SchemeError)
of PKScheme.Ed25519:
when supported(PKScheme.Ed25519):
let pair = EdKeyPair.random(rng)
ok(KeyPair(
seckey: PrivateKey(scheme: scheme, edkey: pair.seckey),
pubkey: PublicKey(scheme: scheme, edkey: pair.pubkey)))
else:
err(SchemeError)
of PKScheme.ECDSA:
when supported(PKScheme.ECDSA):
let pair = ? EcKeyPair.random(Secp256r1, rng).orError(KeyError)
ok(KeyPair(
seckey: PrivateKey(scheme: scheme, eckey: pair.seckey),
pubkey: PublicKey(scheme: scheme, eckey: pair.pubkey)))
else:
err(SchemeError)
of PKScheme.Secp256k1:
when supported(PKScheme.Secp256k1):
let pair = SkKeyPair.random(rng)
ok(KeyPair(
seckey: PrivateKey(scheme: scheme, skkey: pair.seckey),
pubkey: PublicKey(scheme: scheme, skkey: pair.pubkey)))
else:
err(SchemeError)
proc random*(T: typedesc[KeyPair], rng: var BrHmacDrbgContext,
bits = RsaDefaultKeySize): CryptoResult[KeyPair] =
## Generate random private pair of keys using default public-key cryptography
## scheme.
##
## Default public-key cryptography schemes are following order:
## ed25519, secp256k1, RSA, secp256r1.
##
## So will be used first available (supported) method.
when supported(PKScheme.Ed25519):
let pair = EdKeyPair.random(rng)
ok(KeyPair(
seckey: PrivateKey(scheme: scheme, edkey: pair.seckey),
pubkey: PublicKey(scheme: scheme, edkey: pair.pubkey)))
of ECDSA:
let pair = ? EcKeyPair.random(Secp256r1, rng).orError(KeyError)
ok(KeyPair(
seckey: PrivateKey(scheme: scheme, eckey: pair.seckey),
pubkey: PublicKey(scheme: scheme, eckey: pair.pubkey)))
of Secp256k1:
seckey: PrivateKey(scheme: PKScheme.Ed25519, edkey: pair.seckey),
pubkey: PublicKey(scheme: PKScheme.Ed25519, edkey: pair.pubkey)))
elif supported(PKScheme.Secp256k1):
let pair = SkKeyPair.random(rng)
ok(KeyPair(
seckey: PrivateKey(scheme: scheme, skkey: pair.seckey),
pubkey: PublicKey(scheme: scheme, skkey: pair.pubkey)))
seckey: PrivateKey(scheme: PKScheme.Secp256k1, skkey: pair.seckey),
pubkey: PublicKey(scheme: PKScheme.Secp256k1, skkey: pair.pubkey)))
elif supported(PKScheme.RSA):
let pair = ? RsaKeyPair.random(rng, bits).orError(KeyError)
ok(KeyPair(
seckey: PrivateKey(scheme: PKScheme.RSA, rsakey: pair.seckey),
pubkey: PublicKey(scheme: PKScheme.RSA, rsakey: pair.pubkey)))
elif supported(PKScheme.ECDSA):
let pair = ? EcKeyPair.random(Secp256r1, rng).orError(KeyError)
ok(KeyPair(
seckey: PrivateKey(scheme: PKScheme.ECDSA, eckey: pair.seckey),
pubkey: PublicKey(scheme: PKScheme.ECDSA, eckey: pair.pubkey)))
else:
err(SchemeError)
proc getKey*(key: PrivateKey): CryptoResult[PublicKey] =
## Get public key from corresponding private key ``key``.
case key.scheme
of RSA:
let rsakey = key.rsakey.getKey()
ok(PublicKey(scheme: RSA, rsakey: rsakey))
of Ed25519:
let edkey = key.edkey.getKey()
ok(PublicKey(scheme: Ed25519, edkey: edkey))
of ECDSA:
let eckey = ? key.eckey.getKey().orError(KeyError)
ok(PublicKey(scheme: ECDSA, eckey: eckey))
of Secp256k1:
let skkey = key.skkey.getKey()
ok(PublicKey(scheme: Secp256k1, skkey: skkey))
else:
err(KeyError)
of PKScheme.RSA:
when supported(PKScheme.RSA):
let rsakey = key.rsakey.getKey()
ok(PublicKey(scheme: RSA, rsakey: rsakey))
else:
err(SchemeError)
of PKScheme.Ed25519:
when supported(PKScheme.Ed25519):
let edkey = key.edkey.getKey()
ok(PublicKey(scheme: Ed25519, edkey: edkey))
else:
err(SchemeError)
of PKScheme.ECDSA:
when supported(PKScheme.ECDSA):
let eckey = ? key.eckey.getKey().orError(KeyError)
ok(PublicKey(scheme: ECDSA, eckey: eckey))
else:
err(SchemeError)
of PKScheme.Secp256k1:
when supported(PKScheme.Secp256k1):
let skkey = key.skkey.getKey()
ok(PublicKey(scheme: Secp256k1, skkey: skkey))
else:
err(SchemeError)
