nim-eth/eth/trie/hexary.nim
2023-05-09 20:19:44 +00:00

840 lines
28 KiB
Nim

import
std/[options, tables],
nimcrypto/[keccak, hash],
../rlp,
"."/[trie_defs, nibbles, db]
type
TrieNodeKey = object
hash: KeccakHash
usedBytes: uint8
DB = TrieDatabaseRef
HexaryTrie* = object
db*: DB
root: TrieNodeKey
isPruning: bool
shouldMissingNodesBeErrors: bool
SecureHexaryTrie* = distinct HexaryTrie
template len(key: TrieNodeKey): int =
key.usedBytes.int
template asDbKey(k: TrieNodeKey): untyped =
doAssert k.usedBytes == 32
k.hash.data
proc expectHash(r: Rlp): seq[byte] =
result = r.toBytes
if result.len != 32:
raise newException(RlpTypeMismatch,
"RLP expected to be a Keccak hash value, but has an incorrect length")
type MissingNodeError* = ref object of AssertionDefect
path*: NibblesSeq
nodeHashBytes*: seq[byte]
proc dbGet(db: DB, data: openArray[byte]): seq[byte]
{.gcsafe, raises: [Defect].} =
db.get(data)
proc dbGet(db: DB, key: Rlp): seq[byte] =
dbGet(db, key.expectHash)
proc dbPut(db: DB, data: openArray[byte]): TrieNodeKey
{.gcsafe, raises: [Defect].}
# For stateless mode, it's possible for nodes to be missing from the DB,
# and we need the higher-level code to be able to find out the *path* to
# the missing node. So here we need the path to be passed in, and if the
# node is missing we'll raise an exception to get that information up to
# where it's needed.
proc getPossiblyMissingNode(db: DB, data: openArray[byte], fullPath: NibblesSeq, pathIndex: int, errorIfMissing: bool): seq[byte]
{.gcsafe, raises: [Defect].} =
let nodeBytes = db.get(data) # need to call this before the call to contains, otherwise CaptureDB complains
if nodeBytes.len > 0 or not errorIfMissing:
nodeBytes
else:
raise MissingNodeError(path: fullPath.slice(0, pathIndex), nodeHashBytes: @data)
proc getPossiblyMissingNode(db: DB, key: Rlp, fullPath: NibblesSeq, pathIndex: int, errorIfMissing: bool): seq[byte] =
getPossiblyMissingNode(db, key.expectHash, fullPath, pathIndex, errorIfMissing)
converter toTrieNodeKey(hash: KeccakHash): TrieNodeKey =
result.hash = hash
result.usedBytes = 32
proc initHexaryTrie*(db: DB, rootHash: KeccakHash, isPruning = true, shouldMissingNodesBeErrors = false): HexaryTrie =
result.db = db
result.root = rootHash
result.isPruning = isPruning
result.shouldMissingNodesBeErrors = shouldMissingNodesBeErrors
template initSecureHexaryTrie*(db: DB, rootHash: KeccakHash, isPruning = true, shouldMissingNodesBeErrors = false): SecureHexaryTrie =
SecureHexaryTrie initHexaryTrie(db, rootHash, isPruning, shouldMissingNodesBeErrors)
proc initHexaryTrie*(db: DB, isPruning = true, shouldMissingNodesBeErrors = false): HexaryTrie
{.raises: [Defect].} =
result.db = db
result.root = result.db.dbPut(emptyRlp)
result.isPruning = isPruning
result.shouldMissingNodesBeErrors = shouldMissingNodesBeErrors
template initSecureHexaryTrie*(db: DB, isPruning = true, shouldMissingNodesBeErrors = false): SecureHexaryTrie =
SecureHexaryTrie initHexaryTrie(db, isPruning, shouldMissingNodesBeErrors)
proc rootHash*(t: HexaryTrie): KeccakHash =
t.root.hash
proc rootHashHex*(t: HexaryTrie): string =
$t.root.hash
template prune(t: HexaryTrie, x: openArray[byte]) =
if t.isPruning: t.db.del(x)
