nim-eth/eth/common/transactions_rlp.nim
Etan Kissling 171531fbf1
Add helper for recovering authority (#750)
For EIP-7702 SetCode transaction, it is necessary to identify the
authority issuing an authorization. Its account's code is set to
proxy to the authorization address if successful.
2024-10-15 21:44:10 +07:00

505 lines
14 KiB
Nim

# eth
# Copyright (c) 2024 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [].}
import "."/[addresses_rlp, base_rlp, hashes_rlp, transactions], ../rlp
from stew/objects import checkedEnumAssign
export addresses_rlp, base_rlp, hashes_rlp, transactions, rlp
proc appendTxLegacy(w: var RlpWriter, tx: Transaction) =
w.startList(9)
w.append(tx.nonce)
w.append(tx.gasPrice)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.V)
w.append(tx.R)
w.append(tx.S)
proc appendTxEip2930(w: var RlpWriter, tx: Transaction) =
w.startList(11)
w.append(tx.chainId.uint64)
w.append(tx.nonce)
w.append(tx.gasPrice)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.accessList)
w.append(tx.V)
w.append(tx.R)
w.append(tx.S)
proc appendTxEip1559(w: var RlpWriter, tx: Transaction) =
w.startList(12)
w.append(tx.chainId.uint64)
w.append(tx.nonce)
w.append(tx.maxPriorityFeePerGas)
w.append(tx.maxFeePerGas)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.accessList)
w.append(tx.V)
w.append(tx.R)
w.append(tx.S)
proc appendTxEip4844(w: var RlpWriter, tx: Transaction) =
w.startList(14)
w.append(tx.chainId.uint64)
w.append(tx.nonce)
w.append(tx.maxPriorityFeePerGas)
w.append(tx.maxFeePerGas)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.accessList)
w.append(tx.maxFeePerBlobGas)
w.append(tx.versionedHashes)
w.append(tx.V)
w.append(tx.R)
w.append(tx.S)
proc append*(w: var RlpWriter, x: Authorization) =
w.startList(6)
w.append(x.chainId.uint64)
w.append(x.address)
w.append(x.nonce)
w.append(x.v)
w.append(x.r)
w.append(x.s)
proc appendTxEip7702(w: var RlpWriter, tx: Transaction) =
w.startList(13)
w.append(tx.chainId.uint64)
w.append(tx.nonce)
w.append(tx.maxPriorityFeePerGas)
w.append(tx.maxFeePerGas)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.accessList)
w.append(tx.authorizationList)
w.append(tx.V)
w.append(tx.R)
w.append(tx.S)
proc appendTxPayload(w: var RlpWriter, tx: Transaction) =
case tx.txType
of TxLegacy:
w.appendTxLegacy(tx)
of TxEip2930:
w.appendTxEip2930(tx)
of TxEip1559:
w.appendTxEip1559(tx)
of TxEip4844:
w.appendTxEip4844(tx)
of TxEip7702:
w.appendTxEip7702(tx)
proc append*(w: var RlpWriter, tx: Transaction) =
if tx.txType != TxLegacy:
w.append(tx.txType)
w.appendTxPayload(tx)
proc append(w: var RlpWriter, networkPayload: NetworkPayload) =
w.append(networkPayload.blobs)
w.append(networkPayload.commitments)
w.append(networkPayload.proofs)
proc append*(w: var RlpWriter, tx: PooledTransaction) =
if tx.tx.txType != TxLegacy:
w.append(tx.tx.txType)
if tx.networkPayload != nil:
w.startList(4) # spec: rlp([tx_payload, blobs, commitments, proofs])
w.appendTxPayload(tx.tx)
if tx.networkPayload != nil:
w.append(tx.networkPayload)
proc rlpEncodeLegacy(tx: Transaction): seq[byte] =
var w = initRlpWriter()
w.startList(6)
w.append(tx.nonce)
w.append(tx.gasPrice)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.finish()
proc rlpEncodeEip155(tx: Transaction): seq[byte] =
var w = initRlpWriter()