proc toRawBytes*(key: PrivateKey | PublicKey,
data: var openarray[byte]): CryptoResult[int] =
@ -185,31 +335,51 @@ proc toRawBytes*(key: PrivateKey | PublicKey,
##
## Returns number of bytes (octets) needed to store private key ``key``.
case key.scheme
of RSA:
key.rsakey.toBytes(data).orError(KeyError)
of Ed25519:
ok(key.edkey.toBytes(data))
of ECDSA:
key.eckey.toBytes(data).orError(KeyError)
of Secp256k1:
key.skkey.toBytes(data).orError(KeyError)
else:
err(KeyError)
of PKScheme.RSA:
when supported(PKScheme.RSA):
key.rsakey.toBytes(data).orError(KeyError)
else:
err(SchemeError)
of PKScheme.Ed25519:
when supported(PKScheme.Ed25519):
ok(key.edkey.toBytes(data))
else:
err(SchemeError)
of PKScheme.ECDSA:
when supported(PKScheme.ECDSA):
key.eckey.toBytes(data).orError(KeyError)
else:
err(SchemeError)
of PKScheme.Secp256k1:
when supported(PKScheme.Secp256k1):
key.skkey.toBytes(data).orError(KeyError)
else:
err(SchemeError)
proc getRawBytes*(key: PrivateKey | PublicKey): CryptoResult[seq[byte]] =
## Return private key ``key`` in binary form (using scheme's own
## serialization).
case key.scheme
of RSA:
key.rsakey.getBytes().orError(KeyError)
of Ed25519:
ok(key.edkey.getBytes())
of ECDSA:
key.eckey.getBytes().orError(KeyError)
of Secp256k1:
ok(key.skkey.getBytes())
else:
err(KeyError)
of PKScheme.RSA:
when supported(PKScheme.RSA):
key.rsakey.getBytes().orError(KeyError)
else:
err(SchemeError)
of PKScheme.Ed25519:
when supported(PKScheme.Ed25519):
ok(key.edkey.getBytes())
else:
err(SchemeError)
of PKScheme.ECDSA:
when supported(PKScheme.ECDSA):
key.eckey.getBytes().orError(KeyError)
else:
err(SchemeError)
of PKScheme.Secp256k1:
when supported(PKScheme.Secp256k1):
ok(key.skkey.getBytes())
else:
err(SchemeError)
proc toBytes*(key: PrivateKey, data: var openarray[byte]): CryptoResult[int] =
## Serialize private key ``key`` (using libp2p protobuf scheme) and store
@ -276,12 +446,18 @@ proc init*[T: PrivateKey|PublicKey](key: var T, data: openarray[byte]): bool =
## Returns ``true`` on success.
var id: uint64
var buffer: seq[byte]
if len(data) > 0:
if len(data) <= 0:
false
else:
var pb = initProtoBuffer(@data)
let r1 = pb.getField(1, id)
let r2 = pb.getField(2, buffer)
if r1.isOk() and r1.get() and r2.isOk() and r2.get():
if cast[int8](id) in SupportedSchemesInt and len(buffer) > 0:
if not(r1.isOk() and r1.get() and r2.isOk() and r2.get()):
false
else:
if cast[int8](id) notin SupportedSchemesInt or len(buffer) <= 0:
false
else:
var scheme = cast[PKScheme](cast[int8](id))
when key is PrivateKey:
var nkey = PrivateKey(scheme: scheme)
@ -289,23 +465,41 @@ proc init*[T: PrivateKey|PublicKey](key: var T, data: openarray[byte]): bool =
var nkey = PublicKey(scheme: scheme)
case scheme:
of PKScheme.RSA:
if init(nkey.rsakey, buffer).isOk:
key = nkey
return true
when supported(PKScheme.RSA):
if init(nkey.rsakey, buffer).isOk:
key = nkey
true
else:
false
else:
false
of PKScheme.Ed25519:
if init(nkey.edkey, buffer):
key = nkey
return true
when supported(PKScheme.Ed25519):
if init(nkey.edkey, buffer):
key = nkey
true
else:
false
else:
false
of PKScheme.ECDSA:
if init(nkey.eckey, buffer).isOk:
key = nkey
return true
when supported(PKScheme.ECDSA):
if init(nkey.eckey, buffer).isOk:
key = nkey
true
else:
false
else:
false
of PKScheme.Secp256k1:
if init(nkey.skkey, buffer).isOk:
key = nkey
return true
else:
return false
when supported(PKScheme.Secp256k1):
if init(nkey.skkey, buffer).isOk:
key = nkey
true
else:
false
else:
false
proc init*(sig: var Signature, data: openarray[byte]): bool =
## Initialize signature ``sig`` from raw binary form.
@ -321,7 +515,7 @@ proc init*[T: PrivateKey|PublicKey](key: var T, data: string): bool =
##
## Returns ``true`` on success.
try:
key.init(fromHex(data))
key.init(utils.fromHex(data))
except ValueError:
false
@ -331,7 +525,7 @@ proc init*(sig: var Signature, data: string): bool =
##
## Returns ``true`` on success.
try:
sig.init(fromHex(data))
sig.init(utils.fromHex(data))
except ValueError:
false
@ -366,40 +560,46 @@ proc init*(t: typedesc[PrivateKey], data: string): CryptoResult[PrivateKey] =
