nim-libp2p-dht/codexdht/private/eth/p2p/discoveryv5/crypto.nim

102 lines
3.9 KiB
Nim

import
std/sugar,
libp2p/crypto/[crypto, secp],
stew/[byteutils, objects, results, ptrops]
# from secp256k1 import ecdh, SkEcdhSecretSize, toRaw, SkSecretKey, SkPublicKey
import secp256k1
const
KeyLength* = SkEcdhSecretSize
## Ecdh shared secret key length without leading byte
## (publicKey * privateKey).x, where length of x is 32 bytes
FullKeyLength* = KeyLength + 1
## Ecdh shared secret with leading byte 0x02 or 0x03
type
SharedSecret* = object
## Representation of ECDH shared secret, without leading `y` byte
data*: array[KeyLength, byte]
SharedSecretFull* = object
## Representation of ECDH shared secret, with leading `y` byte
## (`y` is 0x02 when (publicKey * privateKey).y is even or 0x03 when odd)
data*: array[FullKeyLength, byte]
proc fromHex*(T: type PrivateKey, data: string): Result[PrivateKey, cstring] =
let skKey = ? SkPrivateKey.init(data).mapErr(e =>
("Failed to init private key from hex string: " & $e).cstring)
ok PrivateKey.init(skKey)
proc fromHex*(T: type PublicKey, data: string): Result[PublicKey, cstring] =
let skKey = ? SkPublicKey.init(data).mapErr(e =>
("Failed to init public key from hex string: " & $e).cstring)
ok PublicKey.init(skKey)
proc ecdhSharedSecretHash(output: ptr byte, x32, y32: ptr byte, data: pointer): cint
{.cdecl, raises: [].} =
## Hash function used by `ecdhSharedSecret` below
##
## `x32` and `y32` are result of scalar multiplication of publicKey * privateKey.
## Both `x32` and `y32` are 32 bytes length.
##
## Take the `x32` part as ecdh shared secret.
## output length is derived from x32 length and taken from ecdh
## generic parameter `KeyLength`
copyMem(output, x32, SkEcdhSecretSize)
return 1
func ecdhSharedSecret(seckey: SkPrivateKey, pubkey: secp.SkPublicKey): SharedSecret =
## Compute ecdh agreed shared secret.
let res = ecdh[SkEcdhSecretSize](secp256k1.SkSecretKey(seckey),
secp256k1.SkPublicKey(pubkey),
ecdhSharedSecretHash, nil)
# This function only fail if the hash function return zero.
# Because our hash function always success, we can turn the error into defect
doAssert res.isOk, $res.error
SharedSecret(data: res.get)
proc toRaw*(pubkey: PublicKey): seq[byte] =
secp256k1.SkPublicKey(pubkey.skkey).toRaw()[1..^1]
proc ecdhSharedSecretFullHash(output: ptr byte, x32, y32: ptr byte, data: pointer): cint
{.cdecl, raises: [].} =
## Hash function used by `ecdhSharedSecretFull` below
# `x32` and `y32` are result of scalar multiplication of publicKey * privateKey.
# Leading byte is 0x02 if `y32` is even and 0x03 if odd. Then concat with `x32`.
# output length is derived from `x32` length + 1 and taken from ecdh
# generic parameter `FullKeyLength`
# output[0] = 0x02 | (y32[31] & 1)
output[] = 0x02 or (y32.offset(31)[] and 0x01)
copyMem(output.offset(1), x32, KeyLength)
return 1
func ecdhSharedSecretFull*(seckey: PrivateKey, pubkey: PublicKey): SharedSecretFull =
## Compute ecdh agreed shared secret with leading byte.
##
let res = ecdh[FullKeyLength](secp256k1.SkSecretKey(seckey.skkey),
secp256k1.SkPublicKey(pubkey.skkey),
ecdhSharedSecretFullHash, nil)
# This function only fail if the hash function return zero.
# Because our hash function always success, we can turn the error into defect
doAssert res.isOk, $res.error
SharedSecretFull(data: res.get)
proc ecdhRaw*(
priv: PrivateKey,
pub: PublicKey
): Result[SharedSecretFull, cstring] =
## emulate old ecdhRaw style keys
##
## this includes a leading 0x02 or 0x03
##
# TODO: Do we need to support non-secp256k1 schemes?
if priv.scheme != Secp256k1 or pub.scheme != Secp256k1:
return err "Must use secp256k1 scheme".cstring
ok ecdhSharedSecretFull(priv, pub)