w.startList(9)
w.append(tx.nonce)
w.append(tx.gasPrice)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.chainId)
w.append(0'u8)
w.append(0'u8)
w.finish()
proc rlpEncodeEip2930(tx: Transaction): seq[byte] =
var w = initRlpWriter()
w.append(TxEip2930)
w.startList(8)
w.append(tx.chainId.uint64)
w.append(tx.nonce)
w.append(tx.gasPrice)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.accessList)
w.finish()
proc rlpEncodeEip1559(tx: Transaction): seq[byte] =
var w = initRlpWriter()
w.append(TxEip1559)
w.startList(9)
w.append(tx.chainId.uint64)
w.append(tx.nonce)
w.append(tx.maxPriorityFeePerGas)
w.append(tx.maxFeePerGas)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.accessList)
w.finish()
proc rlpEncodeEip4844(tx: Transaction): seq[byte] =
var w = initRlpWriter()
w.append(TxEip4844)
w.startList(11)
w.append(tx.chainId.uint64)
w.append(tx.nonce)
w.append(tx.maxPriorityFeePerGas)
w.append(tx.maxFeePerGas)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.accessList)
w.append(tx.maxFeePerBlobGas)
w.append(tx.versionedHashes)
w.finish()
proc rlpEncodeEip7702(tx: Transaction): seq[byte] =
var w = initRlpWriter()
w.append(TxEip7702)
w.startList(10)
w.append(tx.chainId.uint64)
w.append(tx.nonce)
w.append(tx.maxPriorityFeePerGas)
w.append(tx.maxFeePerGas)
w.append(tx.gasLimit)
w.append(tx.to)
w.append(tx.value)
w.append(tx.payload)
w.append(tx.accessList)
w.append(tx.authorizationList)
w.finish()
proc encodeForSigning*(tx: Transaction, eip155: bool): seq[byte] =
## Encode transaction data in preparation for signing or signature checking.
## For signature checking, set `eip155 = tx.isEip155`
case tx.txType
of TxLegacy:
if eip155: tx.rlpEncodeEip155 else: tx.rlpEncodeLegacy
of TxEip2930:
tx.rlpEncodeEip2930
of TxEip1559:
tx.rlpEncodeEip1559
of TxEip4844:
tx.rlpEncodeEip4844
of TxEip7702:
tx.rlpEncodeEip7702
template rlpEncode*(tx: Transaction): seq[byte] {.deprecated.} =
encodeForSigning(tx, tx.isEip155())
func rlpHashForSigning*(tx: Transaction, eip155: bool): Hash32 =
# Hash transaction without signature
keccak256(encodeForSigning(tx, eip155))
template txHashNoSignature*(tx: Transaction): Hash32 {.deprecated.} =
rlpHashForSigning(tx, tx.isEip155())
proc readTxLegacy(rlp: var Rlp, tx: var Transaction) {.raises: [RlpError].} =
tx.txType = TxLegacy
rlp.tryEnterList()
rlp.read(tx.nonce)
rlp.read(tx.gasPrice)
rlp.read(tx.gasLimit)
rlp.read(tx.to)
rlp.read(tx.value)
rlp.read(tx.payload)
rlp.read(tx.V)
rlp.read(tx.R)
rlp.read(tx.S)
if tx.V >= EIP155_CHAIN_ID_OFFSET:
tx.chainId = ChainId((tx.V - EIP155_CHAIN_ID_OFFSET) div 2)
proc readTxEip2930(rlp: var Rlp, tx: var Transaction) {.raises: [RlpError].} =
tx.txType = TxEip2930
rlp.tryEnterList()
tx.chainId = rlp.read(uint64).ChainId
rlp.read(tx.nonce)
rlp.read(tx.gasPrice)
rlp.read(tx.gasLimit)
rlp.read(tx.to)
rlp.read(tx.value)
rlp.read(tx.payload)
rlp.read(tx.accessList)
rlp.read(tx.V)
rlp.read(tx.R)
rlp.read(tx.S)
proc readTxEip1559(rlp: var Rlp, tx: var Transaction) {.raises: [RlpError].} =
tx.txType = TxEip1559
rlp.tryEnterList()
tx.chainId = rlp.read(uint64).ChainId
rlp.read(tx.nonce)
rlp.read(tx.maxPriorityFeePerGas)
rlp.read(tx.maxFeePerGas)
rlp.read(tx.gasLimit)
rlp.read(tx.to)
rlp.read(tx.value)
rlp.read(tx.payload)
rlp.read(tx.accessList)
rlp.read(tx.V)
rlp.read(tx.R)