## Create new private key from libp2p's protobuf serialized hexadecimal string
## form.
try:
t.init(fromHex(data))
t.init(utils.fromHex(data))
except ValueError:
err(KeyError)
proc init*(t: typedesc[PrivateKey], key: rsa.RsaPrivateKey): PrivateKey =
PrivateKey(scheme: RSA, rsakey: key)
proc init*(t: typedesc[PrivateKey], key: EdPrivateKey): PrivateKey =
PrivateKey(scheme: Ed25519, edkey: key)
proc init*(t: typedesc[PrivateKey], key: SkPrivateKey): PrivateKey =
PrivateKey(scheme: Secp256k1, skkey: key)
proc init*(t: typedesc[PrivateKey], key: ecnist.EcPrivateKey): PrivateKey =
PrivateKey(scheme: ECDSA, eckey: key)
when supported(PKScheme.RSA):
proc init*(t: typedesc[PrivateKey], key: rsa.RsaPrivateKey): PrivateKey =
PrivateKey(scheme: RSA, rsakey: key)
proc init*(t: typedesc[PublicKey], key: rsa.RsaPublicKey): PublicKey =
PublicKey(scheme: RSA, rsakey: key)
proc init*(t: typedesc[PublicKey], key: rsa.RsaPublicKey): PublicKey =
PublicKey(scheme: RSA, rsakey: key)
proc init*(t: typedesc[PublicKey], key: EdPublicKey): PublicKey =
PublicKey(scheme: Ed25519, edkey: key)
proc init*(t: typedesc[PublicKey], key: SkPublicKey): PublicKey =
PublicKey(scheme: Secp256k1, skkey: key)
proc init*(t: typedesc[PublicKey], key: ecnist.EcPublicKey): PublicKey =
PublicKey(scheme: ECDSA, eckey: key)
when supported(PKScheme.Ed25519):
proc init*(t: typedesc[PrivateKey], key: EdPrivateKey): PrivateKey =
PrivateKey(scheme: Ed25519, edkey: key)
proc init*(t: typedesc[PublicKey], key: EdPublicKey): PublicKey =
PublicKey(scheme: Ed25519, edkey: key)
when supported(PKScheme.Secp256k1):
proc init*(t: typedesc[PrivateKey], key: SkPrivateKey): PrivateKey =
PrivateKey(scheme: Secp256k1, skkey: key)
proc init*(t: typedesc[PublicKey], key: SkPublicKey): PublicKey =
PublicKey(scheme: Secp256k1, skkey: key)
when supported(PKScheme.ECDSA):
proc init*(t: typedesc[PrivateKey], key: ecnist.EcPrivateKey): PrivateKey =
PrivateKey(scheme: ECDSA, eckey: key)
proc init*(t: typedesc[PublicKey], key: ecnist.EcPublicKey): PublicKey =
PublicKey(scheme: ECDSA, eckey: key)
proc init*(t: typedesc[PublicKey], data: string): CryptoResult[PublicKey] =
## Create new public key from libp2p's protobuf serialized hexadecimal string
## form.
try:
t.init(fromHex(data))
t.init(utils.fromHex(data))
except ValueError:
err(KeyError)
proc init*(t: typedesc[Signature], data: string): CryptoResult[Signature] =
## Create new signature from serialized hexadecimal string form.
try:
t.init(fromHex(data))
t.init(utils.fromHex(data))
except ValueError:
err(SigError)
@ -409,15 +609,25 @@ proc `==`*(key1, key2: PublicKey): bool {.inline.} =
if key1.scheme == key2.scheme:
case key1.scheme
of PKScheme.RSA:
(key1.rsakey == key2.rsakey)
when supported(PKScheme.RSA):
(key1.rsakey == key2.rsakey)
else:
false
of PKScheme.Ed25519:
(key1.edkey == key2.edkey)
when supported(PKScheme.Ed25519):
(key1.edkey == key2.edkey)
else:
false
of PKScheme.ECDSA:
(key1.eckey == key2.eckey)
when supported(PKScheme.ECDSA):
(key1.eckey == key2.eckey)
else:
false
of PKScheme.Secp256k1:
(key1.skkey == key2.skkey)
of PKScheme.NoSupport:
false
when supported(PKScheme.Secp256k1):
(key1.skkey == key2.skkey)
else:
false
else:
false
@ -427,15 +637,25 @@ proc `==`*(key1, key2: PrivateKey): bool =
if key1.scheme == key2.scheme:
case key1.scheme
of PKScheme.RSA:
(key1.rsakey == key2.rsakey)
when supported(PKScheme.RSA):
(key1.rsakey == key2.rsakey)
else:
false
of PKScheme.Ed25519:
(key1.edkey == key2.edkey)
when supported(PKScheme.Ed25519):
(key1.edkey == key2.edkey)
else:
false
of PKScheme.ECDSA:
(key1.eckey == key2.eckey)
when supported(PKScheme.ECDSA):
(key1.eckey == key2.eckey)
else:
false
of PKScheme.Secp256k1:
(key1.skkey == key2.skkey)
of PKScheme.NoSupport:
false
when supported(PKScheme.Secp256k1):
(key1.skkey == key2.skkey)
else:
false
else:
false
@ -443,29 +663,49 @@ proc `$`*(key: PrivateKey|PublicKey): string =
## Get string representation of private/public key ``key``.
case key.scheme:
of PKScheme.RSA:
$(key.rsakey)
when supported(PKScheme.RSA):
$(key.rsakey)
else:
"unsupported RSA key"
of PKScheme.Ed25519:
"ed25519 key (" & $key.edkey & ")"
when supported(PKScheme.Ed25519):
"ed25519 key (" & $key.edkey & ")"
else:
"unsupported ed25519 key"
of PKScheme.ECDSA:
"secp256r1 key (" & $key.eckey & ")"
when supported(PKScheme.ECDSA):
"secp256r1 key (" & $key.eckey & ")"
else:
"unsupported secp256r1 key"
of PKScheme.Secp256k1:
"secp256k1 key (" & $key.skkey & ")"
of PKScheme.NoSupport:
"not supported"
when supported(PKScheme.Secp256k1):
"secp256k1 key (" & $key.skkey & ")"
else:
"unsupported secp256k1 key"
func shortLog*(key: PrivateKey|PublicKey): string =
## Get short string representation of private/public key ``key``.
case key.scheme:
of PKScheme.RSA:
($key.rsakey).shortLog
when supported(PKScheme.RSA):
($key.rsakey).shortLog
else:
"unsupported RSA key"
of PKScheme.Ed25519:
"ed25519 key (" & ($key.edkey).shortLog & ")"
when supported(PKScheme.Ed25519):
"ed25519 key (" & ($key.edkey).shortLog & ")"
else:
"unsupported ed25519 key"
of PKScheme.ECDSA:
"secp256r1 key (" & ($key.eckey).shortLog & ")"
when supported(PKScheme.ECDSA):
"secp256r1 key (" & ($key.eckey).shortLog & ")"
else:
"unsupported secp256r1 key"
of PKScheme.Secp256k1:
"secp256k1 key (" & ($key.skkey).shortLog & ")"
of PKScheme.NoSupport:
"not supported"
when supported(PKScheme.Secp256k1):
"secp256k1 key (" & ($key.skkey).shortLog & ")"
else:
"unsupported secp256k1 key"
