mirror of https://github.com/status-im/nim-eth.git
1488 lines
53 KiB
Nim
1488 lines
53 KiB
Nim
# nim-eth
|
|
# Copyright (c) 2018-2024 Status Research & Development GmbH
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at
|
|
# https://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at
|
|
# https://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except
|
|
# according to those terms.
|
|
|
|
## This module implements the `RLPx` Transport Protocol defined at
|
|
## `RLPx <https://github.com/ethereum/devp2p/blob/master/rlpx.md>`_.
|
|
##
|
|
## Use NIM command line optipn `-d:p2pProtocolDebug` for dumping the
|
|
## generated driver code (just to have it stored somewhere lest one forgets.)
|
|
##
|
|
## Both, the message ID and the request/response ID are now unsigned. This goes
|
|
## along with the RLPx specs (see above) and the sub-protocol specs at
|
|
## `sub-proto <https://github.com/ethereum/devp2p/tree/master/caps>`_ plus the
|
|
## fact that RLP is defined for non-negative integers smaller than 2^64 only at
|
|
## `Yellow Paper <https://ethereum.github.io/yellowpaper/paper.pdf#appendix.B>`_,
|
|
## Appx B, clauses (195) ff and (199).
|
|
##
|
|
|
|
{.push raises: [].}
|
|
|
|
import
|
|
std/[algorithm, deques, options, typetraits, os],
|
|
stew/shims/macros, chronicles, nimcrypto/utils, chronos, metrics,
|
|
".."/[rlp, common, async_utils],
|
|
./private/p2p_types, "."/[kademlia, auth, rlpxcrypt, enode, p2p_protocol_dsl]
|
|
|
|
# TODO: This doesn't get enabled currently in any of the builds, so we send a
|
|
# devp2p protocol handshake message with version. Need to check if some peers
|
|
# drop us because of this.
|
|
when useSnappy:
|
|
import snappy
|
|
const devp2pSnappyVersion* = 5
|
|
|
|
# TODO: chronicles re-export here is added for the error
|
|
# "undeclared identifier: 'activeChroniclesStream'", when the code using p2p
|
|
# does not import chronicles. Need to resolve this properly.
|
|
export
|
|
options, p2pProtocol, rlp, chronicles, metrics
|
|
|
|
declarePublicGauge rlpx_connected_peers,
|
|
"Number of connected peers in the pool"
|
|
|
|
declarePublicCounter rlpx_connect_success,
|
|
"Number of successfull rlpx connects"
|
|
|
|
declarePublicCounter rlpx_connect_failure,
|
|
"Number of rlpx connects that failed", labels = ["reason"]
|
|
|
|
declarePublicCounter rlpx_accept_success,
|
|
"Number of successful rlpx accepted peers"
|
|
|
|
declarePublicCounter rlpx_accept_failure,
|
|
"Number of rlpx accept attempts that failed", labels = ["reason"]
|
|
|
|
logScope:
|
|
topics = "eth p2p rlpx"
|
|
|
|
type
|
|
ResponderWithId*[MsgType] = object
|
|
peer*: Peer
|
|
reqId*: uint
|
|
|
|
ResponderWithoutId*[MsgType] = distinct Peer
|
|
|
|
# We need these two types in rlpx/devp2p as no parameters or single parameters
|
|
# are not getting encoded in an rlp list.
|
|
# TODO: we could generalize this in the protocol dsl but it would need an
|
|
# `alwaysList` flag as not every protocol expects lists in these cases.
|
|
EmptyList = object
|
|
DisconnectionReasonList = object
|
|
value: DisconnectionReason
|
|
|
|
Address = enode.Address
|
|
|
|
proc read(rlp: var Rlp; T: type DisconnectionReasonList): T
|
|
{.gcsafe, raises: [RlpError].} =
|
|
## Rlp mixin: `DisconnectionReasonList` parser
|
|
|
|
if rlp.isList:
|
|
# Be strict here: The expression `rlp.read(DisconnectionReasonList)`
|
|
# accepts lists with at least one item. The array expression wants
|
|
# exactly one item.
|
|
if rlp.rawData.len < 3:
|
|
# avoids looping through all items when parsing for an overlarge array
|
|
return DisconnectionReasonList(
|
|
value: rlp.read(array[1,DisconnectionReason])[0])
|
|
|
|
# Also accepted: a single byte reason code. Is is typically used
|
|
# by variants of the reference implementation `Geth`
|
|
elif rlp.blobLen <= 1:
|
|
return DisconnectionReasonList(
|
|
value: rlp.read(DisconnectionReason))
|
|
|
|
# Also accepted: a blob of a list (aka object) of reason code. It is
|
|
# used by `bor`, a `geth` fork
|
|
elif rlp.blobLen < 4:
|
|
var subList = rlp.toBytes.rlpFromBytes
|
|
if subList.isList:
|
|
# Ditto, see above.
|
|
return DisconnectionReasonList(
|
|
value: subList.read(array[1,DisconnectionReason])[0])
|
|
|
|
raise newException(RlpTypeMismatch, "Single entry list expected")
|
|
|
|
|
|
const
|
|
devp2pVersion* = 4
|
|
maxMsgSize = 1024 * 1024 * 10
|
|
HandshakeTimeout = MessageTimeout
|
|
|
|
include p2p_tracing
|
|
|
|
when tracingEnabled:
|
|
import
|
|
eth/common/eth_types_json_serialization
|
|
|
|
export
|
|
# XXX: This is a work-around for a Nim issue.
|
|
# See a more detailed comment in p2p_tracing.nim
|
|
init, writeValue, getOutput
|
|
|
|
proc init*[MsgName](T: type ResponderWithId[MsgName],
|
|
peer: Peer, reqId: uint): T =
|
|
T(peer: peer, reqId: reqId)
|
|
|
|
proc init*[MsgName](T: type ResponderWithoutId[MsgName], peer: Peer): T =
|
|
T(peer)
|
|
|
|
chronicles.formatIt(Peer): $(it.remote)
|
|
chronicles.formatIt(Opt[uint]): (if it.isSome(): $it.value else: "-1")
|
|
|
|
include p2p_backends_helpers
|
|
|
|
proc requestResolver[MsgType](msg: pointer, future: FutureBase) {.gcsafe.} =
|
|
var f = Future[Option[MsgType]](future)
|
|
if not f.finished:
|
|
if msg != nil:
|
|
f.complete some(cast[ptr MsgType](msg)[])
|
|
else:
|
|
f.complete none(MsgType)
|
|
else:
|
|
# This future was already resolved, but let's do some sanity checks
|
|
# here. The only reasonable explanation is that the request should
|
|
# have timed out.
|
|
if msg != nil:
|
|
try:
|
|
if f.read.isSome:
|
|
doAssert false, "trying to resolve a request twice"
|
|
else:
|
|
doAssert false, "trying to resolve a timed out request with a value"
|
|
except CatchableError as e:
|
|
debug "Exception in requestResolver()", err = e.msg, errName = e.name
|
|
else:
|
|
try:
|
|
if not f.read.isSome:
|
|
doAssert false, "a request timed out twice"
|
|
# This can except when the future still completes with an error.
|
|
# E.g. the `sendMsg` fails because of an already closed transport or a
|
|
# broken pipe
|
|
except TransportOsError as e:
|
|
# E.g. broken pipe
|
|
trace "TransportOsError during request", err = e.msg, errName = e.name
|
|
except TransportError:
|
|
trace "Transport got closed during request"
|
|
except CatchableError as e:
|
|
debug "Exception in requestResolver()", err = e.msg, errName = e.name
|
|
|
|
proc linkSendFailureToReqFuture[S, R](sendFut: Future[S], resFut: Future[R]) =
|
|
sendFut.addCallback() do (arg: pointer):
|
|
# Avoiding potentially double future completions
|
|
if not resFut.finished:
|
|
if sendFut.failed:
|
|
resFut.fail(sendFut.error)
|
|
|
|
proc messagePrinter[MsgType](msg: pointer): string {.gcsafe.} =
|
|
result = ""
|
|
# TODO: uncommenting the line below increases the compile-time
|
|
# tremendously (for reasons not yet known)
|
|
# result = $(cast[ptr MsgType](msg)[])
|
|
|
|
proc disconnect*(peer: Peer, reason: DisconnectionReason,
|
|
notifyOtherPeer = false) {.async: (raises:[]).}
|
|
|
|
template raisePeerDisconnected(msg: string, r: DisconnectionReason) =
|
|
var e = newException(PeerDisconnected, msg)
|
|
e.reason = r
|
|
raise e
|
|
|
|
proc disconnectAndRaise(peer: Peer,
|
|
reason: DisconnectionReason,
|
|
msg: string) {.async:
|
|
(raises: [PeerDisconnected]).} =
|
|
let r = reason
|
|
await peer.disconnect(r)
|
|
raisePeerDisconnected(msg, r)
|
|
|
|
proc handshakeImpl[T](peer: Peer,
|
|
sendFut: Future[void],
|
|
responseFut: Future[T],
|
|
timeout: Duration): Future[T] {.async:
|
|
(raises: [PeerDisconnected, P2PInternalError]).} =
|
|
sendFut.addCallback do (arg: pointer) {.gcsafe.}:
|
|
if sendFut.failed:
|
|
debug "Handshake message not delivered", peer
|
|
|
|
doAssert timeout.milliseconds > 0
|
|
|
|
try:
|
|
let res = await responseFut.wait(timeout)
|
|
return res
|
|
except AsyncTimeoutError:
|
|
# TODO: Really shouldn't disconnect and raise everywhere. In order to avoid
|
|
# understanding what error occured where.
|
|
# And also, incoming and outgoing disconnect errors should be seperated,
|
|
# probably by seperating the actual disconnect call to begin with.
|
|
await disconnectAndRaise(peer, HandshakeTimeout,
|
|
"Protocol handshake was not received in time.")
|
|
except CatchableError as exc:
|
|
raise newException(P2PInternalError, exc.msg)
|
|
|
|
# Dispatcher
|
|
#
|
|
|
|
proc `==`(lhs, rhs: Dispatcher): bool =
|
|
lhs.activeProtocols == rhs.activeProtocols
|
|
|
|
proc describeProtocols(d: Dispatcher): string =
|
|
result = ""
|
|
for protocol in d.activeProtocols:
|
|
if result.len != 0: result.add(',')
|
|
for c in protocol.name: result.add(c)
|
|
|
|
proc numProtocols(d: Dispatcher): int =
|
|
d.activeProtocols.len
|
|
|
|
proc getDispatcher(node: EthereumNode,
|
|
otherPeerCapabilities: openArray[Capability]): Dispatcher =
|
|
# TODO: sub-optimal solution until progress is made here:
|
|
# https://github.com/nim-lang/Nim/issues/7457
|
|
# We should be able to find an existing dispatcher without allocating a new one
|
|
|
|
new result
|
|
newSeq(result.protocolOffsets, protocolCount())
|
|
result.protocolOffsets.fill Opt.none(uint)
|
|
|
|
var nextUserMsgId = 0x10u
|
|
|
|
for localProtocol in node.protocols:
|
|
let idx = localProtocol.index
|
|
block findMatchingProtocol:
|
|
for remoteCapability in otherPeerCapabilities:
|
|
if localProtocol.name == remoteCapability.name and
|
|
localProtocol.version == remoteCapability.version:
|
|
result.protocolOffsets[idx] = Opt.some(nextUserMsgId)
|
|
nextUserMsgId += localProtocol.messages.len.uint
|
|
break findMatchingProtocol
|
|
|
|
template copyTo(src, dest; index: int) =
|
|
for i in 0 ..< src.len:
|
|
dest[index + i] = src[i]
|
|
|
|
result.messages = newSeq[MessageInfo](nextUserMsgId)
|
|
devp2pInfo.messages.copyTo(result.messages, 0)
|
|
|
|
for localProtocol in node.protocols:
|
|
let idx = localProtocol.index
|
|
if result.protocolOffsets[idx].isSome:
|
|
result.activeProtocols.add localProtocol
|
|
localProtocol.messages.copyTo(result.messages,
|
|
result.protocolOffsets[idx].value.int)
|
|
|
|
proc getMsgName*(peer: Peer, msgId: uint): string =
|
|
if not peer.dispatcher.isNil and
|
|
msgId < peer.dispatcher.messages.len.uint and
|
|
not peer.dispatcher.messages[msgId].isNil:
|
|
return peer.dispatcher.messages[msgId].name
|
|
else:
|
|
return case msgId
|
|
of 0: "hello"
|
|
of 1: "disconnect"
|
|
of 2: "ping"
|
|
of 3: "pong"
|
|
else: $msgId
|
|
|
|
proc getMsgMetadata*(peer: Peer, msgId: uint): (ProtocolInfo, MessageInfo) =
|
|
doAssert msgId >= 0
|
|
|
|
let dpInfo = devp2pInfo()
|
|
if msgId <= dpInfo.messages[^1].id:
|
|
return (dpInfo, dpInfo.messages[msgId])
|
|
|
|
if msgId < peer.dispatcher.messages.len.uint:
|
|
let numProtocol = protocolCount()
|
|
for i in 0 ..< numProtocol:
|
|
let protocol = getProtocol(i)
|
|
let offset = peer.dispatcher.protocolOffsets[i]
|
|
if offset.isSome and
|
|
offset.value + protocol.messages[^1].id >= msgId:
|
|
return (protocol, peer.dispatcher.messages[msgId])
|
|
|
|
# Protocol info objects
|
|
#
|
|
|
|
proc initProtocol(name: string, version: int,
|
|
peerInit: PeerStateInitializer,
|
|
networkInit: NetworkStateInitializer): ProtocolInfo =
|
|
ProtocolInfo(
|
|
name : name,
|
|
version : version,
|
|
messages: @[],
|
|
peerStateInitializer: peerInit,
|
|
networkStateInitializer: networkInit
|
|
)
|
|
|
|
proc setEventHandlers(p: ProtocolInfo,
|
|
handshake: HandshakeStep,
|
|
disconnectHandler: DisconnectionHandler) =
|
|
p.handshake = handshake
|
|
p.disconnectHandler = disconnectHandler
|
|
|
|
func asCapability*(p: ProtocolInfo): Capability =
|
|
result.name = p.name
|
|
result.version = p.version
|
|
|
|
proc cmp*(lhs, rhs: ProtocolInfo): int =
|
|
return cmp(lhs.name, rhs.name)
|
|
|
|
proc nextMsgResolver[MsgType](msgData: Rlp, future: FutureBase)
|
|
{.gcsafe, raises: [RlpError].} =
|
|
var reader = msgData
|
|
Future[MsgType](future).complete reader.readRecordType(MsgType,
|
|
MsgType.rlpFieldsCount > 1)
|
|
|
|
proc registerMsg(protocol: ProtocolInfo,
|
|
msgId: uint,
|
|
name: string,
|
|
thunk: ThunkProc,
|
|
printer: MessageContentPrinter,
|
|
requestResolver: RequestResolver,
|
|
nextMsgResolver: NextMsgResolver) =
|
|
if protocol.messages.len.uint <= msgId:
|
|
protocol.messages.setLen(msgId + 1)
|
|
protocol.messages[msgId] = MessageInfo(
|
|
id: msgId,
|
|
name: name,
|
|
thunk: thunk,
|
|
printer: printer,
|
|
requestResolver: requestResolver,
|
|
nextMsgResolver: nextMsgResolver)
|
|
|
|
# Message composition and encryption
|
|
#
|
|
|
|
proc perPeerMsgIdImpl(peer: Peer, proto: ProtocolInfo, msgId: uint): uint =
|
|
result = msgId
|
|
if not peer.dispatcher.isNil:
|
|
result += peer.dispatcher.protocolOffsets[proto.index].value
|
|
|
|
template getPeer(peer: Peer): auto = peer
|
|
template getPeer(responder: ResponderWithId): auto = responder.peer
|
|
template getPeer(responder: ResponderWithoutId): auto = Peer(responder)
|
|
|
|
proc supports*(peer: Peer, proto: ProtocolInfo): bool =
|
|
peer.dispatcher.protocolOffsets[proto.index].isSome
|
|
|
|
proc supports*(peer: Peer, Protocol: type): bool =
|
|
## Checks whether a Peer supports a particular protocol
|
|
peer.supports(Protocol.protocolInfo)
|
|
|
|
template perPeerMsgId(peer: Peer, MsgType: type): uint =
|
|
perPeerMsgIdImpl(peer, MsgType.msgProtocol.protocolInfo, MsgType.msgId)
|
|
|
|
proc invokeThunk*(peer: Peer, msgId: uint, msgData: Rlp): Future[void]
|
|
{.async: (raises: [rlp.RlpError, EthP2PError]).} =
|
|
template invalidIdError: untyped =
|
|
raise newException(UnsupportedMessageError,
|
|
"RLPx message with an invalid id " & $msgId &
|
|
" on a connection supporting " & peer.dispatcher.describeProtocols)
|
|
|
|
# msgId can be negative as it has int as type and gets decoded from rlp
|
|
if msgId >= peer.dispatcher.messages.len.uint: invalidIdError()
|
|
if peer.dispatcher.messages[msgId].isNil: invalidIdError()
|
|
|
|
let thunk = peer.dispatcher.messages[msgId].thunk
|
|
if thunk == nil: invalidIdError()
|
|
|
|
await thunk(peer, msgId, msgData)
|
|
|
|
template compressMsg(peer: Peer, data: seq[byte]): seq[byte] =
|
|
when useSnappy:
|
|
if peer.snappyEnabled:
|
|
snappy.encode(data)
|
|
else: data
|
|
else:
|
|
data
|
|
|
|
proc sendMsg*(peer: Peer, data: seq[byte]) {.async.} =
|
|
var cipherText = encryptMsg(peer.compressMsg(data), peer.secretsState)
|
|
try:
|
|
var res = await peer.transport.write(cipherText)
|
|
if res != len(cipherText):
