nim-eth/eth/p2p/kademlia.nim

706 lines
24 KiB
Nim

# nim-eth
# Copyright (c) 2018-2023 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [].}
import
std/[tables, hashes, times, algorithm, sets, sequtils],
chronos, chronicles, stint, nimcrypto/keccak, metrics,
../common/keys, ./discoveryv5/random2,
./enode
export sets # TODO: This should not be needed, but compilation fails otherwise
declareGauge discv4_routing_table_nodes,
"Discovery v4 routing table nodes"
logScope:
topics = "eth p2p kademlia"
type
# 32 bytes NodeId | 16 bytes ip | 1 byte mode
TimeKey = array[49, byte]
KademliaProtocol* [Wire] = ref object
wire: Wire
thisNode: Node
routing: RoutingTable
pongFutures: Table[seq[byte], Future[bool]]
pingFutures: Table[Node, Future[bool]]
neighboursCallbacks: Table[Node, proc(n: seq[Node]) {.gcsafe, raises: [].}]
rng: ref HmacDrbgContext
pingPongTime: OrderedTable[TimeKey, int64] # int64 -> unix time
NodeId* = UInt256
Node* = ref object
node*: ENode
id*: NodeId
RoutingTable = object
thisNode: Node
buckets: seq[KBucket]
KBucket = ref object
istart, iend: UInt256
nodes: seq[Node]
replacementCache: seq[Node]
CommandId* = enum
cmdPing = 1
cmdPong = 2
cmdFindNode = 3
cmdNeighbours = 4
cmdENRRequest = 5
cmdENRResponse = 6
const
BUCKET_SIZE = 16
BITS_PER_HOP = 8
REQUEST_TIMEOUT = chronos.milliseconds(5000) # timeout of message round trips
FIND_CONCURRENCY = 3 # parallel find node lookups
ID_SIZE = 256
BOND_EXPIRATION = initDuration(hours = 12)
proc len(r: RoutingTable): int
proc toNodeId*(pk: PublicKey): NodeId =
readUintBE[256](keccak256.digest(pk.toRaw()).data)
proc newNode*(pk: PublicKey, address: Address): Node =
result.new()
result.node = ENode(pubkey: pk, address: address)
result.id = pk.toNodeId()
proc newNode*(uriString: string): Node =
result.new()
result.node = ENode.fromString(uriString)[]
result.id = result.node.pubkey.toNodeId()
proc newNode*(enode: ENode): Node =
result.new()
result.node = enode
result.id = result.node.pubkey.toNodeId()
proc distanceTo(n: Node, id: NodeId): UInt256 = n.id xor id
proc `$`*(n: Node): string =
if n == nil:
"Node[local]"
else:
"Node[" & $n.node.address.ip & ":" & $n.node.address.udpPort & "]"
chronicles.formatIt(Node): $it
chronicles.formatIt(seq[Node]): $it
proc hash*(n: Node): hashes.Hash = hash(n.node.pubkey.toRaw)
proc `==`*(a, b: Node): bool = (a.isNil and b.isNil) or
(not a.isNil and not b.isNil and a.node.pubkey == b.node.pubkey)
proc timeKey(id: NodeId, ip: IpAddress, cmd: CommandId): TimeKey =
result[0..31] = id.toBytesBE()[0..31]
case ip.family
of IpAddressFamily.IPv6:
result[32..47] = ip.address_v6[0..15]
of IpAddressFamily.IPv4:
result[32..35] = ip.address_v4[0..3]
result[48] = cmd.byte
proc ip(n: Node): IpAddress =
n.node.address.ip
proc timeKeyPong(n: Node): TimeKey =
timeKey(n.id, n.ip, cmdPong)
proc timeKeyPing(n: Node): TimeKey =
timeKey(n.id, n.ip, cmdPing)
when false:
proc lastPingReceived(k: KademliaProtocol, n: Node): Time =
k.pingPongTime.getOrDefault(n.timeKeyPing, 0'i64).fromUnix
proc lastPongReceived(k: KademliaProtocol, n: Node): Time =
k.pingPongTime.getOrDefault(n.timeKeyPong, 0'i64).fromUnix
proc cmp(x, y: (TimeKey, int64)): int =
if x[1] < y[1]: return -1
if x[1] > y[1]: return 1
0
proc removeTooOldPingPongTime(k: KademliaProtocol) =
const
MinEntries = 128
MaxRC = MinEntries div 8
# instead of using fixed limit, we use dynamic limit
# with minimum entries = 128.
# remove 25% of too old entries if we need more space.
# the reason maxEntries is twice routing table because we
# store ping and pong time.
let
maxEntries = max(k.routing.len * 2, MinEntries)
maxRemove = maxEntries div 4
if k.pingPongTime.len < maxEntries:
return
# it is safe to remove this table sort?
# because we already using ordered table to store time from
# older value to newer value
when false:
k.pingPongTime.sort(cmp, order = SortOrder.Descending)
var
rci = 0
numRemoved = 0
rc: array[MaxRC, TimeKey] # 784 bytes(MinEntries/8*sizeof(TimeKey))
# using fixed size temp on stack possibly
# requires multiple iteration to remove
# old entries
while numRemoved < maxRemove:
for v in keys(k.pingPongTime):
rc[rci] = v
inc rci
inc numRemoved
if rci >= MaxRC or numRemoved >= maxRemove: break
for i in 0..<rci:
k.pingPongTime.del(rc[i])
rci = 0
proc updateLastPingReceived(k: KademliaProtocol, n: Node, t: Time) =
k.removeTooOldPingPongTime()
k.pingPongTime[n.timeKeyPing] = t.toUnix
proc updateLastPongReceived(k: KademliaProtocol, n: Node, t: Time) =
k.removeTooOldPingPongTime()
k.pingPongTime[n.timeKeyPong] = t.toUnix
when false:
# checkBond checks if the given node has a recent enough endpoint proof.
proc checkBond(k: KademliaProtocol, n: Node): bool =
getTime() - k.lastPongReceived(n) < BOND_EXPIRATION
proc newKBucket(istart, iend: NodeId): KBucket =
result.new()
result.istart = istart
result.iend = iend
result.nodes = @[]
result.replacementCache = @[]
proc midpoint(k: KBucket): NodeId =
k.istart + (k.iend - k.istart) div 2.u256
proc distanceTo(k: KBucket, id: NodeId): UInt256 = k.midpoint xor id
proc nodesByDistanceTo(k: KBucket, id: NodeId): seq[Node] =
sortedByIt(k.nodes, it.distanceTo(id))
proc len(k: KBucket): int = k.nodes.len
proc head(k: KBucket): Node = k.nodes[0]
proc add(k: KBucket, n: Node): Node =
## Try to add the given node to this bucket.
## If the node is already present, it is moved to the tail of the list, and we return None.
## If the node is not already present and the bucket has fewer than k entries, it is inserted
## at the tail of the list, and we return None.
## If the bucket is full, we add the node to the bucket's replacement cache and return the
## node at the head of the list (i.e. the least recently seen), which should be evicted if it
## fails to respond to a ping.
let nodeIdx = k.nodes.find(n)
if nodeIdx != -1:
k.nodes.delete(nodeIdx)
k.nodes.add(n)
elif k.len < BUCKET_SIZE:
k.nodes.add(n)
discv4_routing_table_nodes.inc()
else:
k.replacementCache.add(n)
return k.head
return nil
proc removeNode(k: KBucket, n: Node) =
let i = k.nodes.find(n)
if i != -1:
discv4_routing_table_nodes.dec()
k.nodes.delete(i)
proc split(k: KBucket): tuple[lower, upper: KBucket] =
## Split at the median id
let splitid = k.midpoint
result.lower = newKBucket(k.istart, splitid)
result.upper = newKBucket(splitid + 1.u256, k.iend)
for node in k.nodes:
let bucket = if node.id <= splitid: result.lower else: result.upper
discard bucket.add(node)
for node in k.replacementCache:
let bucket = if node.id <= splitid: result.lower else: result.upper
bucket.replacementCache.add(node)
proc inRange(k: KBucket, n: Node): bool =
k.istart <= n.id and n.id <= k.iend
proc isFull(k: KBucket): bool = k.len == BUCKET_SIZE
proc contains(k: KBucket, n: Node): bool = n in k.nodes
proc binaryGetBucketForNode(buckets: openArray[KBucket], n: Node):