proc `$`*(sig: Signature): string =
## Get string representation of signature ``sig``.
@ -478,54 +718,74 @@ proc sign*(key: PrivateKey,
var res: Signature
case key.scheme:
of PKScheme.RSA:
let sig = ? key.rsakey.sign(data).orError(SigError)
res.data = ? sig.getBytes().orError(SigError)
ok(res)
when supported(PKScheme.RSA):
let sig = ? key.rsakey.sign(data).orError(SigError)
res.data = ? sig.getBytes().orError(SigError)
ok(res)
else:
err(SchemeError)
of PKScheme.Ed25519:
let sig = key.edkey.sign(data)
res.data = sig.getBytes()
ok(res)
when supported(PKScheme.Ed25519):
let sig = key.edkey.sign(data)
res.data = sig.getBytes()
ok(res)
else:
err(SchemeError)
of PKScheme.ECDSA:
let sig = ? key.eckey.sign(data).orError(SigError)
res.data = ? sig.getBytes().orError(SigError)
ok(res)
when supported(PKScheme.ECDSA):
let sig = ? key.eckey.sign(data).orError(SigError)
res.data = ? sig.getBytes().orError(SigError)
ok(res)
else:
err(SchemeError)
of PKScheme.Secp256k1:
let sig = key.skkey.sign(data)
res.data = sig.getBytes()
ok(res)
else:
err(SigError)
when supported(PKScheme.Secp256k1):
let sig = key.skkey.sign(data)
res.data = sig.getBytes()
ok(res)
else:
err(SchemeError)
proc verify*(sig: Signature, message: openarray[byte], key: PublicKey): bool =
## Verify signature ``sig`` using message ``message`` and public key ``key``.
## Return ``true`` if message signature is valid.
case key.scheme:
of PKScheme.RSA:
var signature: RsaSignature
if signature.init(sig.data).isOk:
signature.verify(message, key.rsakey)
when supported(PKScheme.RSA):
var signature: RsaSignature
if signature.init(sig.data).isOk:
signature.verify(message, key.rsakey)
else:
false
else:
false
of PKScheme.Ed25519:
var signature: EdSignature
if signature.init(sig.data):
signature.verify(message, key.edkey)
when supported(PKScheme.Ed25519):
var signature: EdSignature
if signature.init(sig.data):
signature.verify(message, key.edkey)
else:
false
else:
false
of PKScheme.ECDSA:
var signature: EcSignature
if signature.init(sig.data).isOk:
signature.verify(message, key.eckey)
when supported(PKScheme.ECDSA):
var signature: EcSignature
if signature.init(sig.data).isOk:
signature.verify(message, key.eckey)
else:
false
else:
false
of PKScheme.Secp256k1:
var signature: SkSignature
if signature.init(sig.data).isOk:
signature.verify(message, key.skkey)
when supported(PKScheme.Secp256k1):
var signature: SkSignature
if signature.init(sig.data).isOk:
signature.verify(message, key.skkey)
else:
false
else:
false
else:
false
template makeSecret(buffer, hmactype, secret, seed: untyped) {.dirty.}=
var ctx: hmactype
@ -565,9 +825,6 @@ proc stretchKeys*(cipherType: string, hashType: string,
elif cipherType == "TwofishCTR":
result.ivsize = twofish256.sizeBlock
result.keysize = twofish256.sizeKey
elif cipherType == "BLOWFISH":
result.ivsize = 8
result.keysize = 32
var seed = "key expansion"
result.macsize = 20
@ -614,7 +871,7 @@ proc mac*(secret: Secret, id: int): seq[byte] {.inline.} =
proc ephemeral*(
scheme: ECDHEScheme,
rng: var BrHmacDrbgContext): CryptoResult[KeyPair] =
rng: var BrHmacDrbgContext): CryptoResult[EcKeyPair] =
## Generate ephemeral keys used to perform ECDHE.
var keypair: EcKeyPair
if scheme == Secp256r1:
@ -623,12 +880,10 @@ proc ephemeral*(
keypair = ? EcKeyPair.random(Secp384r1, rng).orError(KeyError)
elif scheme == Secp521r1:
keypair = ? EcKeyPair.random(Secp521r1, rng).orError(KeyError)
ok(KeyPair(
seckey: PrivateKey(scheme: ECDSA, eckey: keypair.seckey),
pubkey: PublicKey(scheme: ECDSA, eckey: keypair.pubkey)))
ok(EcKeyPair(keypair))
proc ephemeral*(
scheme: string, rng: var BrHmacDrbgContext): CryptoResult[KeyPair] =
scheme: string, rng: var BrHmacDrbgContext): CryptoResult[EcKeyPair] =
## Generate ephemeral keys used to perform ECDHE using string encoding.
##
## Currently supported encoding strings are P-256, P-384, P-521, if encoding
@ -642,33 +897,6 @@ proc ephemeral*(
else:
ephemeral(Secp521r1, rng)