rlp.read(tx.S)
proc readTxEip4844(rlp: var Rlp, tx: var Transaction) {.raises: [RlpError].} =
tx.txType = TxEip4844
rlp.tryEnterList()
tx.chainId = rlp.read(uint64).ChainId
rlp.read(tx.nonce)
rlp.read(tx.maxPriorityFeePerGas)
rlp.read(tx.maxFeePerGas)
rlp.read(tx.gasLimit)
rlp.read(tx.to)
rlp.read(tx.value)
rlp.read(tx.payload)
rlp.read(tx.accessList)
rlp.read(tx.maxFeePerBlobGas)
rlp.read(tx.versionedHashes)
rlp.read(tx.V)
rlp.read(tx.R)
rlp.read(tx.S)
func rlpEncodeEip7702(auth: Authorization): seq[byte] =
var w = initRlpWriter()
w.append(0x05'u8)
w.startList(3)
w.append(auth.chainId.uint64)
w.append(auth.address)
w.append(auth.nonce)
w.finish()
func encodeForSigning*(auth: Authorization): seq[byte] =
## Encode authorization data in preparation for signing or signature checking.
auth.rlpEncodeEip7702
func rlpHashForSigning*(auth: Authorization): Hash32 =
# Hash authorization without signature
keccak256(encodeForSigning(auth))
proc read*(rlp: var Rlp, T: type Authorization): T {.raises: [RlpError].} =
rlp.tryEnterList()
result.chainId = rlp.read(uint64).ChainId
rlp.read(result.address)
rlp.read(result.nonce)
rlp.read(result.v)
rlp.read(result.r)
rlp.read(result.s)
proc readTxEip7702(rlp: var Rlp, tx: var Transaction) {.raises: [RlpError].} =
tx.txType = TxEip7702
rlp.tryEnterList()
tx.chainId = rlp.read(uint64).ChainId
rlp.read(tx.nonce)
rlp.read(tx.maxPriorityFeePerGas)
rlp.read(tx.maxFeePerGas)
rlp.read(tx.gasLimit)
rlp.read(tx.to)
rlp.read(tx.value)
rlp.read(tx.payload)
rlp.read(tx.accessList)
rlp.read(tx.authorizationList)
rlp.read(tx.V)
rlp.read(tx.R)
rlp.read(tx.S)
proc readTxType(rlp: var Rlp): TxType {.raises: [RlpError].} =
if rlp.isList:
raise newException(
RlpTypeMismatch, "Transaction type expected, but source RLP is a list"
)
# EIP-2718: We MUST decode the first byte as a byte, not `rlp.read(int)`.
# If decoded with `rlp.read(int)`, bad transaction data (from the network)
# or even just incorrectly framed data for other reasons fails with
# any of these misleading error messages:
# - "Message too large to fit in memory"
# - "Number encoded with a leading zero"
# - "Read past the end of the RLP stream"
# - "Small number encoded in a non-canonical way"
# - "Attempt to read an Int value past the RLP end"
# - "The RLP contains a larger than expected Int value"
if not rlp.isSingleByte:
if not rlp.hasData:
raise
newException(MalformedRlpError, "Transaction expected but source RLP is empty")
raise newException(
MalformedRlpError,
"TypedTransaction type byte is out of range, must be 0x00 to 0x7f",
)
let txType = rlp.getByteValue
rlp.position += 1
var txVal: TxType
if checkedEnumAssign(txVal, txType):
return txVal
raise newException(
UnsupportedRlpError,
"TypedTransaction type must be 1, 2, or 3 in this version, got " & $txType,
)
proc readTxPayload(
rlp: var Rlp, tx: var Transaction, txType: TxType
) {.raises: [RlpError].} =
case txType
of TxLegacy:
raise
newException(RlpTypeMismatch, "LegacyTransaction should not be wrapped in a list")
of TxEip2930:
rlp.readTxEip2930(tx)
of TxEip1559:
rlp.readTxEip1559(tx)
of TxEip4844:
rlp.readTxEip4844(tx)
of TxEip7702:
rlp.readTxEip7702(tx)
proc readTxTyped(rlp: var Rlp, tx: var Transaction) {.raises: [RlpError].} =
let txType = rlp.readTxType()
rlp.readTxPayload(tx, txType)