|
|
# This is ECONNRESET or EPIPE case when remote peer disconnected.
|
|
await peer.disconnect(TcpError)
|
|
discard
|
|
except CatchableError as e:
|
|
await peer.disconnect(TcpError)
|
|
raise e
|
|
|
|
proc send*[Msg](peer: Peer, msg: Msg): Future[void] =
|
|
logSentMsg(peer, msg)
|
|
|
|
var rlpWriter = initRlpWriter()
|
|
rlpWriter.append perPeerMsgId(peer, Msg)
|
|
rlpWriter.appendRecordType(msg, Msg.rlpFieldsCount > 1)
|
|
peer.sendMsg rlpWriter.finish
|
|
|
|
proc registerRequest(peer: Peer,
|
|
timeout: Duration,
|
|
responseFuture: FutureBase,
|
|
responseMsgId: uint): uint =
|
|
result = if peer.lastReqId.isNone: 0u else: peer.lastReqId.value + 1u
|
|
peer.lastReqId = Opt.some(result)
|
|
|
|
let timeoutAt = Moment.fromNow(timeout)
|
|
let req = OutstandingRequest(id: result,
|
|
future: responseFuture,
|
|
timeoutAt: timeoutAt)
|
|
peer.outstandingRequests[responseMsgId].addLast req
|
|
|
|
doAssert(not peer.dispatcher.isNil)
|
|
let requestResolver = peer.dispatcher.messages[responseMsgId].requestResolver
|
|
proc timeoutExpired(udata: pointer) {.gcsafe.} =
|
|
requestResolver(nil, responseFuture)
|
|
|
|
discard setTimer(timeoutAt, timeoutExpired, nil)
|
|
|
|
proc resolveResponseFuture(peer: Peer, msgId: uint, msg: pointer) =
|
|
## This function is a split off from the previously combined version with
|
|
## the same name using optional request ID arguments. This here is the
|
|
## version without a request ID (there is the other part below.).
|
|
##
|
|
## Optional arguments for macro helpers seem easier to handle with
|
|
## polymorphic functions (than a `Opt[]` prototype argument.)
|
|
##
|
|
logScope:
|
|
msg = peer.dispatcher.messages[msgId].name
|
|
msgContents = peer.dispatcher.messages[msgId].printer(msg)
|
|
receivedReqId = -1
|
|
remotePeer = peer.remote
|
|
|
|
template resolve(future) =
|
|
(peer.dispatcher.messages[msgId].requestResolver)(msg, future)
|
|
|
|
template outstandingReqs: auto =
|
|
peer.outstandingRequests[msgId]
|
|
|
|
block: # no request ID
|
|
# XXX: This is a response from an ETH-like protocol that doesn't feature
|
|
# request IDs. Handling the response is quite tricky here because this may
|
|
# be a late response to an already timed out request or a valid response
|
|
# from a more recent one.
|
|
#
|
|
# We can increase the robustness by recording enough features of the
|
|
# request so we can recognize the matching response, but this is not very
|
|
# easy to do because our peers are allowed to send partial responses.
|
|
#
|
|
# A more generally robust approach is to maintain a set of the wanted
|
|
# data items and then to periodically look for items that have been
|
|
# requested long time ago, but are still missing. New requests can be
|
|
# issues for such items potentially from another random peer.
|
|
var expiredRequests = 0
|
|
for req in outstandingReqs:
|
|
if not req.future.finished: break
|
|
inc expiredRequests
|
|
outstandingReqs.shrink(fromFirst = expiredRequests)
|
|
if outstandingReqs.len > 0:
|
|
let oldestReq = outstandingReqs.popFirst
|
|
resolve oldestReq.future
|
|
else:
|
|
trace "late or dup RPLx reply ignored", msgId
|
|
|
|
proc resolveResponseFuture(peer: Peer, msgId: uint, msg: pointer, reqId: uint) =
|
|
## Variant of `resolveResponseFuture()` for request ID argument.
|
|
logScope:
|
|
msg = peer.dispatcher.messages[msgId].name
|
|
msgContents = peer.dispatcher.messages[msgId].printer(msg)
|
|
receivedReqId = reqId
|
|
remotePeer = peer.remote
|
|
|
|
template resolve(future) =
|
|
(peer.dispatcher.messages[msgId].requestResolver)(msg, future)
|
|
|
|
template outstandingReqs: auto =
|
|
peer.outstandingRequests[msgId]
|
|
|
|
block: # have request ID
|
|
# TODO: This is not completely sound because we are still using a global
|
|
# `reqId` sequence (the problem is that we might get a response ID that
|
|
# matches a request ID for a different type of request). To make the code
|
|
# correct, we can use a separate sequence per response type, but we have
|
|
# to first verify that the other Ethereum clients are supporting this
|
|
# correctly (because then, we'll be reusing the same reqIds for different
|
|
# types of requests). Alternatively, we can assign a separate interval in
|
|
# the `reqId` space for each type of response.
|
|
if peer.lastReqId.isNone or reqId > peer.lastReqId.value:
|
|
debug "RLPx response without matching request", msgId, reqId
|
|
return
|
|
|
|
var idx = 0
|
|
while idx < outstandingReqs.len:
|
|
template req: auto = outstandingReqs()[idx]
|
|
|
|
if req.future.finished:
|
|
doAssert req.timeoutAt <= Moment.now()
|
|
# Here we'll remove the expired request by swapping
|
|
# it with the last one in the deque (if necessary):
|
|
if idx != outstandingReqs.len - 1:
|
|
req = outstandingReqs.popLast
|
|
continue
|
|
else:
|
|
outstandingReqs.shrink(fromLast = 1)
|
|
# This was the last item, so we don't have any
|
|
# more work to do:
|
|
return
|
|
|
|
if req.id == reqId:
|
|
resolve req.future
|
|
# Here we'll remove the found request by swapping
|
|
# it with the last one in the deque (if necessary):
|
|
if idx != outstandingReqs.len - 1:
|
|
req = outstandingReqs.popLast
|
|
else:
|
|
outstandingReqs.shrink(fromLast = 1)
|
|
return
|
|
|
|
inc idx
|
|
|
|
trace "late or dup RPLx reply ignored"
|
|
|
|
|
|
proc recvMsg*(peer: Peer): Future[tuple[msgId: uint, msgData: Rlp]] {.async.} =
|
|
## This procs awaits the next complete RLPx message in the TCP stream
|
|
|
|
var headerBytes: array[32, byte]
|
|
await peer.transport.readExactly(addr headerBytes[0], 32)
|
|
|
|
var msgSize: int
|
|
var msgHeader: RlpxHeader
|
|
if decryptHeaderAndGetMsgSize(peer.secretsState,
|
|
headerBytes, msgSize, msgHeader).isErr():
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"Cannot decrypt RLPx frame header")
|
|
|
|
if msgSize > maxMsgSize:
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"RLPx message exceeds maximum size")
|
|
|
|
let remainingBytes = encryptedLength(msgSize) - 32
|
|
# TODO: Migrate this to a thread-local seq
|
|
# JACEK:
|
|
# or pass it in, allowing the caller to choose - they'll likely be in a
|
|
# better position to decide if buffer should be reused or not. this will
|
|
# also be useful for chunked messages where part of the buffer may have
|
|
# been processed and needs filling in
|
|
var encryptedBytes = newSeq[byte](remainingBytes)
|
|
await peer.transport.readExactly(addr encryptedBytes[0], len(encryptedBytes))
|
|
|
|
let decryptedMaxLength = decryptedLength(msgSize)
|
|
var
|
|
decryptedBytes = newSeq[byte](decryptedMaxLength)
|
|
decryptedBytesCount = 0
|
|
|
|
if decryptBody(peer.secretsState, encryptedBytes, msgSize,
|
|
decryptedBytes, decryptedBytesCount).isErr():
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"Cannot decrypt RLPx frame body")
|
|
|
|
decryptedBytes.setLen(decryptedBytesCount)
|
|
|
|
when useSnappy:
|
|
if peer.snappyEnabled:
|
|
decryptedBytes = snappy.decode(decryptedBytes, maxMsgSize)
|
|
if decryptedBytes.len == 0:
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"Snappy uncompress encountered malformed data")