proc makeSecret*(remoteEPublic: PublicKey, localEPrivate: PrivateKey,
data: var openarray[byte]): int =
## Calculate shared secret using remote ephemeral public key
## ``remoteEPublic`` and local ephemeral private key ``localEPrivate`` and
## store shared secret to ``data``.
##
## Note this procedure supports only ECDSA keys.
##
## Returns number of bytes (octets) used to store shared secret data, or
## ``0`` on error.
if remoteEPublic.scheme == ECDSA:
if localEPrivate.scheme == remoteEPublic.scheme:
result = toSecret(remoteEPublic.eckey, localEPrivate.eckey, data)
proc getSecret*(remoteEPublic: PublicKey,
localEPrivate: PrivateKey): seq[byte] =
## Calculate shared secret using remote ephemeral public key
## ``remoteEPublic`` and local ephemeral private key ``localEPrivate`` and
## store shared secret to ``data``.
##
## Note this procedure supports only ECDSA keys.
##
## Returns shared secret on success.
if remoteEPublic.scheme == ECDSA:
if localEPrivate.scheme == remoteEPublic.scheme:
result = getSecret(remoteEPublic.eckey, localEPrivate.eckey)
proc getOrder*(remotePubkey, localNonce: openarray[byte],
localPubkey, remoteNonce: openarray[byte]): CryptoResult[int] =
## Compare values and calculate `order` parameter.
@ -707,14 +935,12 @@ proc selectBest*(order: int, p1, p2: string): string =
s = strutils.split(p2, ",")
else:
var p = strutils.split(p1, ",")
result = p[0]
return
return p[0]
for felement in f:
for selement in s:
if felement == selement:
result = felement
return
return felement
proc createProposal*(nonce, pubkey: openarray[byte],
exchanges, ciphers, hashes: string): seq[byte] =
@ -729,7 +955,7 @@ proc createProposal*(nonce, pubkey: openarray[byte],
msg.write(4, ciphers)
msg.write(5, hashes)
msg.finish()
shallowCopy(result, msg.buffer)
msg.buffer
proc decodeProposal*(message: seq[byte], nonce, pubkey: var seq[byte],
exchanges, ciphers, hashes: var string): bool =
@ -757,7 +983,7 @@ proc createExchange*(epubkey, signature: openarray[byte]): seq[byte] =
msg.write(1, epubkey)
msg.write(2, signature)
msg.finish()
shallowCopy(result, msg.buffer)
msg.buffer
proc decodeExchange*(message: seq[byte],
pubkey, signature: var seq[byte]): bool =

View File

@ -57,7 +57,6 @@ type
msgCode*: MessageType # cached in/out message code
closeCode*: MessageType # cached in/out close code
resetCode*: MessageType # cached in/out reset code
timerFut: Future[void] # the current timer instanse
timerTaskFut: Future[void] # the current timer instanse
proc open*(s: LPChannel) {.async, gcsafe.}
@ -82,11 +81,8 @@ template withEOFExceptions(body: untyped): untyped =
proc cleanupTimer(s: LPChannel) {.async.} =
## cleanup timers
##
if not(isNil(s.timerFut)) and
not(s.timerFut.finished):
s.timerFut.cancel()
await s.timerTaskFut
if not s.timerTaskFut.finished:
await s.timerTaskFut.cancelAndWait()
proc closeMessage(s: LPChannel) {.async.} =
logScope:
@ -248,13 +244,10 @@ proc timeoutMonitor(s: LPChannel) {.async.} =
## be reset
##
if not(isNil(s.timerFut)):
return
try:
while true:
s.timerFut = sleepAsync(s.timeout)
await s.timerFut
await sleepAsync(s.timeout)
if s.closed or s.atEof:
return
@ -267,6 +260,8 @@ proc timeoutMonitor(s: LPChannel) {.async.} =
# reset channel on innactivity timeout
trace "channel timed out, resetting"
await s.reset()
except CancelledError as exc:
raise exc
except CatchableError as exc:
trace "exception in timeout", exc = exc.msg
@ -328,7 +323,6 @@ proc init*(
await conn.writeMsg(chann.id,
chann.msgCode,
data)
except CatchableError as exc:
trace "exception in lpchannel write handler", exc = exc.msg
await chann.reset()

View File

@ -280,7 +280,7 @@ method handshake*(s: Secio, conn: Connection, initiator: bool = false): Future[S
remoteEBytesPubkey: seq[byte]
remoteEBytesSig: seq[byte]
remotePubkey: PublicKey
remoteEPubkey: PublicKey = PublicKey(scheme: ECDSA)
remoteEPubkey: ecnist.EcPublicKey
remoteESignature: Signature
remoteExchanges: string
remoteCiphers: string
@ -317,7 +317,8 @@ method handshake*(s: Secio, conn: Connection, initiator: bool = false): Future[S
raise (ref SecioError)(msg: "Remote proposal decoding failed")
if not remotePubkey.init(remoteBytesPubkey):
trace "Remote public key incorrect or corrupted", pubkey = remoteBytesPubkey.shortLog
trace "Remote public key incorrect or corrupted",
pubkey = remoteBytesPubkey.shortLog
raise (ref SecioError)(msg: "Remote public key incorrect or corrupted")
remotePeerId = PeerID.init(remotePubkey).tryGet()
@ -342,7 +343,7 @@ method handshake*(s: Secio, conn: Connection, initiator: bool = false): Future[S
var ekeypair = ephemeral(scheme, s.rng[]).tryGet()
# We need EC public key in raw binary form
var epubkey = ekeypair.pubkey.eckey.getRawBytes().tryGet()
var epubkey = ekeypair.pubkey.getRawBytes().tryGet()
var localCorpus = request[4..^1] & answer & epubkey
var signature = s.localPrivateKey.sign(localCorpus).tryGet()
@ -370,16 +371,14 @@ method handshake*(s: Secio, conn: Connection, initiator: bool = false): Future[S
trace "Signature verified", scheme = remotePubkey.scheme
if not remoteEPubkey.eckey.initRaw(remoteEBytesPubkey):
if not remoteEPubkey.initRaw(remoteEBytesPubkey):
trace "Remote ephemeral public key incorrect or corrupted",
pubkey = toHex(remoteEBytesPubkey)
raise (ref SecioError)(msg: "Remote ephemeral public key incorrect or corrupted")
var secret = getSecret(remoteEPubkey, ekeypair.seckey)
if len(secret) == 0:
trace "Shared secret could not be created",
pubkeyScheme = remoteEPubkey.scheme,
seckeyScheme = ekeypair.seckey.scheme
trace "Shared secret could not be created"
raise (ref SecioError)(msg: "Shared secret could not be created")
trace "Shared secret calculated", secret = secret.shortLog

View File

@ -50,7 +50,7 @@ proc newStandardSwitch*(privKey = none(PrivateKey),
raise (ref CatchableError)(msg: "Cannot initialize RNG")
let
seckey = privKey.get(otherwise = PrivateKey.random(ECDSA, rng[]).tryGet())
seckey = privKey.get(otherwise = PrivateKey.random(rng[]).tryGet())
peerInfo = PeerInfo.init(seckey, [address])
mplexProvider = newMuxerProvider(createMplex, MplexCodec)
transports = @[Transport(TcpTransport.init(transportFlags))]

239
tests/testpkifilter.nim Normal file
View File

