nim-eth/eth/p2p/rlpx.nim

1452 lines
53 KiB
Nim

# nim-eth
# Copyright (c) 2018-2021 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [Defect].}
import
std/[tables, algorithm, deques, hashes, options, typetraits],
stew/shims/macros, chronicles, nimcrypto/utils, chronos,
".."/[rlp, common, keys, async_utils],
./private/p2p_types, "."/[kademlia, auth, rlpxcrypt, enode, p2p_protocol_dsl]
const
# Insane kludge for suppporting chunked messages when syncing against clients
# like Nethermind.
#
# The original specs which are now obsoleted can be found here:
# github.com/ethereum/devp2p/commit/6504d410bc4b8dda2b43941e1cb48c804b90cf22.
#
# The current requirement is stated at
# github.com/ethereum/devp2p/blob/master/rlpx.md#framing
allowObsoletedChunkedMessages = defined(chunked_rlpx_enabled)
when useSnappy:
import snappy
const devp2pSnappyVersion* = 5
# TODO: chronicles re-export here is added for the error
# "undeclared identifier: 'activeChroniclesStream'", when the code using p2p
# does not import chronicles. Need to resolve this properly.
export
options, p2pProtocol, rlp, chronicles
declarePublicGauge connected_peers, "number of peers in the pool"
logScope:
topics = "rlpx"
type
ResponderWithId*[MsgType] = object
peer*: Peer
reqId*: int
ResponderWithoutId*[MsgType] = distinct Peer
# We need these two types in rlpx/devp2p as no parameters or single parameters
# are not getting encoded in an rlp list.
# TODO: we could generalize this in the protocol dsl but it would need an
# `alwaysList` flag as not every protocol expects lists in these cases.
EmptyList = object
DisconnectionReasonList = object
value: DisconnectionReason
proc read(rlp: var Rlp; T: type DisconnectionReasonList): T
{.gcsafe, raises: [RlpError, Defect].} =
## Rlp mixin: `DisconnectionReasonList` parser
if rlp.isList:
# Be strict here: The expression `rlp.read(DisconnectionReasonList)`
# accepts lists with at least one item. The array expression wants
# exactly one item.
if rlp.rawData.len < 3:
# avoids looping through all items when parsing for an overlarge array
return DisconnectionReasonList(
value: rlp.read(array[1,DisconnectionReason])[0])
# Also accepted: a single byte reason code. Is is typically used
# by variants of the reference implementation `Geth`
elif rlp.blobLen <= 1:
return DisconnectionReasonList(
value: rlp.read(DisconnectionReason))
# Also accepted: a blob of a list (aka object) of reason code. It is
# used by `bor`, a `geth` fork
elif rlp.blobLen < 4:
var subList = rlp.toBytes.rlpFromBytes
if subList.isList:
# Ditto, see above.
return DisconnectionReasonList(
value: subList.read(array[1,DisconnectionReason])[0])
raise newException(RlpTypeMismatch, "Single entry list expected")
const
devp2pVersion* = 4
maxMsgSize = 1024 * 1024 * 10
HandshakeTimeout = MessageTimeout
include p2p_tracing
when tracingEnabled:
import
eth/common/eth_types_json_serialization
export
# XXX: This is a work-around for a Nim issue.
# See a more detailed comment in p2p_tracing.nim
init, writeValue, getOutput
proc init*[MsgName](T: type ResponderWithId[MsgName],
peer: Peer, reqId: int): T =
T(peer: peer, reqId: reqId)
proc init*[MsgName](T: type ResponderWithoutId[MsgName], peer: Peer): T =
T(peer)
chronicles.formatIt(Peer): $(it.remote)
include p2p_backends_helpers
proc requestResolver[MsgType](msg: pointer, future: FutureBase) {.gcsafe.} =
var f = Future[Option[MsgType]](future)
if not f.finished:
if msg != nil:
f.complete some(cast[ptr MsgType](msg)[])
else:
f.complete none(MsgType)
else:
# This future was already resolved, but let's do some sanity checks
# here. The only reasonable explanation is that the request should
# have timed out.
if msg != nil:
try:
if f.read.isSome:
doAssert false, "trying to resolve a request twice"
else:
doAssert false, "trying to resolve a timed out request with a value"
except CatchableError as e:
debug "Exception in requestResolver()", exc = e.name, err = e.msg
else:
try:
if not f.read.isSome:
doAssert false, "a request timed out twice"
# This can except when the future still completes with an error.
# E.g. the `sendMsg` fails because of an already closed transport or a
# broken pipe
except TransportOsError as e:
# E.g. broken pipe
trace "TransportOsError during request", err = e.msg
except TransportError:
trace "Transport got closed during request"
except CatchableError as e:
debug "Exception in requestResolver()", exc = e.name, err = e.msg
proc linkSendFailureToReqFuture[S, R](sendFut: Future[S], resFut: Future[R]) =
sendFut.addCallback() do (arg: pointer):
# Avoiding potentially double future completions
if not resFut.finished:
if sendFut.failed:
resFut.fail(sendFut.error)
proc messagePrinter[MsgType](msg: pointer): string {.gcsafe.} =
result = ""
# TODO: uncommenting the line below increases the compile-time
# tremendously (for reasons not yet known)
# result = $(cast[ptr MsgType](msg)[])
proc disconnect*(peer: Peer, reason: DisconnectionReason,
notifyOtherPeer = false) {.gcsafe, async.}
template raisePeerDisconnected(msg: string, r: DisconnectionReason) =
var e = newException(PeerDisconnected, msg)
e.reason = r
raise e
proc disconnectAndRaise(peer: Peer,
reason: DisconnectionReason,
msg: string) {.async.} =
let r = reason
await peer.disconnect(r)
raisePeerDisconnected(msg, r)
proc handshakeImpl[T](peer: Peer,
sendFut: Future[void],
responseFut: Future[T],
timeout: Duration): Future[T] {.async.} =
sendFut.addCallback do (arg: pointer) {.gcsafe.}:
if sendFut.failed:
debug "Handshake message not delivered", peer
doAssert timeout.milliseconds > 0
yield responseFut or sleepAsync(timeout)
if not responseFut.finished:
await disconnectAndRaise(peer, HandshakeTimeout,
"Protocol handshake was not received in time.")