proc isPruning*(t: HexaryTrie): bool =
t.isPruning
proc getLocalBytes(x: TrieNodeKey): seq[byte] =
## This proc should be used on nodes using the optimization
## of short values within the key.
doAssert x.usedBytes < 32
x.hash.data[0..<x.usedBytes]
template keyToLocalBytes(db: DB, k: TrieNodeKey): seq[byte] =
if k.len < 32: k.getLocalBytes
else: dbGet(db, k.asDbKey)
template extensionNodeKey(r: Rlp): auto =
hexPrefixDecode r.listElem(0).toBytes
proc getLookup(db: DB, elem: Rlp, fullPath: NibblesSeq, pathIndex: int, errorIfMissing: bool): Rlp =
if elem.isList: elem
else: rlpFromBytes(getPossiblyMissingNode(db, elem.expectHash, fullPath, pathIndex, errorIfMissing))
proc getAux(db: DB, nodeRlp: Rlp, fullPath: NibblesSeq, pathIndex: int, errorIfMissing: bool): seq[byte]
{.gcsafe, raises: [RlpError, Defect].} =
if not nodeRlp.hasData or nodeRlp.isEmpty:
return
let path = fullPath.slice(pathIndex)
case nodeRlp.listLen
of 2:
let (isLeaf, k) = nodeRlp.extensionNodeKey
let sharedNibbles = sharedPrefixLen(path, k)
if sharedNibbles == k.len:
let value = nodeRlp.listElem(1)
if sharedNibbles == path.len and isLeaf:
return value.toBytes
elif not isLeaf:
let nextLookup = getLookup(db, value, fullPath, pathIndex + sharedNibbles, errorIfMissing)
return getAux(db, nextLookup, fullPath, pathIndex + sharedNibbles, errorIfMissing)
return
of 17:
if path.len == 0:
return nodeRlp.listElem(16).toBytes
var branch = nodeRlp.listElem(path[0].int)
if branch.isEmpty:
return
else:
let nextLookup = getLookup(db, branch, fullPath, pathIndex + 1, errorIfMissing)
return getAux(db, nextLookup, fullPath, pathIndex + 1, errorIfMissing)
else:
raise newException(CorruptedTrieDatabase,
"HexaryTrie node with an unexpected number of children")
proc get*(self: HexaryTrie; key: openArray[byte]): seq[byte] =
var nodeRlp = rlpFromBytes keyToLocalBytes(self.db, self.root)
return getAux(self.db, nodeRlp, initNibbleRange(key), 0, self.shouldMissingNodesBeErrors)
proc getKeysAux(db: DB, stack: var seq[tuple[nodeRlp: Rlp, path: NibblesSeq]], errorIfMissing: bool): seq[byte] =
while stack.len > 0:
let (nodeRlp, path) = stack.pop()
if not nodeRlp.hasData or nodeRlp.isEmpty:
continue
case nodeRlp.listLen
of 2:
let
(isLeaf, k) = nodeRlp.extensionNodeKey
key = path & k
if isLeaf:
doAssert(key.len mod 2 == 0)
return key.getBytes
else:
let
value = nodeRlp.listElem(1)
nextLookup = getLookup(db, value, key, key.len, errorIfMissing)
stack.add((nextLookup, key))
of 17:
for i in 0 ..< 16:
var branch = nodeRlp.listElem(i)
if not branch.isEmpty:
var key = path.cloneAndReserveNibble()
key.replaceLastNibble(i.byte)
let nextLookup = getLookup(db, branch, key, key.len, errorIfMissing)
stack.add((nextLookup, key))
var lastElem = nodeRlp.listElem(16)
if not lastElem.isEmpty:
doAssert(path.len mod 2 == 0)
return path.getBytes
else:
raise newException(CorruptedTrieDatabase,