@ -0,0 +1,239 @@
## Nim-Libp2p
## Copyright (c) 2018 Status Research & Development GmbH
## Licensed under either of
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
## at your option.
## This file may not be copied, modified, or distributed except according to
## those terms.
when defined(nimHasUsed): {.used.}
import unittest
import ../libp2p/crypto/crypto
import nimcrypto/utils
let rng = newRng()
const ECDSA_PrivateKey = """
080312793077020101042070896381749FF6B30381C045F627C68C3062749BB53CB13
11FA07A7AEAB0A225A00A06082A8648CE3D030107A14403420004B17DAFF40C3221A5
0889A3FA9BB9DA4996AA1FE80D37358FBC6C88D89CD65738B4738C07CFD42F55293EB
3A56DB224EDCD36E51076F43A63203F8936D868EF18
"""
const ECDSA_PublicKey = """
0803125B3059301306072A8648CE3D020106082A8648CE3D03010703420004B17DAFF
40C3221A50889A3FA9BB9DA4996AA1FE80D37358FBC6C88D89CD65738B4738C07CFD4
2F55293EB3A56DB224EDCD36E51076F43A63203F8936D868EF18
"""
const SECP256k1_PrivateKey = """
080212209A0F994F5022D9D7B67ACEB26AA4D9F29B2628DBDCC28597469CB0049B6AB
348
"""
const SECP256k1_PublicKey = """
08021221039111FA29B374FE94B885408C45DF4647D09438C6E1F91F9B277A96CADD0
8A2B8
"""
const ED25519_PrivateKey = """
08011240E1BFE38E35F9669CE77F6BE1A551560896B59A3F510537205F3AC1EDAD421
601C9D5C25AA2FC61B950976D6E5EC26425F8D4BFFE17169A4DE5A246B7154CB2B5
"""
const ED25519_PublicKey = """
08011220C9D5C25AA2FC61B950976D6E5EC26425F8D4BFFE17169A4DE5A246B7154CB
2B5
"""
const RSA_PrivateKey = """
080012E80D308206E40201000282018100B5F2CABD05BE70474B262A2715B8C4FE74C
6F628757FADB3F4815881CD9F8D3D2583757DF178B9BDCB207EB183A260934E6580C9
3B75789ACADAC13C9DD5A21A6BEDC4845A76D32F61F37C69B2C0E9D1161459FB1C93C
E13E3EA0436B82086DF4EC95860D910D32B134610C20E84834A4B9A40C5B4D6FB0732
FF5332D8050221DA5101639044B6E2B18659E242FEEE58F4FF90BC9BEFF740E22C1A5
02774E4A0B103F750B829D6B1034908DB8338374EE2EF972A0E760DA9CC42F7D160CB
33C4918308389CD7EF98D58378BB8CF8F8314131C6654903C704EE6BC069B223A39DE
1CF1D5B0E34CE02522CFADF24AAF526445F7673CDE19F62C6D70266D1F7D03F98F9BD
69C1BC78662BB9F52D90C2D1841680A9E6528E52BF2F83B84EC73D819240029A677F5
AD8EF963843D36DB556B214E09A72B589FA139AFAED0EE5409AFFCAAEFC06329E2945
A727E1AED64C1935F17F6F1E8FDD1B4AE69CACC3DAD8153059B5775A0A3B0EF38E3A1
8CFE3DB4338F53F03B6CA30E729A5EC510C68CE662902030100010282018012759C7E
0AEC24460768CAD4064F25A54F41B44DAC8614A07249012AC22AD2D08652CD03C710E
17F50F16E09227AC1E3900B9A425046FDC26E9C3D08A256BF4880F4B18060113821D1
853B7519CE9AAA3CDC39B8D1506992F9078FFFE134639A9A4AB12DBA380BC48E0308C
63764D8511C547D07D1EE11AFCC4BBD2C266073B3ED8B5461BE8C4A25BBAF0EC576D8
9863EC0F55A6DD073E8595ACB5CAB60614FFFC95936CDC125A96C0E792FF7A53A4C0D
B2345A9DDA7BA81249912BD6A5D9355CD41A73B0E2A8D76ED7BB4D5B9AD98E5DD72CC
0C01D55CF89ADC4DE4D7457BFFC88F7DBE0E0C77725920DFF7B37B05E47BF7E930584
D8E3FD054189282EF5EF1882135FCEF02A709E4596C58D47B0A18AFD6C5ACE1C8074D
CEAE1693628623A98122D711DEF1D0BEC0E8FFD9D7BA3E3A0D9BF2E38FF240D255408
2D47E4D5120693CDF62D4C0A55BE170183FC6B363471FB04431BB0D4C00FD4A5B9D70
F26CDE6842A1895C6E166289FFA2BDC81DF4FC32DC1C4E95C5AE9064E841C7C8F5BDB
50281C100DE58C728695043A22FB9893CD659FDE3DFD9919BA70A758E2432E6043E35
49E7EF335D39D8A7DEF0FA9485B616C71758226E4003F6760E1A7975222E79C28BAD0
D550D5750D0CE2B07ED90672BE130AA161D527F1012CED2013F7556E1B03BA0335501
3EDA0B3AE086D0A7825CBEB229C61999446042CC732F59DCB5E2502DF439AED0E77C4
218994FE78FAC6BD5E72AEFFECB29C7854D8CA0D39D7E68D0E78806413D0033E6AD20