elif responseFut.failed:
raise responseFut.error
else:
return responseFut.read
var gDevp2pInfo: ProtocolInfo
template devp2pInfo: auto = {.gcsafe.}: gDevp2pInfo
# Dispatcher
#
proc hash(d: Dispatcher): int =
hash(d.protocolOffsets)
proc `==`(lhs, rhs: Dispatcher): bool =
lhs.activeProtocols == rhs.activeProtocols
proc describeProtocols(d: Dispatcher): string =
result = ""
for protocol in d.activeProtocols:
if result.len != 0: result.add(',')
for c in protocol.name: result.add(c)
proc numProtocols(d: Dispatcher): int =
d.activeProtocols.len
proc getDispatcher(node: EthereumNode,
otherPeerCapabilities: openArray[Capability]): Dispatcher =
# TODO: sub-optimal solution until progress is made here:
# https://github.com/nim-lang/Nim/issues/7457
# We should be able to find an existing dispatcher without allocating a new one
new result
newSeq(result.protocolOffsets, allProtocols.len)
result.protocolOffsets.fill -1
var nextUserMsgId = 0x10
for localProtocol in node.protocols:
let idx = localProtocol.index
block findMatchingProtocol:
for remoteCapability in otherPeerCapabilities:
if localProtocol.name == remoteCapability.name and
localProtocol.version == remoteCapability.version:
result.protocolOffsets[idx] = nextUserMsgId
nextUserMsgId += localProtocol.messages.len
break findMatchingProtocol
template copyTo(src, dest; index: int) =
for i in 0 ..< src.len:
dest[index + i] = addr src[i]
result.messages = newSeq[ptr MessageInfo](nextUserMsgId)
devp2pInfo.messages.copyTo(result.messages, 0)
for localProtocol in node.protocols:
let idx = localProtocol.index
if result.protocolOffsets[idx] != -1:
result.activeProtocols.add localProtocol
localProtocol.messages.copyTo(result.messages,
result.protocolOffsets[idx])
proc getMsgName*(peer: Peer, msgId: int): string =
if not peer.dispatcher.isNil and
msgId < peer.dispatcher.messages.len and
not peer.dispatcher.messages[msgId].isNil:
return peer.dispatcher.messages[msgId].name
else:
return case msgId
of 0: "hello"
of 1: "disconnect"
of 2: "ping"
of 3: "pong"
else: $msgId
proc getMsgMetadata*(peer: Peer, msgId: int): (ProtocolInfo, ptr MessageInfo) =
doAssert msgId >= 0
if msgId <= devp2pInfo.messages[^1].id:
return (devp2pInfo, addr devp2pInfo.messages[msgId])
if msgId < peer.dispatcher.messages.len:
for i in 0 ..< allProtocols.len:
let offset = peer.dispatcher.protocolOffsets[i]
if offset != -1 and
offset + allProtocols[i].messages[^1].id >= msgId:
return (allProtocols[i], peer.dispatcher.messages[msgId])
# Protocol info objects
#
proc initProtocol(name: string, version: int,
peerInit: PeerStateInitializer,
networkInit: NetworkStateInitializer): ProtocolInfoObj =
result.name = name
result.version = version
result.messages = @[]
result.peerStateInitializer = peerInit
result.networkStateInitializer = networkInit
proc setEventHandlers(p: ProtocolInfo,
handshake: HandshakeStep,
disconnectHandler: DisconnectionHandler) =
p.handshake = handshake
p.disconnectHandler = disconnectHandler
func asCapability*(p: ProtocolInfo): Capability =
result.name = p.name
result.version = p.version
proc cmp*(lhs, rhs: ProtocolInfo): int =
return cmp(lhs.name, rhs.name)
proc nextMsgResolver[MsgType](msgData: Rlp, future: FutureBase)
{.gcsafe, raises: [RlpError, Defect].} =
var reader = msgData
Future[MsgType](future).complete reader.readRecordType(MsgType,
MsgType.rlpFieldsCount > 1)
proc registerMsg(protocol: ProtocolInfo,
id: int, name: string,
thunk: ThunkProc,
printer: MessageContentPrinter,
requestResolver: RequestResolver,
nextMsgResolver: NextMsgResolver) =
if protocol.messages.len <= id:
protocol.messages.setLen(id + 1)
protocol.messages[id] = MessageInfo(id: id,
name: name,
thunk: thunk,
printer: printer,
requestResolver: requestResolver,
nextMsgResolver: nextMsgResolver)
proc registerProtocol(protocol: ProtocolInfo) =
# TODO: This can be done at compile-time in the future
if protocol.name != "p2p":
let pos = lowerBound(gProtocols, protocol)
gProtocols.insert(protocol, pos)
for i in 0 ..< gProtocols.len:
gProtocols[i].index = i
else:
gDevp2pInfo = protocol
# Message composition and encryption
#
proc perPeerMsgIdImpl(peer: Peer, proto: ProtocolInfo, msgId: int): int =
result = msgId
if not peer.dispatcher.isNil:
result += peer.dispatcher.protocolOffsets[proto.index]
template getPeer(peer: Peer): auto = peer
template getPeer(responder: ResponderWithId): auto = responder.peer
template getPeer(responder: ResponderWithoutId): auto = Peer(responder)
proc supports*(peer: Peer, proto: ProtocolInfo): bool =
peer.dispatcher.protocolOffsets[proto.index] != -1
proc supports*(peer: Peer, Protocol: type): bool =
## Checks whether a Peer supports a particular protocol
peer.supports(Protocol.protocolInfo)
template perPeerMsgId(peer: Peer, MsgType: type): int =
perPeerMsgIdImpl(peer, MsgType.msgProtocol.protocolInfo, MsgType.msgId)
proc invokeThunk*(peer: Peer, msgId: int, msgData: var Rlp): Future[void]
{.raises: [UnsupportedMessageError, RlpError, Defect].} =
template invalidIdError: untyped =
raise newException(UnsupportedMessageError,
"RLPx message with an invalid id " & $msgId &
" on a connection supporting " & peer.dispatcher.describeProtocols)
# msgId can be negative as it has int as type and gets decoded from rlp
if msgId >= peer.dispatcher.messages.len or msgId < 0: invalidIdError()
if peer.dispatcher.messages[msgId].isNil: invalidIdError()
let thunk = peer.dispatcher.messages[msgId].thunk
if thunk == nil: invalidIdError()
return thunk(peer, msgId, msgData)
template compressMsg(peer: Peer, data: seq[byte]): seq[byte] =
when useSnappy:
if peer.snappyEnabled:
snappy.encode(data)
else: data
else:
data
proc sendMsg*(peer: Peer, data: seq[byte]) {.gcsafe, async.} =
var cipherText = encryptMsg(peer.compressMsg(data), peer.secretsState)
try:
var res = await peer.transport.write(cipherText)
if res != len(cipherText):