"HexaryTrie node with an unexpected number of children")
iterator keys*(self: HexaryTrie): seq[byte] =
var
nodeRlp = rlpFromBytes keyToLocalBytes(self.db, self.root)
stack = @[(nodeRlp, initNibbleRange([]))]
while stack.len > 0:
yield getKeysAux(self.db, stack, self.shouldMissingNodesBeErrors)
proc getValuesAux(db: DB, stack: var seq[tuple[nodeRlp: Rlp, path: NibblesSeq]], errorIfMissing: bool): seq[byte] =
while stack.len > 0:
let (nodeRlp, path) = stack.pop()
if not nodeRlp.hasData or nodeRlp.isEmpty:
continue
case nodeRlp.listLen
of 2:
let
(isLeaf, k) = nodeRlp.extensionNodeKey
key = path & k
value = nodeRlp.listElem(1)
if isLeaf:
doAssert(key.len mod 2 == 0)
return value.toBytes
else:
let nextLookup = getLookup(db, value, key, key.len, errorIfMissing)
stack.add((nextLookup, key))
of 17:
for i in 0 ..< 16:
var branch = nodeRlp.listElem(i)
if not branch.isEmpty:
var key = path.cloneAndReserveNibble()
key.replaceLastNibble(i.byte)
let nextLookup = getLookup(db, branch, key, key.len, errorIfMissing)
stack.add((nextLookup, key))
var lastElem = nodeRlp.listElem(16)
if not lastElem.isEmpty:
return lastElem.toBytes
else:
raise newException(CorruptedTrieDatabase,
"HexaryTrie node with an unexpected number of children")
iterator values*(self: HexaryTrie): seq[byte] =
var
nodeRlp = rlpFromBytes keyToLocalBytes(self.db, self.root)
stack = @[(nodeRlp, initNibbleRange([]))]
while stack.len > 0:
yield getValuesAux(self.db, stack, self.shouldMissingNodesBeErrors)
proc getPairsAux(db: DB, stack: var seq[tuple[nodeRlp: Rlp, path: NibblesSeq]], errorIfMissing: bool): (seq[byte], seq[byte]) =
while stack.len > 0:
let (nodeRlp, path) = stack.pop()
if not nodeRlp.hasData or nodeRlp.isEmpty:
continue
case nodeRlp.listLen
of 2:
let
(isLeaf, k) = nodeRlp.extensionNodeKey
key = path & k
value = nodeRlp.listElem(1)
if isLeaf:
doAssert(key.len mod 2 == 0)
return (key.getBytes, value.toBytes)
else:
let nextLookup = getLookup(db, value, key, key.len, errorIfMissing)
stack.add((nextLookup, key))
of 17:
for i in 0 ..< 16:
var branch = nodeRlp.listElem(i)
if not branch.isEmpty:
var key = path.cloneAndReserveNibble()
key.replaceLastNibble(i.byte)
let nextLookup = getLookup(db, branch, key, key.len, errorIfMissing)
stack.add((nextLookup, key))
var lastElem = nodeRlp.listElem(16)
if not lastElem.isEmpty:
doAssert(path.len mod 2 == 0)
return (path.getBytes, lastElem.toBytes)
else:
raise newException(CorruptedTrieDatabase,
"HexaryTrie node with an unexpected number of children")
iterator pairs*(self: HexaryTrie): (seq[byte], seq[byte]) =
var
nodeRlp = rlpFromBytes keyToLocalBytes(self.db, self.root)
stack = @[(nodeRlp, initNibbleRange([]))]
while stack.len > 0:
# perhaps a Nim bug #9778
# cannot yield the helper proc directly
# it will cut the yield in half
let res = getPairsAux(self.db, stack, self.shouldMissingNodesBeErrors)