CFD36819EFFD53B7720BD3E938A1DEC9ADB4CF6CADD2BF7F0281C100D17CB4ED5777A
B4A5A609EC731643D6E981B8207BDB83803F1E1F6A6B51A3B79F0A25C77275C9840B7
4D91487E3FE91117CD0D9D68B13248A0656BFF616A22C57B18EBBE9F4AFE7DB1E5B38
07B23FBCDCC8215B196EBBED746109EDABF2F0359C82198D2C92145DE0598A2056333
52DBB59DBFF059E7C7754B99F9F0792FAB1519D3718D353498A460F468099E20075CF
08211CD7668DBA1A77D7BDACFC91EC380E28B4851F13F1BD826FABBED060CFE1291D1
7C1861EF137C85F26EEB79AE570281C100C56F2B9974BA72F40750C6CE20C054340E4
791861773B023017DB8C5B7BF75DADF8A4A93DD106364B3FD4226085FCD18D3A9F66A
0E6591EC6C415892D047B1E37E5D31B580EB88C6A909881A34DA876DE0A934E1E311F
058860725587A9B14B7121DBF3762426A8B88EAAA73958B3784E485429576AC9A0305
DED39F2650701DD742A5F9875AE1A0F154FB3CED9C48E2D5ACF8162736F53F9467940
7F566DAD0EC4CEDAFCA6661012BC9DB3C7CE0038077628D4F209C8BC9A5D752007CF1
105D0281C100C174F2F8C3EFC585B294CBCC943647ED1C173B2BBEEEA2FC31A2454F8
AABA105694DE72A3A756E3D458A2282D9E4576DEB96F7DDC7D2EBE6DA090F85160717
F95B46965EC1685640E9CA80CC43EBE51C16A2833A2F6FA21BD79E7DB4F11D8F70983
B3E905A219A0E0109058708275B7B7EEB2157EB0EFAC9BD7982B1AA9874DBD5AFC88B
68F91B85A1EBD3301E90E17BD8B7A58D22AE8F356821A0016026117CE6474FED078F4
C828048EF002151972A03281A570985576D9D6F6D85357C779D0281C01065CEABF166
FC360FB79BA436F2F6674BD641C0B502B1B071CD8D92BE582EE67FEB632306A2B94F4
FC31F2D29CC57C9C422DA1A567C413100921E6B12C9D61E307F1364A021BCF323F6E5
0833D565FA1E886FC05370F2AAFC61256B98CA6D68B7F89C5FE90C026B53CC6E53826
9FE3350723F6205D9B1B8A6E5BFBEADD7B543FD7F0269E9CCFD00FE888D7012F53828
E2DA931CBB692CAB71F5E14513451614A108F940DABFCD9BEAC4557EE503BD5196A21
522C61508521D7DB77A384BA696
"""
const RSA_PublicKey = """
080012A603308201A2300D06092A864886F70D01010105000382018F003082018A028
2018100B5F2CABD05BE70474B262A2715B8C4FE74C6F628757FADB3F4815881CD9F8D
3D2583757DF178B9BDCB207EB183A260934E6580C93B75789ACADAC13C9DD5A21A6BE
DC4845A76D32F61F37C69B2C0E9D1161459FB1C93CE13E3EA0436B82086DF4EC95860
D910D32B134610C20E84834A4B9A40C5B4D6FB0732FF5332D8050221DA5101639044B
6E2B18659E242FEEE58F4FF90BC9BEFF740E22C1A502774E4A0B103F750B829D6B103
4908DB8338374EE2EF972A0E760DA9CC42F7D160CB33C4918308389CD7EF98D58378B
B8CF8F8314131C6654903C704EE6BC069B223A39DE1CF1D5B0E34CE02522CFADF24AA
F526445F7673CDE19F62C6D70266D1F7D03F98F9BD69C1BC78662BB9F52D90C2D1841
680A9E6528E52BF2F83B84EC73D819240029A677F5AD8EF963843D36DB556B214E09A
72B589FA139AFAED0EE5409AFFCAAEFC06329E2945A727E1AED64C1935F17F6F1E8FD
D1B4AE69CACC3DAD8153059B5775A0A3B0EF38E3A18CFE3DB4338F53F03B6CA30E729
A5EC510C68CE66290203010001
"""
const
RSATestMessage = "RSA " & (
when supported(PKScheme.RSA): "(enabled)" else: "(disabled)") & " test"
EcdsaTestMessage = "ECDSA " & (
when supported(PKScheme.ECDSA): "(enabled)" else: "(disabled)") & " test"
EdTestMessage = "ED25519 " & (
when supported(PKScheme.Ed25519): "(enabled)" else: "(disabled)") & " test"
SecpTestMessage = "SECP256k1 " & (
when supported(PKScheme.Secp256k1): "(enabled)" else: "(disabled)") & " test"
suite "Public key infrastructure filtering test suite":
test RSATestMessage:
when not(supported(PKScheme.RSA)):
let sk2048 = PrivateKey.random(PKScheme.RSA, rng[], 2048)
let sk3072 = PrivateKey.random(PKScheme.RSA, rng[], 3072)
let sk4096 = PrivateKey.random(PKScheme.RSA, rng[], 4096)
let kp2048 = KeyPair.random(PKScheme.RSA, rng[], 2048)
let kp3072 = KeyPair.random(PKScheme.RSA, rng[], 3072)
let kp4096 = KeyPair.random(PKScheme.RSA, rng[], 4096)
let sk = PrivateKey.init(fromHex(stripSpaces(RSA_PrivateKey)))