|
|
|
|
# Check embedded header-data for start of an obsoleted chunked message.
|
|
# Note that the check should come *before* the `msgId` is read. For
|
|
# instance, if this is a malformed packet, then the `msgId` might be
|
|
# random which in turn might try to access a `peer.dispatcher.messages[]`
|
|
# slot with a `nil` entry.
|
|
#
|
|
# The current RLPx requirements need both tuuple entries be zero, see
|
|
# github.com/ethereum/devp2p/blob/master/rlpx.md#framing
|
|
#
|
|
if (msgHeader[4] and 127) != 0 or # capability-id, now required to be zero
|
|
(msgHeader[5] and 127) != 0: # context-id, now required to be zero
|
|
await peer.disconnectAndRaise(
|
|
BreachOfProtocol, "Rejected obsoleted chunked message header")
|
|
|
|
var rlp = rlpFromBytes(decryptedBytes)
|
|
|
|
var msgId: uint32
|
|
try:
|
|
# uint32 as this seems more than big enough for the amount of msgIds
|
|
msgId = rlp.read(uint32)
|
|
result = (msgId.uint, rlp)
|
|
except RlpError:
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"Cannot read RLPx message id")
|
|
|
|
|
|
proc checkedRlpRead(peer: Peer, r: var Rlp, MsgType: type):
|
|
auto {.raises: [RlpError].} =
|
|
when defined(release):
|
|
return r.read(MsgType)
|
|
else:
|
|
try:
|
|
return r.read(MsgType)
|
|
except rlp.RlpError as e:
|
|
debug "Failed rlp.read",
|
|
peer = peer,
|
|
dataType = MsgType.name,
|
|
err = e.msg,
|
|
errName = e.name
|
|
#, rlpData = r.inspect -- don't use (might crash)
|
|
|
|
raise e
|
|
|
|
proc waitSingleMsg(peer: Peer, MsgType: type): Future[MsgType] {.async.} =
|
|
let wantedId = peer.perPeerMsgId(MsgType)
|
|
while true:
|
|
var (nextMsgId, nextMsgData) = await peer.recvMsg()
|
|
|
|
if nextMsgId == wantedId:
|
|
try:
|
|
result = checkedRlpRead(peer, nextMsgData, MsgType)
|
|
logReceivedMsg(peer, result)
|
|
return
|
|
except rlp.RlpError:
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"Invalid RLPx message body")
|
|
|
|
elif nextMsgId == 1: # p2p.disconnect
|
|
# TODO: can still raise RlpError here...?
|
|
let reasonList = nextMsgData.read(DisconnectionReasonList)
|
|
let reason = reasonList.value
|
|
await peer.disconnect(reason)
|
|
trace "disconnect message received in waitSingleMsg", reason, peer
|
|
raisePeerDisconnected("Unexpected disconnect", reason)
|
|
else:
|
|
debug "Dropped RLPX message",
|
|
msg = peer.dispatcher.messages[nextMsgId].name
|
|
# TODO: This is breach of protocol?
|
|
|
|
proc nextMsg*(peer: Peer, MsgType: type): Future[MsgType] =
|
|
## This procs awaits a specific RLPx message.
|
|
## Any messages received while waiting will be dispatched to their
|
|
## respective handlers. The designated message handler will also run
|
|
## to completion before the future returned by `nextMsg` is resolved.
|
|
let wantedId = peer.perPeerMsgId(MsgType)
|
|
let f = peer.awaitedMessages[wantedId]
|
|
if not f.isNil:
|
|
return Future[MsgType](f)
|
|
|
|
initFuture result
|
|
peer.awaitedMessages[wantedId] = result
|
|
|
|
# Known fatal errors are handled inside dispatchMessages.
|
|
# Errors we are currently unaware of are caught in the dispatchMessages
|
|
# callback. There they will be logged if CatchableError and quit on Defect.
|
|
# Non fatal errors such as the current CatchableError could be moved and
|
|
# handled a layer lower for clarity (and consistency), as also the actual
|
|
# message handler code as the TODO mentions already.
|
|
proc dispatchMessages*(peer: Peer) {.async.} =
|
|
while peer.connectionState notin {Disconnecting, Disconnected}:
|
|
var msgId: uint
|
|
var msgData: Rlp
|
|
try:
|
|
(msgId, msgData) = await peer.recvMsg()
|
|
except TransportError:
|
|
# Note: This will also catch TransportIncompleteError. TransportError will
|
|
# here usually occur when a read is attempted when the transport is
|
|
# already closed. TransportIncompleteError when the transport is closed
|
|
# during read.
|
|
case peer.connectionState
|
|
of Connected:
|
|
# Dropped connection, still need to cleanup the peer.
|
|
# This could be seen as bad behaving peer.
|
|
trace "Dropped connection", peer
|
|
await peer.disconnect(ClientQuitting, false)
|
|
return
|
|
of Disconnecting, Disconnected:
|
|
# Graceful disconnect, can still cause TransportIncompleteError as it
|
|
# could be that this loop was waiting at recvMsg().
|
|
return
|
|
else:
|
|
# Connection dropped while `Connecting` (in rlpxConnect/rlpxAccept).
|
|
return
|
|
except PeerDisconnected:
|
|
return
|
|
|
|
try:
|
|
await peer.invokeThunk(msgId, msgData)
|
|
except RlpError as e:
|
|
debug "RlpError, ending dispatchMessages loop", peer,
|
|
msg = peer.getMsgName(msgId), err = e.msg, errName = e.name
|
|
await peer.disconnect(BreachOfProtocol, true)
|
|
return
|
|
except EthP2PError as e:
|
|
debug "Error while handling RLPx message", peer,
|
|
msg = peer.getMsgName(msgId), err = e.msg, errName = e.name
|
|
|
|
# TODO: Hmm, this can be safely moved into the message handler thunk.
|
|
# The documentation will need to be updated, explaining the fact that
|
|
# nextMsg will be resolved only if the message handler has executed
|
|
# successfully.
|
|
if msgId < peer.awaitedMessages.len.uint and
|
|
peer.awaitedMessages[msgId] != nil:
|
|
let msgInfo = peer.dispatcher.messages[msgId]
|
|
try:
|
|
(msgInfo.nextMsgResolver)(msgData, peer.awaitedMessages[msgId])
|
|
except CatchableError as e:
|
|
# TODO: Handling errors here must be investigated more carefully.
|
|
# They also are supposed to be handled at the call-site where
|
|
# `nextMsg` is used.
|
|
debug "nextMsg resolver failed, ending dispatchMessages loop", peer,
|
|
msg = peer.getMsgName(msgId), err = e.msg
|
|
await peer.disconnect(BreachOfProtocol, true)
|
|
return
|
|
peer.awaitedMessages[msgId] = nil
|
|
|
|
proc p2pProtocolBackendImpl*(protocol: P2PProtocol): Backend =
|
|
let
|
|
resultIdent = ident "result"
|
|
Peer = bindSym "Peer"
|
|
EthereumNode = bindSym "EthereumNode"
|
|
|
|
initRlpWriter = bindSym "initRlpWriter"
|
|
append = bindSym("append", brForceOpen)
|
|
read = bindSym("read", brForceOpen)
|
|
checkedRlpRead = bindSym "checkedRlpRead"
|
|
startList = bindSym "startList"
|
|
tryEnterList = bindSym "tryEnterList"
|
|
finish = bindSym "finish"
|
|
|
|
messagePrinter = bindSym "messagePrinter"
|
|
nextMsgResolver = bindSym "nextMsgResolver"
|
|
registerRequest = bindSym "registerRequest"
|
|
requestResolver = bindSym "requestResolver"
|
|
resolveResponseFuture = bindSym "resolveResponseFuture"
|
|
sendMsg = bindSym "sendMsg"
|
|
nextMsg = bindSym "nextMsg"
|
|
initProtocol = bindSym"initProtocol"
|
|
registerMsg = bindSym "registerMsg"
|
|
perPeerMsgId = bindSym "perPeerMsgId"
|
|
perPeerMsgIdImpl = bindSym "perPeerMsgIdImpl"
|
|
linkSendFailureToReqFuture = bindSym "linkSendFailureToReqFuture"
|
|
handshakeImpl = bindSym "handshakeImpl"
|
|
|
|
ResponderWithId = bindSym "ResponderWithId"
|
|
ResponderWithoutId = bindSym "ResponderWithoutId"
|
|
|
|
isSubprotocol = protocol.rlpxName != "p2p"
|
|
|
|
if protocol.rlpxName.len == 0: protocol.rlpxName = protocol.name
|
|
# By convention, all Ethereum protocol names have at least 3 characters.
|
|
doAssert protocol.rlpxName.len >= 3
|
|
|
|
new result
|
|
|
|
result.registerProtocol = bindSym "registerProtocol"
|
|
result.setEventHandlers = bindSym "setEventHandlers"
|
|
result.PeerType = Peer
|
|
result.NetworkType = EthereumNode
|
|
result.ResponderType = if protocol.useRequestIds: ResponderWithId
|
|
else: ResponderWithoutId
|
|
|
|
result.implementMsg = proc (msg: Message) =
|
|
# FIXME: Or is it already assured that `msgId` is available?
|
|
doAssert msg.id.isSome
|
|
|
|
var
|
|
msgIdValue = msg.id.value
|
|
msgIdent = msg.ident
|
|
msgName = $msgIdent
|
|
msgRecName = msg.recName
|
|
responseMsgId = if msg.response.isNil: Opt.none(uint) else: msg.response.id
|
|
hasReqId = msg.hasReqId
|
|
protocol = msg.protocol
|
|
|
|
# variables used in the sending procs
|
|
peerOrResponder = ident"peerOrResponder"
|
|
rlpWriter = ident"writer"
|
|
perPeerMsgIdVar = ident"perPeerMsgId"
|
|
|
|
# variables used in the receiving procs
|
|
receivedRlp = ident"rlp"
|
|
receivedMsg = ident"msg"
|
|
|
|
var
|
|
readParams = newNimNode(nnkStmtList)
|
|
paramsToWrite = newSeq[NimNode](0)
|
|
appendParams = newNimNode(nnkStmtList)
|
|
|
|
if hasReqId:
|
|
# Messages using request Ids
|
|
readParams.add quote do:
|
|
let `reqIdVar` = `read`(`receivedRlp`, uint)
|
|
|
|
case msg.kind
|
|
of msgRequest:
|
|
doAssert responseMsgId.isSome
|
|
|
|
let reqToResponseOffset = responseMsgId.value - msgIdValue
|
|
let responseMsgId = quote do: `perPeerMsgIdVar` + `reqToResponseOffset`
|
|
|
|
# Each request is registered so we can resolve it when the response
|
|
# arrives. There are two types of protocols: LES-like protocols use
|
|
# explicit `reqId` sent over the wire, while the ETH wire protocol
|
|
# assumes there is one outstanding request at a time (if there are
|
|
# multiple requests we'll resolve them in FIFO order).
|
|
let registerRequestCall = newCall(registerRequest, peerVar,
|
|
timeoutVar,
|
|
resultIdent,
|
|
responseMsgId)
|
|
if hasReqId:
|
|
appendParams.add quote do:
|
|
initFuture `resultIdent`
|
|
let `reqIdVar` = `registerRequestCall`
|
|
paramsToWrite.add reqIdVar
|
|
else:
|
|
appendParams.add quote do:
|
|
initFuture `resultIdent`
|
|
discard `registerRequestCall`
|
|
|
|
of msgResponse:
|
|
if hasReqId:
|
|
paramsToWrite.add newDotExpr(peerOrResponder, reqIdVar)
|
|
|
|
of msgHandshake, msgNotification: discard
|
|
|
|
for param, paramType in msg.procDef.typedParams(skip = 1):
|
|
# This is a fragment of the sending proc that
|
|
# serializes each of the passed parameters:
|
|
paramsToWrite.add param
|
|
|
|
# The received RLP data is deserialized to a local variable of
|
|
# the message-specific type. This is done field by field here:
|
|
readParams.add quote do:
|
|
`receivedMsg`.`param` = `checkedRlpRead`(`peerVar`, `receivedRlp`, `paramType`)
|
|
|
|
let
|
|
paramCount = paramsToWrite.len
|
|
readParamsPrelude = if paramCount > 1: newCall(tryEnterList, receivedRlp)
|
|
else: newStmtList()
|
|
|
|
when tracingEnabled:
|
|
readParams.add newCall(bindSym"logReceivedMsg", peerVar, receivedMsg)
|
|
|
|
let callResolvedResponseFuture =
|
|
if msg.kind != msgResponse:
|
|
newStmtList()
|
|
elif hasReqId:
|
|
newCall(resolveResponseFuture,
|
|
peerVar,
|
|
newCall(perPeerMsgId, peerVar, msgRecName),
|
|
newCall("addr", receivedMsg),
|
|
reqIdVar)
|
|
else:
|
|
newCall(resolveResponseFuture,
|
|
peerVar,
|
|
newCall(perPeerMsgId, peerVar, msgRecName),
|
|
newCall("addr", receivedMsg))
|
|
|
|
var userHandlerParams = @[peerVar]
|
|
if hasReqId: userHandlerParams.add reqIdVar
|
|
|
|
let
|
|
awaitUserHandler = msg.genAwaitUserHandler(receivedMsg, userHandlerParams)
|
|
thunkName = ident(msgName & "Thunk")
|
|
|
|
msg.defineThunk quote do:
|
|
proc `thunkName`(`peerVar`: `Peer`, _: uint, data: Rlp)
|
|
# Fun error if you just use `RlpError` instead of `rlp.RlpError`:
|
|
# "Error: type expected, but got symbol 'RlpError' of kind 'EnumField'"
|
|
{.async: (raises: [rlp.RlpError, EthP2PError]).} =
|
|
var `receivedRlp` = data
|
|
var `receivedMsg` {.noinit.}: `msgRecName`
|
|
`readParamsPrelude`
|
|
`readParams`
|
|
`awaitUserHandler`
|
|
`callResolvedResponseFuture`
|
|
|
|
var sendProc = msg.createSendProc(isRawSender = (msg.kind == msgHandshake))
|
|
sendProc.def.params[1][0] = peerOrResponder
|
|
|
|
let
|
|
msgBytes = ident"msgBytes"
|
|
finalizeRequest = quote do:
|
|
let `msgBytes` = `finish`(`rlpWriter`)
|
|
|
|
var sendCall = newCall(sendMsg, peerVar, msgBytes)
|
|
let senderEpilogue = if msg.kind == msgRequest:
|
|
# In RLPx requests, the returned future was allocated here and passed
|
|
# to `registerRequest`. It's already assigned to the result variable
|
|
# of the proc, so we just wait for the sending operation to complete
|
|
# and we return in a normal way. (the waiting is done, so we can catch
|
|
# any possible errors).
|
|
quote: `linkSendFailureToReqFuture`(`sendCall`, `resultIdent`)
|
|
else:
|
|
# In normal RLPx messages, we are returning the future returned by the
|
|
# `sendMsg` call.
|
|
quote: return `sendCall`
|
|
|
|
let perPeerMsgIdValue = if isSubprotocol:
|
|
newCall(perPeerMsgIdImpl, peerVar, protocol.protocolInfo, newLit(msgIdValue))
|
|
else:
|
|
newLit(msgIdValue)
|
|
|
|
if paramCount > 1:
|
|
# In case there are more than 1 parameter,
|
|
# the params must be wrapped in a list:
|
|
appendParams = newStmtList(
|
|
newCall(startList, rlpWriter, newLit(paramCount)),
|
|
appendParams)
|
|
|
|
for param in paramsToWrite:
|
|
appendParams.add newCall(append, rlpWriter, param)
|
|
|
|
let initWriter = quote do:
|
|
var `rlpWriter` = `initRlpWriter`()
|
|
const `perProtocolMsgIdVar` {.used.} = `msgIdValue`
|
|
let `perPeerMsgIdVar` = `perPeerMsgIdValue`
|
|
`append`(`rlpWriter`, `perPeerMsgIdVar`)
|
|
|
|
when tracingEnabled:
|
|
appendParams.add logSentMsgFields(peerVar, protocol, msgId, paramsToWrite)
|
|
|
|
# let paramCountNode = newLit(paramCount)
|
|
sendProc.setBody quote do:
|
|
let `peerVar` = getPeer(`peerOrResponder`)
|
|
`initWriter`
|
|
`appendParams`
|
|
`finalizeRequest`
|
|
`senderEpilogue`
|
|
|
|
if msg.kind == msgHandshake:
|
|
discard msg.createHandshakeTemplate(sendProc.def.name, handshakeImpl, nextMsg)
|
|
|
|
protocol.outProcRegistrations.add(
|
|
newCall(registerMsg,
|
|
protocolVar,
|
|
newLit(msgIdValue),
|
|
newLit(msgName),
|
|
thunkName,
|
|
newTree(nnkBracketExpr, messagePrinter, msgRecName),
|
|
newTree(nnkBracketExpr, requestResolver, msgRecName),
|
|
newTree(nnkBracketExpr, nextMsgResolver, msgRecName)))
|
|
|
|
result.implementProtocolInit = proc (protocol: P2PProtocol): NimNode =
|
|
return newCall(initProtocol,
|
|
newLit(protocol.rlpxName),
|
|
newLit(protocol.version),
|
|
protocol.peerInit, protocol.netInit)
|
|
|
|
|
|
p2pProtocol DevP2P(version = 5, rlpxName = "p2p"):
|
|
proc hello(peer: Peer,
|
|
version: uint,
|
|
clientId: string,
|
|
capabilities: seq[Capability],
|
|
listenPort: uint,
|
|
nodeId: array[RawPublicKeySize, byte])
|
|
|
|
proc sendDisconnectMsg(peer: Peer, reason: DisconnectionReasonList) =
|
|
trace "disconnect message received", reason=reason.value, peer
|
|
await peer.disconnect(reason.value, false)
|
|
|
|
# Adding an empty RLP list as the spec defines.
|
|
# The parity client specifically checks if there is rlp data.
|
|
proc ping(peer: Peer, emptyList: EmptyList) =
|
|
discard peer.pong(EmptyList())
|
|
|
|
proc pong(peer: Peer, emptyList: EmptyList) =
|
|
discard
|
|
|
|
proc removePeer(network: EthereumNode, peer: Peer) =
|
|
# It is necessary to check if peer.remote still exists. The connection might
|
|
# have been dropped already from the peers side.
|
|
# E.g. when receiving a p2p.disconnect message from a peer, a race will happen
|
|
# between which side disconnects first.
|
|
if network.peerPool != nil and not peer.remote.isNil and
|
|
peer.remote in network.peerPool.connectedNodes:
|
|
network.peerPool.connectedNodes.del(peer.remote)
|
|
rlpx_connected_peers.dec()
|
|
|
|
# Note: we need to do this check as disconnect (and thus removePeer)
|
|
# currently can get called before the dispatcher is initialized.
|
|
if not peer.dispatcher.isNil:
|
|
for observer in network.peerPool.observers.values:
|
|
if not observer.onPeerDisconnected.isNil:
|
|
if observer.protocol.isNil or peer.supports(observer.protocol):
|
|
observer.onPeerDisconnected(peer)
|
|
|
|
proc callDisconnectHandlers(peer: Peer, reason: DisconnectionReason):
|
|
Future[void] {.async: (raises: []).} =
|
|
var futures = newSeqOfCap[Future[void]](protocolCount())
|
|
|
|
for protocol in peer.dispatcher.activeProtocols:
|
|
if protocol.disconnectHandler != nil:
|
|
futures.add((protocol.disconnectHandler)(peer, reason))
|
|
|
|
await noCancel allFutures(futures)
|
|
|
|
for f in futures:
|
|
doAssert(f.finished())
|
|
if f.failed():
|
|
trace "Disconnection handler ended with an error", err = f.error.msg
|
|
|
|
proc disconnect*(peer: Peer, reason: DisconnectionReason,
|
|
notifyOtherPeer = false) {.async: (raises: []).} =
|
|
if peer.connectionState notin {Disconnecting, Disconnected}:
|
|
peer.connectionState = Disconnecting
|
|
# Do this first so sub-protocols have time to clean up and stop sending
|
|
# before this node closes transport to remote peer
|
|
if not peer.dispatcher.isNil:
|
|
# In case of `CatchableError` in any of the handlers, this will be logged.
|
|
# Other handlers will still execute.
|
|
# In case of `Defect` in any of the handlers, program will quit.
|
|
await callDisconnectHandlers(peer, reason)
|
|
|
|
if notifyOtherPeer and not peer.transport.closed:
|
|
|
|
proc waitAndClose(peer: Peer, time: Duration) {.async.} =
|
|
await sleepAsync(time)
|
|
await peer.transport.closeWait()
|
|
|
|
try:
|
|
await peer.sendDisconnectMsg(DisconnectionReasonList(value: reason))
|
|
except CatchableError as e:
|
|
trace "Failed to deliver disconnect message", peer,
|
|
err = e.msg, errName = e.name
|
|
|
|
# Give the peer a chance to disconnect
|
|
traceAsyncErrors peer.waitAndClose(2.seconds)
|
|
elif not peer.transport.closed:
|
|
peer.transport.close()
|
|
|
|
logDisconnectedPeer peer
|
|
peer.connectionState = Disconnected
|
|
removePeer(peer.network, peer)
|
|
|
|
func validatePubKeyInHello(msg: DevP2P.hello, pubKey: PublicKey): bool =
|
|
let pk = PublicKey.fromRaw(msg.nodeId)
|
|
pk.isOk and pk[] == pubKey
|
|
|
|
func checkUselessPeer(peer: Peer) {.raises: [UselessPeerError].} =
|
|
if peer.dispatcher.numProtocols == 0:
|
|
# XXX: Send disconnect + UselessPeer
|
|
raise newException(UselessPeerError, "Useless peer")
|
|
|
|
proc initPeerState*(peer: Peer, capabilities: openArray[Capability])
|
|
{.raises: [UselessPeerError].} =
|
|
peer.dispatcher = getDispatcher(peer.network, capabilities)
|
|
checkUselessPeer(peer)
|
|
|
|
# The dispatcher has determined our message ID sequence.
|
|
# For each message ID, we allocate a potential slot for
|
|
# tracking responses to requests.
|
|
# (yes, some of the slots won't be used).
|
|
peer.outstandingRequests.newSeq(peer.dispatcher.messages.len)
|
|
for d in mitems(peer.outstandingRequests):
|
|
d = initDeque[OutstandingRequest]()
|
|
|
|
# Similarly, we need a bit of book-keeping data to keep track
|
|
# of the potentially concurrent calls to `nextMsg`.
|
|
peer.awaitedMessages.newSeq(peer.dispatcher.messages.len)
|
|
peer.lastReqId = Opt.some(0u)
|
|
peer.initProtocolStates peer.dispatcher.activeProtocols
|
|
|
|
proc postHelloSteps(peer: Peer, h: DevP2P.hello) {.async.} =
|
|
initPeerState(peer, h.capabilities)
|
|
|
|
# Please note that the ordering of operations here is important!
|
|
#
|
|
# We must first start all handshake procedures and give them a
|
|
# chance to send any initial packages they might require over
|
|
# the network and to yield on their `nextMsg` waits.
|
|
#
|
|
var subProtocolsHandshakes = newSeqOfCap[Future[void]](protocolCount())
|
|
for protocol in peer.dispatcher.activeProtocols:
|
|
if protocol.handshake != nil:
|
|
subProtocolsHandshakes.add((protocol.handshake)(peer))