KBucket {.raises: [ValueError].} =
## Given a list of ordered buckets, returns the bucket for a given node.
let bucketPos = lowerBound(buckets, n.id) do(a: KBucket, b: NodeId) -> int:
cmp(a.iend, b)
# Prevents edge cases where bisect_left returns an out of range index
if bucketPos < buckets.len:
let bucket = buckets[bucketPos]
if bucket.istart <= n.id and n.id <= bucket.iend:
result = bucket
if result.isNil:
raise newException(ValueError, "No bucket found for node with id " & stint.`$`(n.id))
proc computeSharedPrefixBits(nodes: openArray[Node]): int =
## Count the number of prefix bits shared by all nodes.
if nodes.len < 2:
return ID_SIZE
var mask = zero(UInt256)
let one = one(UInt256)
for i in 1 .. ID_SIZE:
mask = mask or (one shl (ID_SIZE - i))
let reference = nodes[0].id and mask
for j in 1 .. nodes.high:
if (nodes[j].id and mask) != reference: return i - 1
doAssert(false, "Unable to calculate number of shared prefix bits")
proc init(r: var RoutingTable, thisNode: Node) =
r.thisNode = thisNode
r.buckets = @[newKBucket(0.u256, high(UInt256))]
proc splitBucket(r: var RoutingTable, index: int) =
let bucket = r.buckets[index]
let (a, b) = bucket.split()
r.buckets[index] = a
r.buckets.insert(b, index + 1)
proc bucketForNode(r: RoutingTable, n: Node): KBucket
{.raises: [ValueError].} =
binaryGetBucketForNode(r.buckets, n)
proc removeNode(r: var RoutingTable, n: Node) {.raises: [ValueError].} =
r.bucketForNode(n).removeNode(n)
proc addNode(r: var RoutingTable, n: Node): Node
{.raises: [ValueError].} =
if n == r.thisNode:
warn "Trying to add ourselves to the routing table", node = n
return
let bucket = r.bucketForNode(n)
let evictionCandidate = bucket.add(n)
if not evictionCandidate.isNil:
# Split if the bucket has the local node in its range or if the depth is not congruent
# to 0 mod BITS_PER_HOP
let depth = computeSharedPrefixBits(bucket.nodes)
if bucket.inRange(r.thisNode) or (depth mod BITS_PER_HOP != 0 and depth != ID_SIZE):
r.splitBucket(r.buckets.find(bucket))
return r.addNode(n) # retry
# Nothing added, ping evictionCandidate
return evictionCandidate
proc contains(r: RoutingTable, n: Node): bool {.raises: [ValueError].} =
n in r.bucketForNode(n)
proc bucketsByDistanceTo(r: RoutingTable, id: NodeId): seq[KBucket] =
sortedByIt(r.buckets, it.distanceTo(id))
proc notFullBuckets(r: RoutingTable): seq[KBucket] =
r.buckets.filterIt(not it.isFull)
proc neighbours(r: RoutingTable, id: NodeId, k: int = BUCKET_SIZE): seq[Node] =
## Return up to k neighbours of the given node.
result = newSeqOfCap[Node](k * 2)
for bucket in r.bucketsByDistanceTo(id):
for n in bucket.nodesByDistanceTo(id):
if n.id != id:
result.add(n)
if result.len == k * 2:
break
result = sortedByIt(result, it.distanceTo(id))
if result.len > k:
result.setLen(k)
proc len(r: RoutingTable): int =
for b in r.buckets: result += b.len
proc newKademliaProtocol*[Wire](
thisNode: Node, wire: Wire, rng = newRng()): KademliaProtocol[Wire] =
if rng == nil: raiseAssert "Need an RNG" # doAssert gives compile error on mac
result.new()
result.thisNode = thisNode
result.wire = wire
result.routing.init(thisNode)
result.rng = rng
proc bond(k: KademliaProtocol, n: Node): Future[bool] {.async.}
proc bondDiscard(k: KademliaProtocol, n: Node) {.async.}
proc updateRoutingTable(k: KademliaProtocol, n: Node)
{.raises: [ValueError], gcsafe.} =
## Update the routing table entry for the given node.
let evictionCandidate = k.routing.addNode(n)
if not evictionCandidate.isNil:
# This means we couldn't add the node because its bucket is full, so schedule a bond()
# with the least recently seen node on that bucket. If the bonding fails the node will
# be removed from the bucket and a new one will be picked from the bucket's
# replacement cache.
asyncSpawn k.bondDiscard(evictionCandidate)
proc doSleep(p: proc() {.gcsafe, raises: [].}) {.async.} =
await sleepAsync(REQUEST_TIMEOUT)
p()
template onTimeout(b: untyped) =
asyncSpawn doSleep() do():
b
proc pingId(n: Node, token: seq[byte]): seq[byte] =
result = token & @(n.node.pubkey.toRaw)
proc waitPong(k: KademliaProtocol, n: Node, pingid: seq[byte]): Future[bool] =
doAssert(pingid notin k.pongFutures, "Already waiting for pong from " & $n)
result = newFuture[bool]("waitPong")
let fut = result
k.pongFutures[pingid] = result
onTimeout:
if not fut.finished:
k.pongFutures.del(pingid)
fut.complete(false)
proc ping(k: KademliaProtocol, n: Node): seq[byte] =
doAssert(n != k.thisNode)
result = k.wire.sendPing(n)
proc waitPing(k: KademliaProtocol, n: Node): Future[bool] =
result = newFuture[bool]("waitPing")
doAssert(n notin k.pingFutures)
k.pingFutures[n] = result
let fut = result
onTimeout:
if not fut.finished:
k.pingFutures.del(n)
fut.complete(false)
proc waitNeighbours(k: KademliaProtocol, remote: Node): Future[seq[Node]] =
doAssert(remote notin k.neighboursCallbacks)
result = newFuture[seq[Node]]("waitNeighbours")
let fut = result
var neighbours = newSeqOfCap[Node](BUCKET_SIZE)
k.neighboursCallbacks[remote] = proc(n: seq[Node]) {.gcsafe, raises: [].} =
# This callback is expected to be called multiple times because nodes usually
# split the neighbours replies into multiple packets, so we only complete the
# future event.set() we've received enough neighbours.
for i in n:
if i != k.thisNode:
neighbours.add(i)
if neighbours.len == BUCKET_SIZE:
k.neighboursCallbacks.del(remote)
doAssert(not fut.finished)
fut.complete(neighbours)
onTimeout:
if not fut.finished:
k.neighboursCallbacks.del(remote)
fut.complete(neighbours)
# Exported for test.
proc findNode*(k: KademliaProtocol, nodesSeen: ref HashSet[Node],
nodeId: NodeId, remote: Node): Future[seq[Node]] {.async.} =
if remote in k.neighboursCallbacks:
# Sometimes findNode is called while another findNode is already in flight.
# It's a bug when this happens, and the logic should probably be fixed
# elsewhere. However, this small fix has been tested and proven adequate.
debug "Ignoring peer already in k.neighboursCallbacks", peer = remote
result = newSeq[Node]()
return
k.wire.sendFindNode(remote, nodeId)
var candidates = await k.waitNeighbours(remote)
if candidates.len == 0:
trace "Got no candidates from peer, returning", peer = remote
result = candidates
else:
# The following line:
# 1. Add new candidates to nodesSeen so that we don't attempt to bond with failing ones
# in the future
# 2. Removes all previously seen nodes from candidates
# 3. Deduplicates candidates
candidates.keepItIf(not nodesSeen[].containsOrIncl(it))
trace "Got new candidates", count = candidates.len
var bondedNodes: seq[Future[bool]] = @[]
for node in candidates:
if node != k.thisNode:
bondedNodes.add(k.bond(node))
await allFutures(bondedNodes)
for i in 0..<bondedNodes.len:
let b = bondedNodes[i]
# `bond` will not raise so there should be no failures,
# and for cancellation this should be fine to raise for now.
doAssert(b.finished() and not(b.failed()))
let bonded = b.read()
if not bonded: candidates[i] = nil
candidates.keepItIf(not it.isNil)
trace "Bonded with candidates", count = candidates.len
result = candidates
proc populateNotFullBuckets(k: KademliaProtocol) =
## Go through all buckets that are not full and try to fill them.
##
## For every node in the replacement cache of every non-full bucket, try to bond.
## When the bonding succeeds the node is automatically added to the bucket.
for bucket in k.routing.notFullBuckets:
for node in bucket.replacementCache:
asyncSpawn k.bondDiscard(node)