let pk = PublicKey.init(fromHex(stripSpaces(RSA_PublicKey)))
check:
sk2048.isErr() == true
sk3072.isErr() == true
sk4096.isErr() == true
kp2048.isErr() == true
kp3072.isErr() == true
kp4096.isErr() == true
sk2048.error == CryptoError.SchemeError
sk3072.error == CryptoError.SchemeError
sk4096.error == CryptoError.SchemeError
kp2048.error == CryptoError.SchemeError
kp3072.error == CryptoError.SchemeError
kp4096.error == CryptoError.SchemeError
sk.isErr() == true
pk.isErr() == true
sk.error == CryptoError.KeyError
pk.error == CryptoError.KeyError
else:
let sk2048 = PrivateKey.random(PKScheme.RSA, rng[], 2048)
let kp2048 = KeyPair.random(PKScheme.RSA, rng[], 2048)
let sk = PrivateKey.init(fromHex(stripSpaces(RSA_PrivateKey)))
let pk = PublicKey.init(fromHex(stripSpaces(RSA_PublicKey)))
check:
sk2048.isOk() == true
kp2048.isOk() == true
sk.isOk() == true
pk.isOk() == true
test EcdsaTestMessage:
when not(supported(PKScheme.ECDSA)):
let rsk = PrivateKey.random(PKScheme.ECDSA, rng[])
let rkp = KeyPair.random(PKScheme.ECDSA, rng[])
let sk = PrivateKey.init(fromHex(stripSpaces(ECDSA_PrivateKey)))
let pk = PublicKey.init(fromHex(stripSpaces(ECDSA_PublicKey)))
check:
rsk.isErr() == true
rkp.isErr() == true
rsk.error == CryptoError.SchemeError
rkp.error == CryptoError.SchemeError
sk.isErr() == true
pk.isErr() == true
sk.error == CryptoError.KeyError
pk.error == CryptoError.KeyError
else:
let rsk = PrivateKey.random(PKScheme.ECDSA, rng[])
let rkp = KeyPair.random(PKScheme.ECDSA, rng[])
let sk = PrivateKey.init(fromHex(stripSpaces(ECDSA_PrivateKey)))
let pk = PublicKey.init(fromHex(stripSpaces(ECDSA_PublicKey)))
check:
rsk.isOk() == true
rkp.isOk() == true
sk.isOk() == true
pk.isOk() == true
test EdTestMessage:
when not(supported(PKScheme.Ed25519)):
let rsk = PrivateKey.random(PKScheme.Ed25519, rng[])
let rkp = KeyPair.random(PKScheme.Ed25519, rng[])
let sk = PrivateKey.init(fromHex(stripSpaces(ED25519_PrivateKey)))
let pk = PublicKey.init(fromHex(stripSpaces(ED25519_PublicKey)))
check:
rsk.isErr() == true
rkp.isErr() == true
rsk.error == CryptoError.SchemeError
rkp.error == CryptoError.SchemeError
sk.isErr() == true
pk.isErr() == true
sk.error == CryptoError.KeyError
pk.error == CryptoError.KeyError
else:
let rsk = PrivateKey.random(PKScheme.Ed25519, rng[])
let rkp = KeyPair.random(PKScheme.Ed25519, rng[])
let sk = PrivateKey.init(fromHex(stripSpaces(ED25519_PrivateKey)))
let pk = PublicKey.init(fromHex(stripSpaces(ED25519_PublicKey)))
check:
rsk.isOk() == true
rkp.isOk() == true
sk.isOk() == true
pk.isOk() == true
test SecpTestMessage:
when not(supported(PKScheme.Secp256k1)):
let rsk = PrivateKey.random(PKScheme.Secp256k1, rng[])
let rkp = KeyPair.random(PKScheme.Secp256k1, rng[])
let sk = PrivateKey.init(fromHex(stripSpaces(SECP256k1_PrivateKey)))
let pk = PublicKey.init(fromHex(stripSpaces(SECP256k1_PublicKey)))
check:
rsk.isErr() == true
rkp.isErr() == true
rsk.error == CryptoError.SchemeError
rkp.error == CryptoError.SchemeError
sk.isErr() == true
pk.isErr() == true
sk.error == CryptoError.KeyError
pk.error == CryptoError.KeyError
else:
let rsk = PrivateKey.random(PKScheme.Secp256k1, rng[])
let rkp = KeyPair.random(PKScheme.Secp256k1, rng[])
let sk = PrivateKey.init(fromHex(stripSpaces(SECP256k1_PrivateKey)))
let pk = PublicKey.init(fromHex(stripSpaces(SECP256k1_PublicKey)))
check:
rsk.isOk() == true
rkp.isOk() == true
sk.isOk() == true
pk.isOk() == true