|
|
|
|
# The `dispatchMessages` loop must be started after this.
|
|
# Otherwise, we risk that some of the handshake packets sent by
|
|
# the other peer may arrive too early and be processed before
|
|
# the handshake code got a change to wait for them.
|
|
#
|
|
var messageProcessingLoop = peer.dispatchMessages()
|
|
|
|
let cb = proc(p: pointer) {.gcsafe.} =
|
|
if messageProcessingLoop.failed:
|
|
debug "Ending dispatchMessages loop", peer,
|
|
err = messageProcessingLoop.error.msg
|
|
traceAsyncErrors peer.disconnect(ClientQuitting)
|
|
|
|
messageProcessingLoop.addCallback(cb)
|
|
|
|
# The handshake may involve multiple async steps, so we wait
|
|
# here for all of them to finish.
|
|
#
|
|
await allFutures(subProtocolsHandshakes)
|
|
|
|
for handshake in subProtocolsHandshakes:
|
|
doAssert(handshake.finished())
|
|
if handshake.failed():
|
|
raise handshake.error
|
|
|
|
# This is needed as a peer might have already disconnected. In this case
|
|
# we need to raise so that rlpxConnect/rlpxAccept fails.
|
|
# Disconnect is done only to run the disconnect handlers. TODO: improve this
|
|
# also TODO: Should we discern the type of error?
|
|
if messageProcessingLoop.finished:
|
|
await peer.disconnectAndRaise(ClientQuitting,
|
|
"messageProcessingLoop ended while connecting")
|
|
peer.connectionState = Connected
|
|
|
|
template `^`(arr): auto =
|
|
# passes a stack array with a matching `arrLen`
|
|
# variable as an open array
|
|
arr.toOpenArray(0, `arr Len` - 1)
|
|
|
|
proc initSecretState(p: Peer, hs: Handshake, authMsg, ackMsg: openArray[byte]) =
|
|
var secrets = hs.getSecrets(authMsg, ackMsg)
|
|
initSecretState(secrets, p.secretsState)
|
|
burnMem(secrets)
|
|
|
|
template setSnappySupport(peer: Peer, node: EthereumNode, handshake: Handshake) =
|
|
when useSnappy:
|
|
peer.snappyEnabled = node.protocolVersion >= devp2pSnappyVersion.uint and
|
|
handshake.version >= devp2pSnappyVersion.uint
|
|
|
|
template getVersion(handshake: Handshake): uint =
|
|
when useSnappy:
|
|
handshake.version
|
|
else:
|
|
devp2pVersion
|
|
|
|
template baseProtocolVersion(node: EthereumNode): untyped =
|
|
when useSnappy:
|
|
node.protocolVersion
|
|
else:
|
|
devp2pVersion
|
|
|
|
template baseProtocolVersion(peer: Peer): uint =
|
|
when useSnappy:
|
|
if peer.snappyEnabled: devp2pSnappyVersion
|
|
else: devp2pVersion
|
|
else:
|
|
devp2pVersion
|
|
|
|
type
|
|
RlpxError* = enum
|
|
TransportConnectError,
|
|
RlpxHandshakeTransportError,
|
|
RlpxHandshakeError,
|
|
ProtocolError,
|
|
P2PHandshakeError,
|
|
P2PTransportError,
|
|
InvalidIdentityError,
|
|
UselessRlpxPeerError,
|
|
PeerDisconnectedError,
|
|
TooManyPeersError
|
|
|
|
proc rlpxConnect*(node: EthereumNode, remote: Node):
|
|
Future[Result[Peer, RlpxError]] {.async.} =
|
|
# TODO: Should we not set some timeouts on the `connect` and `readExactly`s?
|
|
# Or should we have a general timeout on the whole rlpxConnect where it gets
|
|
# called?
|
|
# Now, some parts could potential hang until a tcp timeout is hit?
|
|
initTracing(devp2pInfo, node.protocols)
|
|
|
|
let peer = Peer(remote: remote, network: node)
|
|
let ta = initTAddress(remote.node.address.ip, remote.node.address.tcpPort)
|
|
var error = true
|
|
|
|
defer:
|
|
if error: # TODO: Not sure if I like this much
|
|
if not isNil(peer.transport):
|
|
if not peer.transport.closed:
|
|
peer.transport.close()
|
|
|
|
peer.transport =
|
|
try:
|
|
await connect(ta)
|
|
except TransportError:
|
|
return err(TransportConnectError)
|
|
except CatchableError as e:
|
|
# Aside from TransportOsError, seems raw CatchableError can also occur?
|
|
trace "TCP connect with peer failed", err = $e.name, errMsg = $e.msg
|
|
return err(TransportConnectError)
|
|
|
|
# RLPx initial handshake
|
|
var
|
|
handshake = Handshake.init(
|
|
node.rng[], node.keys, {Initiator, EIP8}, node.baseProtocolVersion)
|
|
authMsg: array[AuthMessageMaxEIP8, byte]
|
|
authMsgLen = 0
|
|
# TODO: Rework this so we won't have to pass an array as parameter?
|
|
authMessage(
|
|
handshake, node.rng[], remote.node.pubkey, authMsg, authMsgLen).tryGet()
|
|
|
|
let writeRes =
|
|
try:
|
|
await peer.transport.write(addr authMsg[0], authMsgLen)
|
|
except TransportError:
|
|
return err(RlpxHandshakeTransportError)
|
|
except CatchableError as e: # TODO: Only TransportErrors can occur?
|
|
raiseAssert($e.name & " " & $e.msg)
|
|
if writeRes != authMsgLen:
|
|
return err(RlpxHandshakeTransportError)
|
|
|
|
let initialSize = handshake.expectedLength
|
|
var ackMsg = newSeqOfCap[byte](1024)
|
|
ackMsg.setLen(initialSize)
|
|
|
|
try:
|
|
await peer.transport.readExactly(addr ackMsg[0], len(ackMsg))
|
|
except TransportError:
|
|
return err(RlpxHandshakeTransportError)
|
|
except CatchableError as e:
|
|
raiseAssert($e.name & " " & $e.msg)
|
|
|
|
let res = handshake.decodeAckMessage(ackMsg)
|
|
if res.isErr and res.error == AuthError.IncompleteError:
|
|
ackMsg.setLen(handshake.expectedLength)
|
|
try:
|
|
await peer.transport.readExactly(addr ackMsg[initialSize],
|
|
len(ackMsg) - initialSize)
|
|
except TransportError:
|
|
return err(RlpxHandshakeTransportError)
|
|
except CatchableError as e: # TODO: Only TransportErrors can occur?
|
|
raiseAssert($e.name & " " & $e.msg)
|
|
|
|
# TODO: Bullet 1 of https://github.com/status-im/nim-eth/issues/559
|
|
let res = handshake.decodeAckMessage(ackMsg)
|
|
if res.isErr():
|
|
trace "rlpxConnect handshake error", error = res.error
|
|
return err(RlpxHandshakeError)
|
|
|
|
peer.setSnappySupport(node, handshake)
|
|
peer.initSecretState(handshake, ^authMsg, ackMsg)
|
|
|
|
logConnectedPeer peer
|
|
|
|
# RLPx p2p capability handshake: After the initial handshake, both sides of
|
|
# the connection must send either Hello or a Disconnect message.
|
|
let
|
|
sendHelloFut = peer.hello(
|
|
handshake.getVersion(),
|
|
node.clientId,
|
|
node.capabilities,
|
|
uint(node.address.tcpPort),
|
|
node.keys.pubkey.toRaw())
|
|
|
|
receiveHelloFut = peer.waitSingleMsg(DevP2P.hello)
|
|
|
|
response =
|
|
try:
|
|
await peer.handshakeImpl(
|
|
sendHelloFut,
|
|
receiveHelloFut,
|
|
10.seconds)
|
|
except RlpError:
|
|
return err(ProtocolError)
|
|
except PeerDisconnected:
|
|
return err(PeerDisconnectedError)
|
|
# TODO: Strange compiler error
|
|
# case e.reason:
|
|
# of HandshakeTimeout:
|
|
# # Yeah, a bit odd but in this case PeerDisconnected comes from a
|
|
# # timeout on the P2P Hello message. TODO: Clean-up that handshakeImpl
|
|
# return err(P2PHandshakeError)
|
|
# of TooManyPeers:
|
|
# return err(TooManyPeersError)
|
|
# else:
|
|
# return err(PeerDisconnectedError)
|
|
except TransportError:
|
|
return err(P2PTransportError)
|
|
except P2PInternalError:
|
|
return err(P2PHandshakeError)
|
|
except CatchableError as e:
|
|
raiseAssert($e.name & " " & $e.msg)
|
|
|
|
if not validatePubKeyInHello(response, remote.node.pubkey):
|
|
trace "Wrong devp2p identity in Hello message"
|
|
return err(InvalidIdentityError)
|
|
|
|
trace "DevP2P handshake completed", peer = remote,
|
|
clientId = response.clientId
|
|
|
|
try:
|
|
await postHelloSteps(peer, response)
|
|
except RlpError:
|
|
return err(ProtocolError)
|
|
except PeerDisconnected as e:
|
|
case e.reason:
|
|
of TooManyPeers:
|
|
return err(TooManyPeersError)
|
|
else:
|
|
return err(PeerDisconnectedError)
|
|
except UselessPeerError:
|
|
return err(UselessRlpxPeerError)
|
|
except TransportError:
|
|
return err(P2PTransportError)
|
|
except EthP2PError:
|
|
return err(ProtocolError)
|
|
except CatchableError as e:
|
|
raiseAssert($e.name & " " & $e.msg)
|
|
|
|
debug "Peer fully connected", peer = remote, clientId = response.clientId
|
|
|
|
error = false
|
|
|
|
return ok(peer)