yield res
iterator replicate*(self: HexaryTrie): (seq[byte], seq[byte]) =
# this iterator helps 'rebuild' the entire trie without
# going through a trie algorithm, but it will pull the entire
# low level KV pairs. Thus the target db will only use put operations
# without del or contains, can speed up huge trie replication.
var
localBytes = keyToLocalBytes(self.db, self.root)
nodeRlp = rlpFromBytes localBytes
stack = @[(nodeRlp, initNibbleRange([]))]
template pushOrYield(elem: untyped) =
if elem.isList:
stack.add((elem, key))
else:
let rlpBytes = get(self.db, elem.expectHash)
let nextLookup = rlpFromBytes(rlpBytes)
stack.add((nextLookup, key))
yield (elem.toBytes, rlpBytes)
yield (@(self.rootHash.data), localBytes)
while stack.len > 0:
let (nodeRlp, path) = stack.pop()
if not nodeRlp.hasData or nodeRlp.isEmpty:
continue
case nodeRlp.listLen
of 2:
let
(isLeaf, k) = nodeRlp.extensionNodeKey
key = path & k
value = nodeRlp.listElem(1)
if not isLeaf: pushOrYield(value)
of 17:
for i in 0 ..< 16:
var branch = nodeRlp.listElem(i)
if not branch.isEmpty:
var key = path.cloneAndReserveNibble()
key.replaceLastNibble(i.byte)
pushOrYield(branch)
else:
raise newException(CorruptedTrieDatabase,
"HexaryTrie node with an unexpected number of children")
proc getValues*(self: HexaryTrie): seq[seq[byte]] =
result = @[]
for v in self.values:
result.add v
proc getKeys*(self: HexaryTrie): seq[seq[byte]] =
result = @[]
for k in self.keys:
result.add k
template getNode(db: DB, elem: Rlp): untyped =
if elem.isList: @(elem.rawData)
else: dbGet(db, elem.expectHash)
proc getBranchAux(db: DB, node: openArray[byte], fullPath: NibblesSeq, pathIndex: int, output: var seq[seq[byte]]) =
var nodeRlp = rlpFromBytes node
if not nodeRlp.hasData or nodeRlp.isEmpty: return
let path = fullPath.slice(pathIndex)
case nodeRlp.listLen
of 2:
let (isLeaf, k) = nodeRlp.extensionNodeKey
let sharedNibbles = sharedPrefixLen(path, k)
if sharedNibbles == k.len:
let value = nodeRlp.listElem(1)
if not isLeaf:
let nextLookup = getNode(db, value)
output.add nextLookup
getBranchAux(db, nextLookup, fullPath, pathIndex + sharedNibbles, output)
of 17:
if path.len != 0:
var branch = nodeRlp.listElem(path[0].int)
if not branch.isEmpty:
let nextLookup = getNode(db, branch)
output.add nextLookup
getBranchAux(db, nextLookup, fullPath, pathIndex + 1, output)
else:
raise newException(CorruptedTrieDatabase,
"HexaryTrie node with an unexpected number of children")
proc getBranch*(self: HexaryTrie; key: openArray[byte]): seq[seq[byte]] =
result = @[]
var node = keyToLocalBytes(self.db, self.root)
result.add node
getBranchAux(self.db, node, initNibbleRange(key), 0, result)
proc dbDel(t: var HexaryTrie, data: openArray[byte]) =
if data.len >= 32: t.prune(data.keccakHash.data)
proc dbPut(db: DB, data: openArray[byte]): TrieNodeKey
{.raises: [Defect].} =
result.hash = data.keccakHash
result.usedBytes = 32
put(db, result.asDbKey, data)
proc appendAndSave(rlpWriter: var RlpWriter, data: openArray[byte], db: DB) =
if data.len >= 32:
var nodeKey = dbPut(db, data)
rlpWriter.append(nodeKey.hash)
else:
rlpWriter.appendRawBytes(data)
proc isTrieBranch(rlp: Rlp): bool =
rlp.isList and (var len = rlp.listLen; len == 2 or len == 17)
proc replaceValue(data: Rlp, key: NibblesSeq, value: openArray[byte]): seq[byte] =
if data.isEmpty:
let prefix = hexPrefixEncode(key, true)
return encodeList(prefix, value)
doAssert data.isTrieBranch
if data.listLen == 2:
return encodeList(data.listElem(0), value)
var r = initRlpList(17)
# XXX: This can be optimized to a direct bitwise copy of the source RLP
var iter = data
# We already know that we are working with a list
doAssert iter.enterList()
for i in 0 ..< 16:
r.append iter
iter.skipElem
r.append value
return r.finish()
proc isTwoItemNode(self: HexaryTrie; r: Rlp, fullPath: NibblesSeq, pathIndex: int): bool =
if r.isBlob:
let resolved = getPossiblyMissingNode(self.db, r, fullPath, pathIndex, self.shouldMissingNodesBeErrors)
let rlp = rlpFromBytes(resolved)
return rlp.isList and rlp.listLen == 2
else:
return r.isList and r.listLen == 2
proc findSingleChild(r: Rlp; childPos: var byte): Rlp =
result = zeroBytesRlp
var i: byte = 0
var rlp = r
for elem in rlp:
if not elem.isEmpty:
if not result.hasData:
result = elem
childPos = i
else:
return zeroBytesRlp
inc i
proc deleteAt(self: var HexaryTrie;
origRlp: Rlp,
fullPath: NibblesSeq,
pathIndex: int): seq[byte]
{.gcsafe, raises: [RlpError, Defect].}
proc deleteAux(self: var HexaryTrie;
rlpWriter: var RlpWriter;
origRlp: Rlp;
fullPath: NibblesSeq,
pathIndex: int): bool =
if origRlp.isEmpty:
return false
var toDelete = if origRlp.isList: origRlp
else: rlpFromBytes getPossiblyMissingNode(self.db, origRlp, fullPath, pathIndex, self.shouldMissingNodesBeErrors)
let b = self.deleteAt(toDelete, fullPath, pathIndex)
if b.len == 0:
return false
rlpWriter.appendAndSave(b, self.db)
return true
proc graft(self: var HexaryTrie; r: Rlp, fullPath: NibblesSeq, pathIndexToTheParent: int): seq[byte] =
doAssert r.isList and r.listLen == 2
var (_, origPath) = r.extensionNodeKey
var value = r.listElem(1)
if not value.isList:
let nodeKey = value.expectHash
var resolvedData = getPossiblyMissingNode(self.db, nodeKey, fullPath, pathIndexToTheParent + origPath.len, self.shouldMissingNodesBeErrors)
self.prune(nodeKey)
value = rlpFromBytes resolvedData
doAssert value.listLen == 2
let (valueIsLeaf, valueKey) = value.extensionNodeKey
var rlpWriter = initRlpList(2)
rlpWriter.append hexPrefixEncode(origPath, valueKey, valueIsLeaf)
rlpWriter.append value.listElem(1)
return rlpWriter.finish
proc mergeAndGraft(self: var HexaryTrie;
fullPath: NibblesSeq;
pathIndexToTheParent: int,
soleChild: Rlp, childPos: byte): seq[byte] =
var output = initRlpList(2)
if childPos == 16:
output.append hexPrefixEncode(NibblesSeq(), true)
else:
doAssert(not soleChild.isEmpty)
output.append int(hexPrefixEncodeByte(childPos))
output.append(soleChild)
result = output.finish()
if self.isTwoItemNode(soleChild, fullPath, pathIndexToTheParent + 1):
result = self.graft(rlpFromBytes(result), fullPath, pathIndexToTheParent)
# If the key is present, returns the RLP bytes for a node that
# omits this key. Returns an empty seq if the key is absent.
proc deleteAt(self: var HexaryTrie; origRlp: Rlp, fullPath: NibblesSeq, pathIndex: int): seq[byte]
{.gcsafe, raises: [RlpError, Defect].} =
if origRlp.isEmpty:
# It's empty RLP, so the key is absent, so no change necessary.
return
doAssert origRlp.isTrieBranch
let origBytes = @(origRlp.rawData)
let path = fullPath.slice(pathIndex)
if origRlp.listLen == 2:
let (isLeaf, k) = origRlp.extensionNodeKey
if k == path and isLeaf:
# This is the leaf for the key we're looking for.
# Omitting this key from the leaf means we're
# left with empty RLP.
self.dbDel origBytes
return emptyRlp
if path.startsWith(k):
# This extension node gets us *partway* to the desired
# key, but not all the way.
let path = origRlp.listElem(0)
let value = origRlp.listElem(1)
# Create RLP for a new 2-item node that omits the key we're
# trying to delete.
var rlpWriter = initRlpList(2)
rlpWriter.append(path)
if not self.deleteAux(rlpWriter, value, fullPath, pathIndex + k.len):
# Key is absent in the value, so never mind.
return
# We don't need the original node anymore, since we're about to
# replace it with a modified one.
self.dbDel origBytes
var finalBytes = rlpWriter.finish
var rlp = rlpFromBytes(finalBytes)
# We already knew that *this* node is a 2-item node; now
# we check to see if the modified *child* is also a 2-item
# node, because if so, we can graft it.
if self.isTwoItemNode(rlp.listElem(1), fullPath, pathIndex + k.len):
return self.graft(rlp, fullPath, pathIndex)
return finalBytes
else:
return
else:
if path.len == 0 and origRlp.listElem(16).isEmpty:
self.dbDel origBytes
var foundChildPos: byte
let singleChild = origRlp.findSingleChild(foundChildPos)
if singleChild.hasData and foundChildPos != 16:
result = self.mergeAndGraft(fullPath, pathIndex + 1, singleChild, foundChildPos)
else:
var rlpRes = initRlpList(17)
var iter = origRlp
# We already know that we are working with a list
doAssert iter.enterList
for i in 0 ..< 16:
rlpRes.append iter
iter.skipElem
rlpRes.append ""
return rlpRes.finish
else:
var rlpWriter = initRlpList(17)
let keyHead = int(path[0])
var i = 0
var origCopy = origRlp
for elem in items(origCopy):
if i == keyHead:
if not self.deleteAux(rlpWriter, elem, fullPath, pathIndex + 1):
return
else:
rlpWriter.append(elem)
inc i
self.dbDel origBytes
result = rlpWriter.finish
var resultRlp = rlpFromBytes(result)
var foundChildPos: byte
let singleChild = resultRlp.findSingleChild(foundChildPos)
if singleChild.hasData:
result = self.mergeAndGraft(fullPath, pathIndex + 1, singleChild, foundChildPos)
proc del*(self: var HexaryTrie; key: openArray[byte]) =
var
rootBytes = keyToLocalBytes(self.db, self.root)
rootRlp = rlpFromBytes rootBytes
var newRootBytes = self.deleteAt(rootRlp, initNibbleRange(key), 0)
if newRootBytes.len > 0:
if rootBytes.len < 32:
self.prune(self.root.asDbKey)
self.root = self.db.dbPut(newRootBytes)
proc mergeAt(self: var HexaryTrie, orig: Rlp, origHash: KeccakHash,
fullPath: NibblesSeq, pathIndex: int, value: openArray[byte],
isInline = false): seq[byte]
{.gcsafe, raises: [RlpError, Defect].}
proc mergeAt(self: var HexaryTrie, rlp: Rlp,
fullPath: NibblesSeq, pathIndex: int, value: openArray[byte],
isInline = false): seq[byte] =
self.mergeAt(rlp, rlp.rawData.keccakHash, fullPath, pathIndex, value, isInline)
proc mergeAtAux(self: var HexaryTrie, output: var RlpWriter, orig: Rlp,
fullPath: NibblesSeq, pathIndex: int, value: openArray[byte]) =
var resolved = orig
var isRemovable = false
if not (orig.isList or orig.isEmpty):
resolved = rlpFromBytes getPossiblyMissingNode(self.db, orig, fullPath, pathIndex, self.shouldMissingNodesBeErrors)
isRemovable = true
let b = self.mergeAt(resolved, fullPath, pathIndex, value, not isRemovable)
output.appendAndSave(b, self.db)
proc mergeAt(self: var HexaryTrie, orig: Rlp, origHash: KeccakHash,