# This is ECONNRESET or EPIPE case when remote peer disconnected.
await peer.disconnect(TcpError)
except CatchableError as e:
await peer.disconnect(TcpError)
raise e
proc send*[Msg](peer: Peer, msg: Msg): Future[void] =
logSentMsg(peer, msg)
var rlpWriter = initRlpWriter()
rlpWriter.append perPeerMsgId(peer, Msg)
rlpWriter.appendRecordType(msg, Msg.rlpFieldsCount > 1)
peer.sendMsg rlpWriter.finish
proc registerRequest(peer: Peer,
timeout: Duration,
responseFuture: FutureBase,
responseMsgId: int): int =
inc peer.lastReqId
result = peer.lastReqId
let timeoutAt = Moment.fromNow(timeout)
let req = OutstandingRequest(id: result,
future: responseFuture,
timeoutAt: timeoutAt)
peer.outstandingRequests[responseMsgId].addLast req
doAssert(not peer.dispatcher.isNil)
let requestResolver = peer.dispatcher.messages[responseMsgId].requestResolver
proc timeoutExpired(udata: pointer) {.gcsafe.} =
requestResolver(nil, responseFuture)
discard setTimer(timeoutAt, timeoutExpired, nil)
proc resolveResponseFuture(peer: Peer, msgId: int, msg: pointer, reqId: int) =
logScope:
msg = peer.dispatcher.messages[msgId].name
msgContents = peer.dispatcher.messages[msgId].printer(msg)
receivedReqId = reqId
remotePeer = peer.remote
template resolve(future) =
(peer.dispatcher.messages[msgId].requestResolver)(msg, future)
template outstandingReqs: auto =
peer.outstandingRequests[msgId]
if reqId == -1:
# XXX: This is a response from an ETH-like protocol that doesn't feature
# request IDs. Handling the response is quite tricky here because this may
# be a late response to an already timed out request or a valid response
# from a more recent one.
#
# We can increase the robustness by recording enough features of the
# request so we can recognize the matching response, but this is not very
# easy to do because our peers are allowed to send partial responses.
#
# A more generally robust approach is to maintain a set of the wanted
# data items and then to periodically look for items that have been
# requested long time ago, but are still missing. New requests can be
# issues for such items potentially from another random peer.
var expiredRequests = 0
for req in outstandingReqs:
if not req.future.finished: break
inc expiredRequests
outstandingReqs.shrink(fromFirst = expiredRequests)
if outstandingReqs.len > 0:
let oldestReq = outstandingReqs.popFirst
resolve oldestReq.future
else:
trace "late or duplicate reply for a RLPx request"
else:
# TODO: This is not completely sound because we are still using a global
# `reqId` sequence (the problem is that we might get a response ID that
# matches a request ID for a different type of request). To make the code
# correct, we can use a separate sequence per response type, but we have
# to first verify that the other Ethereum clients are supporting this
# correctly (because then, we'll be reusing the same reqIds for different
# types of requests). Alternatively, we can assign a separate interval in
# the `reqId` space for each type of response.
if reqId > peer.lastReqId:
warn "RLPx response without a matching request"
return
var idx = 0
while idx < outstandingReqs.len:
template req: auto = outstandingReqs()[idx]
if req.future.finished:
doAssert req.timeoutAt <= Moment.now()
# Here we'll remove the expired request by swapping
# it with the last one in the deque (if necessary):
if idx != outstandingReqs.len - 1:
req = outstandingReqs.popLast
continue
else:
outstandingReqs.shrink(fromLast = 1)
# This was the last item, so we don't have any
# more work to do:
return
if req.id == reqId:
resolve req.future
# Here we'll remove the found request by swapping
# it with the last one in the deque (if necessary):
if idx != outstandingReqs.len - 1:
req = outstandingReqs.popLast
else:
outstandingReqs.shrink(fromLast = 1)
return
inc idx
debug "late or duplicate reply for a RLPx request"
proc getRlpxHeaderData(header: RlpxHeader): (int,int,int) =
## Helper for `recvMsg()`
# This is insane. Some clients like Nethermind use the now obsoleted
# chunked message frame protocol, see
# github.com/ethereum/devp2p/commit/6504d410bc4b8dda2b43941e1cb48c804b90cf22.
result = (-1, -1, 0)
proc datagramSize: int =
# For logging only
(header[0].int shl 16) or (header[1].int shl 8) or header[1].int
try:
let optsLen = max(0, header[3].int - 0xc0)
var hdrData = header[4 ..< 4 + optsLen].rlpFromBytes
result[0] = hdrData.read(int) # capability ID
result[1] = hdrData.read(int) # context ID
if hdrData.isBlob:
result[2] = hdrData.read(int) # total packet size
trace "RLPx message first chunked header-data",
capabilityId = result[0],
contextId = result[1],
totalPacketSize = result[2],
datagramSize = datagramSize()
#[
elif 0 < result[1]:
# This should be all zero according to latest specs
trace "RLPx message chunked next header-data",
capabilityId = result[0],
contextId = result[1],
datagramSize = datagramSize()
]#
except:
error "RLPx message header-data options, parse error",
capabilityId = result[0],
contextId = result[1],
totalPacketSize = result[2],
datagramSize = datagramSize()
result = (-1, -1, -1)
proc recvMsg*(peer: Peer): Future[tuple[msgId: int, msgData: Rlp]] {.async.} =
## This procs awaits the next complete RLPx message in the TCP stream
var headerBytes: array[32, byte]
await peer.transport.readExactly(addr headerBytes[0], 32)
var msgSize: int
var msgHeader: RlpxHeader
if decryptHeaderAndGetMsgSize(peer.secretsState,
headerBytes, msgSize, msgHeader).isErr():
await peer.disconnectAndRaise(BreachOfProtocol,
"Cannot decrypt RLPx frame header")
if msgSize > maxMsgSize:
await peer.disconnectAndRaise(BreachOfProtocol,
"RLPx message exceeds maximum size")
let remainingBytes = encryptedLength(msgSize) - 32
# TODO: Migrate this to a thread-local seq
# JACEK:
# or pass it in, allowing the caller to choose - they'll likely be in a
# better position to decide if buffer should be reused or not. this will
# also be useuful for chunked messages where part of the buffer may have
# been processed and needs filling in
var encryptedBytes = newSeq[byte](remainingBytes)
await peer.transport.readExactly(addr encryptedBytes[0], len(encryptedBytes))
let decryptedMaxLength = decryptedLength(msgSize)
var
decryptedBytes = newSeq[byte](decryptedMaxLength)
decryptedBytesCount = 0
if decryptBody(peer.secretsState, encryptedBytes, msgSize,
decryptedBytes, decryptedBytesCount).isErr():
await peer.disconnectAndRaise(BreachOfProtocol,
"Cannot decrypt RLPx frame body")
decryptedBytes.setLen(decryptedBytesCount)
when useSnappy:
if peer.snappyEnabled:
decryptedBytes = snappy.decode(decryptedBytes, maxMsgSize)
if decryptedBytes.len == 0:
await peer.disconnectAndRaise(BreachOfProtocol,
"Snappy uncompress encountered malformed data")