proc read*(rlp: var Rlp, T: type Transaction): T {.raises: [RlpError].} =
# Individual transactions are encoded and stored as either `RLP([fields..])`
# for legacy transactions, or `Type || RLP([fields..])`. Both of these
# encodings are byte sequences. The part after `Type` doesn't have to be
# RLP in theory, but all types so far use RLP. EIP-2718 covers this.
if rlp.isList:
rlp.readTxLegacy(result)
else:
rlp.readTxTyped(result)
proc read(rlp: var Rlp, T: type NetworkPayload): T {.raises: [RlpError].} =
result = NetworkPayload()
rlp.read(result.blobs)
rlp.read(result.commitments)
rlp.read(result.proofs)
proc readTxTyped(rlp: var Rlp, tx: var PooledTransaction) {.raises: [RlpError].} =
let
txType = rlp.readTxType()
hasNetworkPayload =
if txType == TxEip4844:
rlp.listLen == 4
else:
false
if hasNetworkPayload:
rlp.tryEnterList() # spec: rlp([tx_payload, blobs, commitments, proofs])
rlp.readTxPayload(tx.tx, txType)
if hasNetworkPayload:
rlp.read(tx.networkPayload)
proc read*(rlp: var Rlp, T: type PooledTransaction): T {.raises: [RlpError].} =
if rlp.isList:
rlp.readTxLegacy(result.tx)
else:
rlp.readTxTyped(result)
proc read*(
rlp: var Rlp, T: (type seq[Transaction]) | (type openArray[Transaction])
): seq[Transaction] {.raises: [RlpError].} =
# In arrays (sequences), transactions are encoded as either `RLP([fields..])`
# for legacy transactions, or `RLP(Type || RLP([fields..]))` for all typed
# transactions to date. Spot the extra `RLP(..)` blob encoding, to make it
# valid RLP inside a larger RLP. EIP-2976 covers this, "Typed Transactions
# over Gossip", although it's not very clear about the blob encoding.
#
# In practice the extra `RLP(..)` applies to all arrays/sequences of
# transactions. In principle, all aggregates (objects etc.), but
# arrays/sequences are enough. In `eth/65` protocol this is essential for
# the correct encoding/decoding of `Transactions`, `NewBlock`, and
# `PooledTransactions` network calls. We need a type match on both
# `openArray[Transaction]` and `seq[Transaction]` to catch all cases.
if not rlp.isList:
raise newException(
RlpTypeMismatch, "Transaction list expected, but source RLP is not a list"
)
for item in rlp:
var tx: Transaction
if item.isList:
item.readTxLegacy(tx)
else:
var rr = rlpFromBytes(rlp.read(seq[byte]))
rr.readTxTyped(tx)
result.add tx
proc read*(
rlp: var Rlp, T: (type seq[PooledTransaction]) | (type openArray[PooledTransaction])
): seq[PooledTransaction] {.raises: [RlpError].} =
if not rlp.isList:
raise newException(
RlpTypeMismatch, "PooledTransaction list expected, but source RLP is not a list"
)
for item in rlp:
var tx: PooledTransaction
if item.isList:
item.readTxLegacy(tx.tx)
else:
var rr = rlpFromBytes(rlp.read(seq[byte]))
rr.readTxTyped(tx)
result.add tx
proc append*(rlpWriter: var RlpWriter, txs: seq[Transaction] | openArray[Transaction]) =
# See above about encoding arrays/sequences of transactions.
rlpWriter.startList(txs.len)
for tx in txs:
if tx.txType == TxLegacy:
rlpWriter.append(tx)
else:
rlpWriter.append(rlp.encode(tx))
proc append*(
rlpWriter: var RlpWriter, txs: seq[PooledTransaction] | openArray[PooledTransaction]
) =
rlpWriter.startList(txs.len)
for tx in txs:
if tx.tx.txType == TxLegacy:
rlpWriter.append(tx)
else:
rlpWriter.append(rlp.encode(tx))