fullPath: NibblesSeq, pathIndex: int, value: openArray[byte],
isInline = false): seq[byte]
{.gcsafe, raises: [RlpError, Defect].} =
let path = fullPath.slice(pathIndex)
template origWithNewValue: auto =
self.prune(origHash.data)
replaceValue(orig, path, value)
if orig.isEmpty:
return origWithNewValue()
doAssert orig.isTrieBranch, $orig
if orig.listLen == 2:
let (isLeaf, k) = orig.extensionNodeKey
var origValue = orig.listElem(1)
if k == path and isLeaf:
return origWithNewValue()
let sharedNibbles = sharedPrefixLen(path, k)
if sharedNibbles == k.len and not isLeaf:
var r = initRlpList(2)
r.append orig.listElem(0)
self.mergeAtAux(r, origValue, fullPath, pathIndex + k.len, value)
return r.finish
if orig.rawData.len >= 32:
self.prune(origHash.data)
if sharedNibbles > 0:
# Split the extension node
var bottom = initRlpList(2)
bottom.append hexPrefixEncode(k.slice(sharedNibbles), isLeaf)
bottom.append origValue
var top = initRlpList(2)
top.append hexPrefixEncode(k.slice(0, sharedNibbles), false)
top.appendAndSave(bottom.finish, self.db)
return self.mergeAt(rlpFromBytes(top.finish), fullPath, pathIndex, value, true)
else:
# Create a branch node
var branches = initRlpList(17)
if k.len == 0:
# The key is now exhausted. This must be a leaf node
doAssert isLeaf
for i in 0 ..< 16:
branches.append ""
branches.append origValue
else:
let n = k[0]
for i in 0 ..< 16:
if byte(i) == n:
if isLeaf or k.len > 1:
let childNode = encodeList(hexPrefixEncode(k.slice(1), isLeaf),
origValue)
branches.appendAndSave(childNode, self.db)
else:
branches.append origValue
else:
branches.append ""
branches.append ""
return self.mergeAt(rlpFromBytes(branches.finish), fullPath, pathIndex, value, true)
else:
if path.len == 0:
return origWithNewValue()
if isInline:
self.prune(origHash.data)
let n = path[0]
var i = 0
var r = initRlpList(17)
var origCopy = orig
for elem in items(origCopy):
if i == int(n):
self.mergeAtAux(r, elem, fullPath, pathIndex + 1, value)
else:
r.append(elem)
inc i
return r.finish
proc put*(self: var HexaryTrie; key, value: openArray[byte]) =
let root = self.root.hash
var rootBytes = getPossiblyMissingNode(self.db, root.data, NibblesSeq(), 0, self.shouldMissingNodesBeErrors)
doAssert rootBytes.len > 0
let newRootBytes = self.mergeAt(rlpFromBytes(rootBytes), root,
initNibbleRange(key), 0, value)
if rootBytes.len < 32:
self.prune(root.data)
self.root = self.db.dbPut(newRootBytes)
proc put*(self: var SecureHexaryTrie; key, value: openArray[byte]) =
put(HexaryTrie(self), key.keccakHash.data, value)
proc get*(self: SecureHexaryTrie; key: openArray[byte]): seq[byte] =
return get(HexaryTrie(self), key.keccakHash.data)
proc del*(self: var SecureHexaryTrie; key: openArray[byte]) =
del(HexaryTrie(self), key.keccakHash.data)
proc rootHash*(self: SecureHexaryTrie): KeccakHash {.borrow.}
proc rootHashHex*(self: SecureHexaryTrie): string {.borrow.}
proc isPruning*(self: SecureHexaryTrie): bool {.borrow.}
template contains*(self: HexaryTrie | SecureHexaryTrie;
key: openArray[byte]): bool =
self.get(key).len > 0
# Validates merkle proof against provided root hash
proc isValidBranch*(branch: seq[seq[byte]], rootHash: KeccakHash, key, value: seq[byte]): bool =
# branch must not be empty
doAssert(branch.len != 0)
var db = newMemoryDB()
for node in branch:
doAssert(node.len != 0)
let nodeHash = keccakHash(node)
db.put(nodeHash.data, node)
var trie = initHexaryTrie(db, rootHash)