proc bond(k: KademliaProtocol, n: Node): Future[bool] {.async.} =
## Bond with the given node.
##
## Bonding consists of pinging the node, waiting for a pong and maybe a ping as well.
## It is necessary to do this at least once before we send findNode requests to a node.
trace "Bonding to peer", n
if n in k.routing:
return true
let pid = pingId(n, k.ping(n))
if pid in k.pongFutures:
debug "Bonding failed, already waiting for pong", n
return false
let gotPong = await k.waitPong(n, pid)
if not gotPong:
trace "Bonding failed, didn't receive pong from", n
# Drop the failing node and schedule a populateNotFullBuckets() call to try and
# fill its spot.
k.routing.removeNode(n)
k.populateNotFullBuckets()
return false
# Give the remote node a chance to ping us before we move on and start sending findNode
# requests. It is ok for waitPing() to timeout and return false here as that just means
# the remote remembers us.
if n in k.pingFutures:
debug "Bonding failed, already waiting for ping", n
return false
discard await k.waitPing(n)
trace "Bonding completed successfully", n
k.updateRoutingTable(n)
return true
proc bondDiscard(k: KademliaProtocol, n: Node) {.async.} =
discard (await k.bond(n))
proc sortByDistance(nodes: var seq[Node], nodeId: NodeId, maxResults = 0) =
nodes = nodes.sortedByIt(it.distanceTo(nodeId))
if maxResults != 0 and nodes.len > maxResults:
nodes.setLen(maxResults)
proc lookup*(k: KademliaProtocol, nodeId: NodeId): Future[seq[Node]] {.async.} =
## Lookup performs a network search for nodes close to the given target.
## It approaches the target by querying nodes that are closer to it on each iteration. The
## given target does not need to be an actual node identifier.
var nodesAsked = initHashSet[Node]()
let nodesSeen = new(HashSet[Node])
proc excludeIfAsked(nodes: seq[Node]): seq[Node] =
result = toSeq(items(nodes.toHashSet() - nodesAsked))
sortByDistance(result, nodeId, FIND_CONCURRENCY)
var closest = k.routing.neighbours(nodeId)
trace "Starting lookup; initial neighbours: ", closest
var nodesToAsk = excludeIfAsked(closest)
while nodesToAsk.len != 0:
trace "Node lookup; querying ", nodesToAsk
nodesAsked.incl(nodesToAsk.toHashSet())
var findNodeRequests: seq[Future[seq[Node]]] = @[]
for node in nodesToAsk:
findNodeRequests.add(k.findNode(nodesSeen, nodeId, node))
await allFutures(findNodeRequests)
for candidates in findNodeRequests:
# `findNode` will not raise so there should be no failures,
# and for cancellation this should be fine to raise for now.
doAssert(candidates.finished() and not(candidates.failed()))
closest.add(candidates.read())
sortByDistance(closest, nodeId, BUCKET_SIZE)
nodesToAsk = excludeIfAsked(closest)
trace "Kademlia lookup finished", target = nodeId.toHex, closest
result = closest
proc lookupRandom*(k: KademliaProtocol): Future[seq[Node]] =
k.lookup(k.rng[].generate(NodeId))
proc resolve*(k: KademliaProtocol, id: NodeId): Future[Node] {.async.} =
let closest = await k.lookup(id)
for n in closest:
if n.id == id: return n
proc bootstrap*(k: KademliaProtocol, bootstrapNodes: seq[Node], retries = 0) {.async.} =
## Bond with bootstrap nodes and do initial lookup. Retry `retries` times
## in case of failure, or indefinitely if `retries` is 0.
var retryInterval = chronos.milliseconds(2)
var numTries = 0
if bootstrapNodes.len != 0:
while true:
var bondedNodes: seq[Future[bool]] = @[]
for node in bootstrapNodes:
bondedNodes.add(k.bond(node))
await allFutures(bondedNodes)