# Check embedded header-data for start of an obsoleted chunked message.
#
# The current RLPx requirements need all triple entries <= 0, see
# github.com/ethereum/devp2p/blob/master/rlpx.md#framing
let (capaId, ctxId, totalMsgSize) = msgHeader.getRlpxHeaderData
when not allowObsoletedChunkedMessages:
# Note that the check should come *before* the `msgId` is read. For
# instance, if this is a malformed packet, then the `msgId` might be
# random which in turn might try to access a `peer.dispatcher.messages[]`
# slot with a `nil` entry.
if 0 < capaId or 0 < ctxId or 0 < totalMsgSize:
await peer.disconnectAndRaise(
BreachOfProtocol, "Rejected obsoleted chunked message header")
var rlp = rlpFromBytes(decryptedBytes)
var msgId: int32
try:
# int32 as this seems more than big enough for the amount of msgIds
msgId = rlp.read(int32)
result = (msgId.int, rlp)
except RlpError:
await peer.disconnectAndRaise(BreachOfProtocol,
"Cannot read RLPx message id")
# Handle chunked messages
when allowObsoletedChunkedMessages:
# Snappy with obsolete chunked RLPx message datagrams is unsupported here
when useSnappy:
if peer.snappyEnabled:
return
# This also covers totalMessageSize <= 0
if totalMsgSize <= msgSize:
return
# Loop over chunked RLPx datagram fragments
var moreData = totalMsgSize - msgSize
while 0 < moreData:
# Load and parse next header
block:
await peer.transport.readExactly(addr headerBytes[0], 32)
if decryptHeaderAndGetMsgSize(peer.secretsState,
headerBytes, msgSize, msgHeader).isErr():
trace "RLPx next chunked header-data failed",
peer, msgId, ctxId, maxSize = moreData
await peer.disconnectAndRaise(
BreachOfProtocol, "Cannot decrypt next chunked RLPx header")
# Verify that this is really the next chunk
block:
let (_, ctyId, totalSize) = msgHeader.getRlpxHeaderData
if ctyId != ctxId or 0 < totalSize:
trace "Malformed RLPx next chunked header-data",
peer, msgId, msgSize, ctxtId = ctyId, expCtxId = ctxId, totalSize
await peer.disconnectAndRaise(
BreachOfProtocol, "Malformed next chunked RLPx header")
# Append payload to `decryptedBytes` collector
block:
var encBytes = newSeq[byte](msgSize.encryptedLength - 32)
await peer.transport.readExactly(addr encBytes[0], encBytes.len)
var
dcrBytes = newSeq[byte](msgSize.decryptedLength)
dcrBytesCount = 0
# TODO: This should be improved by passing a reference into
# `decryptedBytes` where to append the data.
if decryptBody(peer.secretsState, encBytes, msgSize,
dcrBytes, dcrBytesCount).isErr():
await peer.disconnectAndRaise(
BreachOfProtocol, "Cannot decrypt next chunked RLPx frame body")
decryptedBytes.add dcrBytes[0 ..< dcrBytesCount]
moreData -= msgSize
#[
trace "RLPx next chunked datagram fragment",
peer, msgId = result[0], ctxId, msgSize, moreData, totalMsgSize,
dcrBytesCount, payloadSoFar = decryptedBytes.len
]#
# End While
if moreData != 0:
await peer.disconnectAndRaise(
BreachOfProtocol, "Malformed assembly of chunked RLPx message")
# Pass back extended message (first entry remains `msgId`)
result[1] = decryptedBytes.rlpFromBytes
result[1].position = rlp.position
trace "RLPx chunked datagram payload",
peer, msgId, ctxId, totalMsgSize, moreData, payload = decryptedBytes.len
# End `allowObsoletedChunkedMessages`
proc checkedRlpRead(peer: Peer, r: var Rlp, MsgType: type):
auto {.raises: [RlpError, Defect].} =
when defined(release):
return r.read(MsgType)
else:
try:
return r.read(MsgType)
except rlp.RlpError as e:
debug "Failed rlp.read",
peer = peer,
dataType = MsgType.name,
exception = e.msg
# rlpData = r.inspect -- don't use (might crash)
raise e
proc waitSingleMsg(peer: Peer, MsgType: type): Future[MsgType] {.async.} =
let wantedId = peer.perPeerMsgId(MsgType)
while true:
var (nextMsgId, nextMsgData) = await peer.recvMsg()
if nextMsgId == wantedId:
try:
result = checkedRlpRead(peer, nextMsgData, MsgType)
logReceivedMsg(peer, result)
return
except rlp.RlpError:
await peer.disconnectAndRaise(BreachOfProtocol,
"Invalid RLPx message body")
elif nextMsgId == 1: # p2p.disconnect
if nextMsgData.isList():
let reason = DisconnectionReason nextMsgData.listElem(0).toInt(uint32)
await peer.disconnect(reason)
trace "disconnect message received in waitSingleMsg", reason, peer
raisePeerDisconnected("Unexpected disconnect", reason)
else:
raise newException(RlpTypeMismatch,
"List expected, but the source RLP is not a list.")