|
|
|
|
# TODO: rework rlpxAccept similar to rlpxConnect.
|
|
proc rlpxAccept*(
|
|
node: EthereumNode, transport: StreamTransport): Future[Peer] {.async: (raises: []).} =
|
|
initTracing(devp2pInfo, node.protocols)
|
|
|
|
let peer = Peer(transport: transport, network: node)
|
|
var handshake = Handshake.init(node.rng[], node.keys, {auth.Responder})
|
|
var ok = false
|
|
try:
|
|
let initialSize = handshake.expectedLength
|
|
var authMsg = newSeqOfCap[byte](1024)
|
|
|
|
authMsg.setLen(initialSize)
|
|
# TODO: Should we not set some timeouts on these `readExactly`s?
|
|
await transport.readExactly(addr authMsg[0], len(authMsg))
|
|
var ret = handshake.decodeAuthMessage(authMsg)
|
|
if ret.isErr and ret.error == AuthError.IncompleteError:
|
|
# Eip8 auth message is possible, but not likely
|
|
authMsg.setLen(handshake.expectedLength)
|
|
await transport.readExactly(addr authMsg[initialSize],
|
|
len(authMsg) - initialSize)
|
|
ret = handshake.decodeAuthMessage(authMsg)
|
|
|
|
if ret.isErr():
|
|
# It is likely that errors on the handshake Auth is just garbage arriving
|
|
# on the TCP port as it is the first data on the incoming connection,
|
|
# hence log them as trace.
|
|
trace "rlpxAccept handshake error", error = ret.error
|
|
if not isNil(peer.transport):
|
|
peer.transport.close()
|
|
|
|
rlpx_accept_failure.inc()
|
|
rlpx_accept_failure.inc(labelValues = ["handshake_error"])
|
|
return nil
|
|
|
|
ret.get()
|
|
|
|
peer.setSnappySupport(node, handshake)
|
|
handshake.version = uint8(peer.baseProtocolVersion)
|
|
|
|
var ackMsg: array[AckMessageMaxEIP8, byte]
|
|
var ackMsgLen: int
|
|
handshake.ackMessage(node.rng[], ackMsg, ackMsgLen).tryGet()
|
|
var res = await transport.write(addr ackMsg[0], ackMsgLen)
|
|
if res != ackMsgLen:
|
|
raisePeerDisconnected("Unexpected disconnect while authenticating",
|
|
TcpError)
|
|
|
|
peer.initSecretState(handshake, authMsg, ^ackMsg)
|
|
|
|
let listenPort = transport.localAddress().port
|
|
|
|
logAcceptedPeer peer
|
|
|
|
var sendHelloFut = peer.hello(
|
|
peer.baseProtocolVersion,
|
|
node.clientId,
|
|
node.capabilities,
|
|
listenPort.uint,
|
|
node.keys.pubkey.toRaw())
|
|
|
|
var response = await peer.handshakeImpl(
|
|
sendHelloFut,
|
|
peer.waitSingleMsg(DevP2P.hello),
|
|
10.seconds)
|
|
|
|
trace "Received Hello", version=response.version, id=response.clientId
|
|
|
|
if not validatePubKeyInHello(response, handshake.remoteHPubkey):
|
|
trace "A Remote nodeId is not its public key" # XXX: Do we care?
|
|
|
|
let remote = transport.remoteAddress()
|
|
let address = Address(ip: remote.address, tcpPort: remote.port,
|
|
udpPort: remote.port)
|
|
peer.remote = newNode(
|
|
ENode(pubkey: handshake.remoteHPubkey, address: address))
|
|
|
|
trace "devp2p handshake completed", peer = peer.remote,
|
|
clientId = response.clientId
|
|
|
|
# In case there is an outgoing connection started with this peer we give
|
|
# precedence to that one and we disconnect here with `AlreadyConnected`
|
|
if peer.remote in node.peerPool.connectedNodes or
|
|
peer.remote in node.peerPool.connectingNodes:
|
|
trace "Duplicate connection in rlpxAccept"
|
|
raisePeerDisconnected("Peer already connecting or connected",
|
|
AlreadyConnected)
|
|
|
|
node.peerPool.connectingNodes.incl(peer.remote)
|
|
|
|
await postHelloSteps(peer, response)
|
|
ok = true
|
|
trace "Peer fully connected", peer = peer.remote, clientId = response.clientId
|
|
except PeerDisconnected as e:
|
|
case e.reason
|
|
of AlreadyConnected, TooManyPeers, MessageTimeout:
|
|
trace "RLPx disconnect", reason = e.reason, peer = peer.remote
|
|
else:
|
|
debug "RLPx disconnect unexpected", reason = e.reason,
|
|
msg = e.msg, peer = peer.remote
|
|
|
|
rlpx_accept_failure.inc(labelValues = [$e.reason])
|
|
except TransportIncompleteError:
|
|
trace "Connection dropped in rlpxAccept", remote = peer.remote
|
|
rlpx_accept_failure.inc(labelValues = [$TransportIncompleteError])
|
|
except UselessPeerError:
|
|
trace "Disconnecting useless peer", peer = peer.remote
|
|
rlpx_accept_failure.inc(labelValues = [$UselessPeerError])
|
|
except RlpTypeMismatch as e:
|
|
# Some peers report capabilities with names longer than 3 chars. We ignore
|
|
# those for now. Maybe we should allow this though.
|
|
trace "Rlp error in rlpxAccept", err = e.msg, errName = e.name
|
|
rlpx_accept_failure.inc(labelValues = [$RlpTypeMismatch])
|
|
except TransportOsError as e:
|
|
if e.code == OSErrorCode(110):
|
|
trace "RLPx timeout", err = e.msg, errName = e.name
|
|
rlpx_accept_failure.inc(labelValues = ["tcp_timeout"])
|
|
else:
|
|
trace "TransportOsError", err = e.msg, errName = e.name
|
|
rlpx_accept_failure.inc(labelValues = [$e.name])
|
|
except CatchableError as e:
|
|
trace "RLPx error", err = e.msg, errName = e.name
|
|
rlpx_accept_failure.inc(labelValues = [$e.name])
|
|
|
|
if not ok:
|
|
if not isNil(peer.transport):
|
|
peer.transport.close()
|
|
|
|
rlpx_accept_failure.inc()
|
|
return nil
|
|
else:
|
|
rlpx_accept_success.inc()
|
|
return peer
|
|
|
|
when isMainModule:
|
|
|
|
when false:
|
|
# The assignments below can be used to investigate if the RLPx procs
|
|
# are considered GcSafe. The short answer is that they aren't, because
|
|
# they dispatch into user code that might use the GC.
|
|
type
|
|
GcSafeDispatchMsg = proc (peer: Peer, msgId: uint, msgData: var Rlp)
|
|
|
|
GcSafeRecvMsg = proc (peer: Peer):
|
|
Future[tuple[msgId: uint, msgData: Rlp]] {.gcsafe.}
|
|
|
|
GcSafeAccept = proc (transport: StreamTransport, myKeys: KeyPair):
|
|
Future[Peer] {.gcsafe.}
|
|
|
|
var
|
|
dispatchMsgPtr = invokeThunk
|
|
recvMsgPtr: GcSafeRecvMsg = recvMsg
|
|
acceptPtr: GcSafeAccept = rlpxAccept
|