# `bond` will not raise so there should be no failures,
# and for cancellation this should be fine to raise for now.
let bonded = bondedNodes.mapIt(it.read())
if true notin bonded:
inc numTries
if retries == 0 or numTries < retries:
info "Failed to bond with bootstrap nodes, retrying"
retryInterval = min(chronos.seconds(10), retryInterval * 2)
await sleepAsync(retryInterval)
else:
info "Failed to bond with bootstrap nodes"
return
else:
break
discard await k.lookupRandom() # Prepopulate the routing table
else:
info "Skipping discovery bootstrap, no bootnodes provided"
proc recvPong*(k: KademliaProtocol, n: Node, token: seq[byte]) =
trace "<<< pong from ", n
let pingid = token & @(n.node.pubkey.toRaw)
var future: Future[bool]
if k.pongFutures.take(pingid, future):
future.complete(true)
k.updateLastPongReceived(n, getTime())
proc recvPing*(k: KademliaProtocol, n: Node, msgHash: auto)
{.raises: [ValueError].} =
trace "<<< ping from ", n
k.wire.sendPong(n, msgHash)
if getTime() - k.lastPongReceived(n) > BOND_EXPIRATION:
# TODO: It is strange that this would occur, as it means our own node would
# have pinged us which should have caused an assert in the first place.
if n != k.thisNode:
let pingId = pingId(n, k.ping(n))
let fut = if pingId in k.pongFutures:
k.pongFutures[pingId]
else:
k.waitPong(n, pingId)
let cb = proc(data: pointer) {.gcsafe.} =
# fut.read == true if pingid exists
try:
if fut.completed and fut.read:
k.updateRoutingTable(n)
except CatchableError as ex:
error "recvPing:WaitPong exception", msg=ex.msg
fut.addCallback cb
else:
k.updateRoutingTable(n)
var future: Future[bool]
if k.pingFutures.take(n, future):
future.complete(true)
k.updateLastPingReceived(n, getTime())
proc recvNeighbours*(k: KademliaProtocol, remote: Node, neighbours: seq[Node]) =
## Process a neighbours response.
##
## Neighbours responses should only be received as a reply to a find_node, and that is only
## done as part of node lookup, so the actual processing is left to the callback from
## neighbours_callbacks, which is added (and removed after it's done or timed out) in
## wait_neighbours().
trace "Received neighbours", remote, neighbours
let cb = k.neighboursCallbacks.getOrDefault(remote)
if not cb.isNil:
cb(neighbours)
else:
trace "Unexpected neighbours, probably came too late", remote
proc recvFindNode*(k: KademliaProtocol, remote: Node, nodeId: NodeId)
{.raises: [ValueError].} =
if remote notin k.routing:
# FIXME: This is not correct; a node we've bonded before may have become unavailable
# and thus removed from self.routing, but once it's back online we should accept
# find_nodes from them.
trace "Ignoring find_node request from unknown node ", remote
return
k.updateRoutingTable(remote)
var found = k.routing.neighbours(nodeId)
found.sort() do(x, y: Node) -> int: cmp(x.id, y.id)
k.wire.sendNeighbours(remote, found)
proc randomNodes*(k: KademliaProtocol, count: int): seq[Node] =
var count = count
let sz = k.routing.len
if count > sz:
debug "Looking for peers", requested = count, present = sz
count = sz
result = newSeqOfCap[Node](count)
var seen = initHashSet[Node]()
# This is a rather inefficient way of randomizing nodes from all buckets, but even if we
# iterate over all nodes in the routing table, the time it takes would still be
# insignificant compared to the time it takes for the network roundtrips when connecting
# to nodes.
while len(seen) < count:
let bucket = k.rng[].sample(k.routing.buckets)
if bucket.nodes.len != 0:
let node = k.rng[].sample(bucket.nodes)
if node notin seen:
result.add(node)
seen.incl(node)
proc nodesDiscovered*(k: KademliaProtocol): int = k.routing.len
when isMainModule:
proc randomNode(): Node =
newNode("enode://aa36fdf33dd030378a0168efe6ed7d5cc587fafa3cdd375854fe735a2e11ea3650ba29644e2db48368c46e1f60e716300ba49396cd63778bf8a818c09bded46f@13.93.211.84:30303")
var nodes = @[randomNode()]
doAssert(computeSharedPrefixBits(nodes) == ID_SIZE)
nodes.add(randomNode())
nodes[0].id = 0b1.u256
nodes[1].id = 0b0.u256
doAssert(computeSharedPrefixBits(nodes) == ID_SIZE - 1)
nodes[0].id = 0b010.u256
nodes[1].id = 0b110.u256
doAssert(computeSharedPrefixBits(nodes) == ID_SIZE - 3)