else:
warn "Dropped RLPX message",
msg = peer.dispatcher.messages[nextMsgId].name
proc nextMsg*(peer: Peer, MsgType: type): Future[MsgType] =
## This procs awaits a specific RLPx message.
## Any messages received while waiting will be dispatched to their
## respective handlers. The designated message handler will also run
## to completion before the future returned by `nextMsg` is resolved.
let wantedId = peer.perPeerMsgId(MsgType)
let f = peer.awaitedMessages[wantedId]
if not f.isNil:
return Future[MsgType](f)
initFuture result
peer.awaitedMessages[wantedId] = result
# Known fatal errors are handled inside dispatchMessages.
# Errors we are currently unaware of are caught in the dispatchMessages
# callback. There they will be logged if CatchableError and quit on Defect.
# Non fatal errors such as the current CatchableError could be moved and
# handled a layer lower for clarity (and consistency), as also the actual
# message handler code as the TODO mentions already.
proc dispatchMessages*(peer: Peer) {.async.} =
while peer.connectionState notin {Disconnecting, Disconnected}:
var msgId: int
var msgData: Rlp
try:
(msgId, msgData) = await peer.recvMsg()
except TransportError:
# Note: This will also catch TransportIncompleteError. TransportError will
# here usually occur when a read is attempted when the transport is
# already closed. TransportIncompleteError when the transport is closed
# during read.
case peer.connectionState
of Connected:
# Dropped connection, still need to cleanup the peer.
# This could be seen as bad behaving peer.
trace "Dropped connection", peer
await peer.disconnect(ClientQuitting, false)
return
of Disconnecting, Disconnected:
# Graceful disconnect, can still cause TransportIncompleteError as it
# could be that this loop was waiting at recvMsg().
return
else:
# Connection dropped while `Connecting` (in rlpxConnect/rlpxAccept).
return
except PeerDisconnected:
return
try:
await peer.invokeThunk(msgId, msgData)
except RlpError:
debug "RlpError, ending dispatchMessages loop", peer,
msg = peer.getMsgName(msgId)
await peer.disconnect(BreachOfProtocol, true)
return
except CatchableError as e:
warn "Error while handling RLPx message", peer,
msg = peer.getMsgName(msgId), err = e.msg
# TODO: Hmm, this can be safely moved into the message handler thunk.
# The documentation will need to be updated, explaning the fact that
# nextMsg will be resolved only if the message handler has executed
# successfully.
if msgId >= 0 and msgId < peer.awaitedMessages.len and
peer.awaitedMessages[msgId] != nil:
let msgInfo = peer.dispatcher.messages[msgId]
try:
(msgInfo.nextMsgResolver)(msgData, peer.awaitedMessages[msgId])
except CatchableError as e:
# TODO: Handling errors here must be investigated more carefully.
# They also are supposed to be handled at the call-site where
# `nextMsg` is used.
debug "nextMsg resolver failed, ending dispatchMessages loop", peer,
err = e.msg
await peer.disconnect(BreachOfProtocol, true)
return
peer.awaitedMessages[msgId] = nil
proc p2pProtocolBackendImpl*(protocol: P2PProtocol): Backend =
let
resultIdent = ident "result"
Peer = bindSym "Peer"
EthereumNode = bindSym "EthereumNode"
initRlpWriter = bindSym "initRlpWriter"
append = bindSym("append", brForceOpen)
read = bindSym("read", brForceOpen)
checkedRlpRead = bindSym "checkedRlpRead"
startList = bindSym "startList"
tryEnterList = bindSym "tryEnterList"
finish = bindSym "finish"
messagePrinter = bindSym "messagePrinter"
nextMsgResolver = bindSym "nextMsgResolver"
registerRequest = bindSym "registerRequest"
requestResolver = bindSym "requestResolver"
resolveResponseFuture = bindSym "resolveResponseFuture"
sendMsg = bindSym "sendMsg"
nextMsg = bindSym "nextMsg"
initProtocol = bindSym"initProtocol"
registerMsg = bindSym "registerMsg"
perPeerMsgId = bindSym "perPeerMsgId"
perPeerMsgIdImpl = bindSym "perPeerMsgIdImpl"
linkSendFailureToReqFuture = bindSym "linkSendFailureToReqFuture"
handshakeImpl = bindSym "handshakeImpl"
ResponderWithId = bindSym "ResponderWithId"
ResponderWithoutId = bindSym "ResponderWithoutId"
isSubprotocol = protocol.rlpxName != "p2p"
if protocol.rlpxName.len == 0: protocol.rlpxName = protocol.name
# By convention, all Ethereum protocol names have at least 3 characters.
doAssert protocol.rlpxName.len >= 3
new result
result.registerProtocol = bindSym "registerProtocol"
result.setEventHandlers = bindSym "setEventHandlers"
result.PeerType = Peer
result.NetworkType = EthereumNode
result.ResponderType = if protocol.useRequestIds: ResponderWithId
else: ResponderWithoutId
result.implementMsg = proc (msg: Message) =
var
msgId = msg.id
msgIdent = msg.ident
msgName = $msgIdent
msgRecName = msg.recName
responseMsgId = if msg.response != nil: msg.response.id else: -1
ResponseRecord = if msg.response != nil: msg.response.recName else: nil
hasReqId = msg.hasReqId
protocol = msg.protocol
userPragmas = msg.procDef.pragma
# variables used in the sending procs
peerOrResponder = ident"peerOrResponder"
rlpWriter = ident"writer"
perPeerMsgIdVar = ident"perPeerMsgId"
# variables used in the receiving procs
receivedRlp = ident"rlp"
receivedMsg = ident"msg"
var
readParams = newNimNode(nnkStmtList)
paramsToWrite = newSeq[NimNode](0)
appendParams = newNimNode(nnkStmtList)
if hasReqId:
# Messages using request Ids
readParams.add quote do:
let `reqIdVar` = `read`(`receivedRlp`, int)
case msg.kind
of msgRequest:
let reqToResponseOffset = responseMsgId - msgId
let responseMsgId = quote do: `perPeerMsgIdVar` + `reqToResponseOffset`
# Each request is registered so we can resolve it when the response
# arrives. There are two types of protocols: LES-like protocols use
# explicit `reqId` sent over the wire, while the ETH wire protocol
# assumes there is one outstanding request at a time (if there are
# multiple requests we'll resolve them in FIFO order).
let registerRequestCall = newCall(registerRequest, peerVar,
timeoutVar,
resultIdent,
responseMsgId)
if hasReqId:
appendParams.add quote do:
initFuture `resultIdent`
let `reqIdVar` = `registerRequestCall`
paramsToWrite.add reqIdVar
else:
appendParams.add quote do:
initFuture `resultIdent`
discard `registerRequestCall`
of msgResponse:
if hasReqId:
paramsToWrite.add newDotExpr(peerOrResponder, reqIdVar)
of msgHandshake, msgNotification: discard
for param, paramType in msg.procDef.typedParams(skip = 1):
# This is a fragment of the sending proc that
# serializes each of the passed parameters:
paramsToWrite.add param
# The received RLP data is deserialized to a local variable of
# the message-specific type. This is done field by field here:
let msgNameLit = newLit(msgName)
readParams.add quote do:
`receivedMsg`.`param` = `checkedRlpRead`(`peerVar`, `receivedRlp`, `paramType`)
let
paramCount = paramsToWrite.len
readParamsPrelude = if paramCount > 1: newCall(tryEnterList, receivedRlp)
else: newStmtList()
when tracingEnabled:
readParams.add newCall(bindSym"logReceivedMsg", peerVar, receivedMsg)
let callResolvedResponseFuture = if msg.kind == msgResponse:
newCall(resolveResponseFuture,
peerVar,
newCall(perPeerMsgId, peerVar, msgRecName),
newCall("addr", receivedMsg),
if hasReqId: reqIdVar else: newLit(-1))
else:
newStmtList()
var userHandlerParams = @[peerVar]
if hasReqId: userHandlerParams.add reqIdVar
let
awaitUserHandler = msg.genAwaitUserHandler(receivedMsg, userHandlerParams)
thunkName = ident(msgName & "Thunk")
msg.defineThunk quote do:
proc `thunkName`(`peerVar`: `Peer`, _: int, data: Rlp)
# Fun error if you just use `RlpError` instead of `rlp.RlpError`:
# "Error: type expected, but got symbol 'RlpError' of kind 'EnumField'"
{.async, gcsafe, raises: [rlp.RlpError, Defect].} =
var `receivedRlp` = data
var `receivedMsg` {.noinit.}: `msgRecName`
`readParamsPrelude`
`readParams`
`awaitUserHandler`
`callResolvedResponseFuture`
var sendProc = msg.createSendProc(isRawSender = (msg.kind == msgHandshake))
sendProc.def.params[1][0] = peerOrResponder
let
msgBytes = ident"msgBytes"
finalizeRequest = quote do:
let `msgBytes` = `finish`(`rlpWriter`)
var sendCall = newCall(sendMsg, peerVar, msgBytes)
let senderEpilogue = if msg.kind == msgRequest:
# In RLPx requests, the returned future was allocated here and passed
# to `registerRequest`. It's already assigned to the result variable
# of the proc, so we just wait for the sending operation to complete
# and we return in a normal way. (the waiting is done, so we can catch
# any possible errors).
quote: `linkSendFailureToReqFuture`(`sendCall`, `resultIdent`)
else:
# In normal RLPx messages, we are returning the future returned by the
# `sendMsg` call.
quote: return `sendCall`
let perPeerMsgIdValue = if isSubprotocol:
newCall(perPeerMsgIdImpl, peerVar, protocol.protocolInfoVar, newLit(msgId))
else:
newLit(msgId)
if paramCount > 1:
# In case there are more than 1 parameter,
# the params must be wrapped in a list:
appendParams = newStmtList(
newCall(startList, rlpWriter, newLit(paramCount)),
appendParams)
for param in paramsToWrite:
appendParams.add newCall(append, rlpWriter, param)
let initWriter = quote do:
var `rlpWriter` = `initRlpWriter`()
const `perProtocolMsgIdVar` = `msgId`
let `perPeerMsgIdVar` = `perPeerMsgIdValue`
`append`(`rlpWriter`, `perPeerMsgIdVar`)
when tracingEnabled:
appendParams.add logSentMsgFields(peerVar, protocol, msgId, paramsToWrite)
# let paramCountNode = newLit(paramCount)
sendProc.setBody quote do:
let `peerVar` = getPeer(`peerOrResponder`)
`initWriter`
`appendParams`
`finalizeRequest`
`senderEpilogue`
if msg.kind == msgHandshake:
discard msg.createHandshakeTemplate(sendProc.def.name, handshakeImpl, nextMsg)
protocol.outProcRegistrations.add(
newCall(registerMsg,
protocol.protocolInfoVar,
newLit(msgId),
newLit(msgName),
thunkName,
newTree(nnkBracketExpr, messagePrinter, msgRecName),
newTree(nnkBracketExpr, requestResolver, msgRecName),
newTree(nnkBracketExpr, nextMsgResolver, msgRecName)))
result.implementProtocolInit = proc (protocol: P2PProtocol): NimNode =
return newCall(initProtocol,
newLit(protocol.rlpxName),
newLit(protocol.version),
protocol.peerInit, protocol.netInit)
p2pProtocol DevP2P(version = 5, rlpxName = "p2p"):
proc hello(peer: Peer,
version: uint,
clientId: string,
capabilities: seq[Capability],
listenPort: uint,
nodeId: array[RawPublicKeySize, byte])
proc sendDisconnectMsg(peer: Peer, reason: DisconnectionReasonList) =
trace "disconnect message received", reason=reason.value, peer
await peer.disconnect(reason.value, false)
# Adding an empty RLP list as the spec defines.
# The parity client specifically checks if there is rlp data.
proc ping(peer: Peer, emptyList: EmptyList) =
discard peer.pong(EmptyList())
proc pong(peer: Peer, emptyList: EmptyList) =
discard
proc removePeer(network: EthereumNode, peer: Peer) =
# It is necessary to check if peer.remote still exists. The connection might
# have been dropped already from the peers side.
# E.g. when receiving a p2p.disconnect message from a peer, a race will happen
# between which side disconnects first.
if network.peerPool != nil and not peer.remote.isNil and
peer.remote in network.peerPool.connectedNodes:
network.peerPool.connectedNodes.del(peer.remote)
connected_peers.dec()
# Note: we need to do this check as disconnect (and thus removePeer)
# currently can get called before the dispatcher is initialized.
if not peer.dispatcher.isNil:
for observer in network.peerPool.observers.values:
if not observer.onPeerDisconnected.isNil:
if observer.protocol.isNil or peer.supports(observer.protocol):
observer.onPeerDisconnected(peer)
proc callDisconnectHandlers(peer: Peer, reason: DisconnectionReason):
Future[void] {.async.} =
var futures = newSeqOfCap[Future[void]](allProtocols.len)
for protocol in peer.dispatcher.activeProtocols:
if protocol.disconnectHandler != nil:
futures.add((protocol.disconnectHandler)(peer, reason))
await allFutures(futures)
for f in futures:
doAssert(f.finished())
if f.failed():
trace "Disconnection handler ended with an error", err = f.error.msg
proc disconnect*(peer: Peer, reason: DisconnectionReason,
notifyOtherPeer = false) {.async.} =
if peer.connectionState notin {Disconnecting, Disconnected}:
peer.connectionState = Disconnecting
# Do this first so sub-protocols have time to clean up and stop sending
# before this node closes transport to remote peer
if not peer.dispatcher.isNil:
# In case of `CatchableError` in any of the handlers, this will be logged.
# Other handlers will still execute.
# In case of `Defect` in any of the handlers, program will quit.
await callDisconnectHandlers(peer, reason)
if notifyOtherPeer and not peer.transport.closed:
var fut = peer.sendDisconnectMsg(DisconnectionReasonList(value: reason))
yield fut
if fut.failed:
debug "Failed to deliver disconnect message", peer
proc waitAndClose(peer: Peer, time: Duration) {.async.} =
await sleepAsync(time)
await peer.transport.closeWait()
# Give the peer a chance to disconnect
traceAsyncErrors peer.waitAndClose(2.seconds)
elif not peer.transport.closed:
peer.transport.close()
logDisconnectedPeer peer
peer.connectionState = Disconnected
removePeer(peer.network, peer)
proc validatePubKeyInHello(msg: DevP2P.hello, pubKey: PublicKey): bool =
let pk = PublicKey.fromRaw(msg.nodeId)
pk.isOk and pk[] == pubKey
proc checkUselessPeer(peer: Peer) {.raises: [UselessPeerError, Defect].} =
if peer.dispatcher.numProtocols == 0:
# XXX: Send disconnect + UselessPeer
raise newException(UselessPeerError, "Useless peer")
proc initPeerState*(peer: Peer, capabilities: openArray[Capability])
{.raises: [UselessPeerError, Defect].} =
peer.dispatcher = getDispatcher(peer.network, capabilities)
checkUselessPeer(peer)
# The dispatcher has determined our message ID sequence.
# For each message ID, we allocate a potential slot for
# tracking responses to requests.
# (yes, some of the slots won't be used).
peer.outstandingRequests.newSeq(peer.dispatcher.messages.len)
for d in mitems(peer.outstandingRequests):
d = initDeque[OutstandingRequest]()
# Similarly, we need a bit of book-keeping data to keep track
# of the potentially concurrent calls to `nextMsg`.
peer.awaitedMessages.newSeq(peer.dispatcher.messages.len)
peer.lastReqId = 0
peer.initProtocolStates peer.dispatcher.activeProtocols
proc postHelloSteps(peer: Peer, h: DevP2P.hello) {.async.} =
initPeerState(peer, h.capabilities)
# Please note that the ordering of operations here is important!
#
# We must first start all handshake procedures and give them a
# chance to send any initial packages they might require over
# the network and to yield on their `nextMsg` waits.
#
var subProtocolsHandshakes = newSeqOfCap[Future[void]](allProtocols.len)
for protocol in peer.dispatcher.activeProtocols:
if protocol.handshake != nil:
subProtocolsHandshakes.add((protocol.handshake)(peer))
# The `dispatchMesssages` loop must be started after this.
# Otherwise, we risk that some of the handshake packets sent by
# the other peer may arrrive too early and be processed before
# the handshake code got a change to wait for them.
#
var messageProcessingLoop = peer.dispatchMessages()
messageProcessingLoop.callback = proc(p: pointer) {.gcsafe.} =
if messageProcessingLoop.failed:
debug "Ending dispatchMessages loop", peer,
err = messageProcessingLoop.error.msg
traceAsyncErrors peer.disconnect(ClientQuitting)
# The handshake may involve multiple async steps, so we wait
# here for all of them to finish.
#
await allFutures(subProtocolsHandshakes)
for handshake in subProtocolsHandshakes:
doAssert(handshake.finished())
if handshake.failed():
raise handshake.error
# This is needed as a peer might have already disconnected. In this case
# we need to raise so that rlpxConnect/rlpxAccept fails.
# Disconnect is done only to run the disconnect handlers. TODO: improve this
# also TODO: Should we discern the type of error?
if messageProcessingLoop.finished:
await peer.disconnectAndRaise(ClientQuitting,
"messageProcessingLoop ended while connecting")
peer.connectionState = Connected
template `^`(arr): auto =
# passes a stack array with a matching `arrLen`
# variable as an open array
arr.toOpenArray(0, `arr Len` - 1)
proc initSecretState(hs: var Handshake, authMsg, ackMsg: openArray[byte],
p: Peer) =
var secrets = hs.getSecrets(authMsg, ackMsg)
initSecretState(secrets, p.secretsState)
burnMem(secrets)
template checkSnappySupport(node: EthereumNode, handshake: Handshake, peer: Peer) =
when useSnappy:
peer.snappyEnabled = node.protocolVersion >= devp2pSnappyVersion.uint and
handshake.version >= devp2pSnappyVersion.uint
template getVersion(handshake: Handshake): uint =
when useSnappy:
handshake.version
else:
devp2pVersion
template baseProtocolVersion(node: EthereumNode): untyped =
when useSnappy:
node.protocolVersion
else:
devp2pVersion
template baseProtocolVersion(peer: Peer): uint =
when useSnappy:
if peer.snappyEnabled: devp2pSnappyVersion
else: devp2pVersion
else:
devp2pVersion
proc rlpxConnect*(node: EthereumNode, remote: Node): Future[Peer] {.async.} =
initTracing(devp2pInfo, node.protocols)
let peer = Peer(remote: remote, network: node)
let ta = initTAddress(remote.node.address.ip, remote.node.address.tcpPort)
var ok = false
try:
peer.transport = await connect(ta)
var handshake = Handshake.init(
node.rng[], node.keys, {Initiator, EIP8}, node.baseProtocolVersion)
var authMsg: array[AuthMessageMaxEIP8, byte]
var authMsgLen = 0
authMessage(
handshake, node.rng[], remote.node.pubkey, authMsg, authMsgLen).tryGet()
var res = await peer.transport.write(addr authMsg[0], authMsgLen)
if res != authMsgLen:
raisePeerDisconnected("Unexpected disconnect while authenticating",
TcpError)
let initialSize = handshake.expectedLength
var ackMsg = newSeqOfCap[byte](1024)
ackMsg.setLen(initialSize)
# TODO: Should we not set some timeouts on these `readExactly`s?
await peer.transport.readExactly(addr ackMsg[0], len(ackMsg))
var ret = handshake.decodeAckMessage(ackMsg)
if ret.isErr and ret.error == AuthError.IncompleteError:
ackMsg.setLen(handshake.expectedLength)
await peer.transport.readExactly(addr ackMsg[initialSize],
len(ackMsg) - initialSize)
ret = handshake.decodeAckMessage(ackMsg)
if ret.isErr():
debug "rlpxConnect handshake error", error = ret.error
if not isNil(peer.transport):
peer.transport.close()
return nil
ret.get()
node.checkSnappySupport(handshake, peer)
initSecretState(handshake, ^authMsg, ackMsg, peer)
# if handshake.remoteHPubkey != remote.node.pubKey:
# raise newException(Exception, "Remote pubkey is wrong")
logConnectedPeer peer
var sendHelloFut = peer.hello(
handshake.getVersion(),
node.clientId,
node.capabilities,
uint(node.address.tcpPort),
node.keys.pubkey.toRaw())
var response = await peer.handshakeImpl(
sendHelloFut,
peer.waitSingleMsg(DevP2P.hello),
10.seconds)
if not validatePubKeyInHello(response, remote.node.pubkey):
warn "Remote nodeId is not its public key" # XXX: Do we care?