result = trie.get(key) == value
# The code below has a lot of duplication with the code above; I needed
# versions of get/put/del that don't just assume that all the nodes exist.
# Maybe there's some way to eliminate the duplication without screwing
# up performance? But for now I don't want to meddle with the existing
# code, for fear of breaking it. --Adam, Nov. 2022
proc db*(self: SecureHexaryTrie): TrieDatabaseRef = HexaryTrie(self).db
template maybeKeyToLocalBytes(db: DB, k: TrieNodeKey): Option[seq[byte]] =
if k.len < 32:
some(k.getLocalBytes)
else:
db.maybeGet(k.asDbKey)
proc maybeGetLookup(db: DB, elem: Rlp): Option[Rlp] =
if elem.isList:
some(elem)
else:
let h = elem.expectHash
let maybeBytes = db.maybeGet(h)
if maybeBytes.isNone:
none[Rlp]()
else:
let bytes = maybeBytes.get
some(rlpFromBytes(bytes))
proc maybeGetAux(db: DB, nodeRlp: Rlp, fullPath: NibblesSeq, pathIndex: int): Option[seq[byte]]
{.gcsafe, raises: [RlpError, Defect].} =
# FIXME-Adam: do I need to distinguish between these two cases?
if not nodeRlp.hasData:
let zero: seq[byte] = @[]
return some(zero)
# return none[seq[byte]]()
if nodeRlp.isEmpty:
# FIXME-Adam: I am REALLY not sure this is the right thing to do. But toGenesisHeader
# failing is a pretty clear indication. So let's try this. I wonder whether the
# above case needs to do this too.
let zero: seq[byte] = @[]
return some(zero)
# return none[seq[byte]]()
let path = fullPath.slice(pathIndex)
case nodeRlp.listLen
of 2:
let (isLeaf, k) = nodeRlp.extensionNodeKey
let sharedNibbles = sharedPrefixLen(path, k)
if sharedNibbles == k.len:
let value = nodeRlp.listElem(1)
if sharedNibbles == path.len and isLeaf:
return some(value.toBytes)
elif not isLeaf:
let maybeNextLookup = maybeGetLookup(db, value)
if maybeNextLookup.isNone:
return none[seq[byte]]()
else:
return maybeGetAux(db, maybeNextLookup.get, fullPath, pathIndex + sharedNibbles)
else:
raise newException(RlpError, "isLeaf is true but the shared nibbles didn't exhaust the path?")
else:
let zero: seq[byte] = @[]
return some(zero)
of 17:
if path.len == 0:
return some(nodeRlp.listElem(16).toBytes)
var branch = nodeRlp.listElem(path[0].int)
if branch.isEmpty:
let zero: seq[byte] = @[]
return some(zero)
else:
let maybeNextLookup = maybeGetLookup(db, branch)
if maybeNextLookup.isNone:
return none[seq[byte]]()
else:
return maybeGetAux(db, maybeNextLookup.get, fullPath, pathIndex + 1)
else:
raise newException(CorruptedTrieDatabase,
"HexaryTrie node with an unexpected number of children")
proc maybeGetAuxByHash(db: DB, node: TrieNodeKey, fullPath: NibblesSeq, pathIndex: int): Option[seq[byte]] =
let maybeBytes = maybeKeyToLocalBytes(db, node)
if maybeBytes.isNone:
return none[seq[byte]]()
else:
let bytes = maybeBytes.get
var nodeRlp = rlpFromBytes(bytes)
return maybeGetAux(db, nodeRlp, fullPath, pathIndex)
proc maybeGet*(self: HexaryTrie; key: openArray[byte]): Option[seq[byte]] =
return maybeGetAuxByHash(self.db, self.root, initNibbleRange(key), 0)
proc maybeGet*(self: SecureHexaryTrie; key: openArray[byte]): Option[seq[byte]] =
return maybeGet(HexaryTrie(self), key.keccakHash.data)