trace "DevP2P handshake completed", peer = remote,
clientId = response.clientId
await postHelloSteps(peer, response)
ok = true
trace "Peer fully connected", peer = remote, clientId = response.clientId
except PeerDisconnected as e:
case e.reason
of AlreadyConnected, TooManyPeers, MessageTimeout:
trace "Disconnect during rlpxConnect", reason = e.reason, peer = remote
else:
debug "Unexpected disconnect during rlpxConnect", reason = e.reason,
msg = e.msg, peer = remote
except TransportIncompleteError:
trace "Connection dropped in rlpxConnect", remote
except UselessPeerError:
trace "Disconnecting useless peer", peer = remote
except RlpTypeMismatch:
# Some peers report capabilities with names longer than 3 chars. We ignore
# those for now. Maybe we should allow this though.
debug "Rlp error in rlpxConnect"
except TransportOsError as e:
trace "TransportOsError", err = e.msg
except CatchableError as e:
error "Unexpected exception in rlpxConnect", remote, exc = e.name,
err = e.msg
if not ok:
if not isNil(peer.transport):
peer.transport.close()
return nil
else:
return peer
proc rlpxAccept*(node: EthereumNode,
transport: StreamTransport): Future[Peer] {.async.} =
initTracing(devp2pInfo, node.protocols)
let peer = Peer(transport: transport, network: node)
var handshake = Handshake.init(node.rng[], node.keys, {auth.Responder})
var ok = false
try:
let initialSize = handshake.expectedLength
var authMsg = newSeqOfCap[byte](1024)
authMsg.setLen(initialSize)
# TODO: Should we not set some timeouts on these `readExactly`s?
await transport.readExactly(addr authMsg[0], len(authMsg))
var ret = handshake.decodeAuthMessage(authMsg)
if ret.isErr and ret.error == AuthError.IncompleteError:
# Eip8 auth message is possible, but not likely
authMsg.setLen(handshake.expectedLength)
await transport.readExactly(addr authMsg[initialSize],
len(authMsg) - initialSize)
ret = handshake.decodeAuthMessage(authMsg)
if ret.isErr():
# It is likely that errors on the handshake Auth is just garbage arriving
# on the TCP port as it is the first data on the incoming connection,
# hence log them as trace.
trace "rlpxAccept handshake error", error = ret.error
if not isNil(peer.transport):
peer.transport.close()
return nil
ret.get()
node.checkSnappySupport(handshake, peer)
handshake.version = uint8(peer.baseProtocolVersion)
var ackMsg: array[AckMessageMaxEIP8, byte]
var ackMsgLen: int
handshake.ackMessage(node.rng[], ackMsg, ackMsgLen).tryGet()
var res = await transport.write(addr ackMsg[0], ackMsgLen)
if res != ackMsgLen:
raisePeerDisconnected("Unexpected disconnect while authenticating",
TcpError)
initSecretState(handshake, authMsg, ^ackMsg, peer)
let listenPort = transport.localAddress().port
logAcceptedPeer peer
var sendHelloFut = peer.hello(
peer.baseProtocolVersion,
node.clientId,
node.capabilities,
listenPort.uint,
node.keys.pubkey.toRaw())
var response = await peer.handshakeImpl(
sendHelloFut,
peer.waitSingleMsg(DevP2P.hello),
10.seconds)
trace "Received Hello", version=response.version, id=response.clientId
if not validatePubKeyInHello(response, handshake.remoteHPubkey):
warn "A Remote nodeId is not its public key" # XXX: Do we care?
let remote = transport.remoteAddress()
let address = Address(ip: remote.address, tcpPort: remote.port,
udpPort: remote.port)
peer.remote = newNode(
ENode(pubkey: handshake.remoteHPubkey, address: address))
trace "devp2p handshake completed", peer = peer.remote,
clientId = response.clientId
# In case there is an outgoing connection started with this peer we give
# precedence to that one and we disconnect here with `AlreadyConnected`
if peer.remote in node.peerPool.connectedNodes or
peer.remote in node.peerPool.connectingNodes:
trace "Duplicate connection in rlpxAccept"
raisePeerDisconnected("Peer already connecting or connected",
AlreadyConnected)
node.peerPool.connectingNodes.incl(peer.remote)
await postHelloSteps(peer, response)
ok = true
trace "Peer fully connected", peer = peer.remote, clientId = response.clientId
except PeerDisconnected as e:
case e.reason
of AlreadyConnected, TooManyPeers, MessageTimeout:
trace "Disconnect during rlpxAccept", reason = e.reason, peer = peer.remote
else:
debug "Unexpected disconnect during rlpxAccept", reason = e.reason,
msg = e.msg, peer = peer.remote
except TransportIncompleteError:
trace "Connection dropped in rlpxAccept", remote = peer.remote
except UselessPeerError:
trace "Disconnecting useless peer", peer = peer.remote
except RlpTypeMismatch:
# Some peers report capabilities with names longer than 3 chars. We ignore
# those for now. Maybe we should allow this though.
debug "Rlp error in rlpxAccept"
except TransportOsError as e:
trace "TransportOsError", err = e.msg
except CatchableError as e:
error "Unexpected exception in rlpxAccept", exc = e.name, err = e.msg
if not ok:
if not isNil(peer.transport):
peer.transport.close()
return nil
else:
return peer
when isMainModule:
when false:
# The assignments below can be used to investigate if the RLPx procs
# are considered GcSafe. The short answer is that they aren't, because
# they dispatch into user code that might use the GC.
type
GcSafeDispatchMsg = proc (peer: Peer, msgId: int, msgData: var Rlp)
GcSafeRecvMsg = proc (peer: Peer):
Future[tuple[msgId: int, msgData: Rlp]] {.gcsafe.}
GcSafeAccept = proc (transport: StreamTransport, myKeys: KeyPair):
Future[Peer] {.gcsafe.}
var
dispatchMsgPtr = invokeThunk
recvMsgPtr: GcSafeRecvMsg = recvMsg
acceptPtr: GcSafeAccept = rlpxAccept