import tables, nimcrypto/[keccak, hash], eth/rlp, trie_defs, nibbles, db type TrieNodeKey = object hash: KeccakHash usedBytes: uint8 DB = TrieDatabaseRef HexaryTrie* = object db*: DB root: TrieNodeKey isPruning: bool SecureHexaryTrie* = distinct HexaryTrie template len(key: TrieNodeKey): int = key.usedBytes.int proc keccak*(r: openArray[byte]): KeccakHash = keccak256.digest r template asDbKey(k: TrieNodeKey): untyped = doAssert k.usedBytes == 32 k.hash.data proc expectHash(r: Rlp): seq[byte] = result = r.toBytes if result.len != 32: raise newException(RlpTypeMismatch, "RLP expected to be a Keccak hash value, but has an incorrect length") proc dbPut(db: DB, data: openArray[byte]): TrieNodeKey {.gcsafe.} template get(db: DB, key: Rlp): seq[byte] = db.get(key.expectHash) converter toTrieNodeKey(hash: KeccakHash): TrieNodeKey = result.hash = hash result.usedBytes = 32 proc initHexaryTrie*(db: DB, rootHash: KeccakHash, isPruning = true): HexaryTrie = result.db = db result.root = rootHash result.isPruning = isPruning template initSecureHexaryTrie*(db: DB, rootHash: KeccakHash, isPruning = true): SecureHexaryTrie = SecureHexaryTrie initHexaryTrie(db, rootHash, isPruning) proc initHexaryTrie*(db: DB, isPruning = true): HexaryTrie = result.db = db result.root = result.db.dbPut(emptyRlp) result.isPruning = isPruning template initSecureHexaryTrie*(db: DB, isPruning = true): SecureHexaryTrie = SecureHexaryTrie initHexaryTrie(db, isPruning) proc rootHash*(t: HexaryTrie): KeccakHash = t.root.hash proc rootHashHex*(t: HexaryTrie): string = $t.root.hash template prune(t: HexaryTrie, x: openArray[byte]) = if t.isPruning: t.db.del(x) proc isPruning*(t: HexaryTrie): bool = t.isPruning proc getLocalBytes(x: TrieNodeKey): seq[byte] = ## This proc should be used on nodes using the optimization ## of short values within the key. doAssert x.usedBytes < 32 x.hash.data[0.. 0: let (nodeRlp, path) = stack.pop() if not nodeRlp.hasData or nodeRlp.isEmpty: continue case nodeRlp.listLen of 2: let (isLeaf, k) = nodeRlp.extensionNodeKey key = path & k if isLeaf: doAssert(key.len mod 2 == 0) return key.getBytes else: let value = nodeRlp.listElem(1) nextLookup = value.getLookup stack.add((nextLookup, key)) of 17: for i in 0 ..< 16: var branch = nodeRlp.listElem(i) if not branch.isEmpty: let nextLookup = branch.getLookup var key = path.cloneAndReserveNibble() key.replaceLastNibble(i.byte) stack.add((nextLookup, key)) var lastElem = nodeRlp.listElem(16) if not lastElem.isEmpty: doAssert(path.len mod 2 == 0) return path.getBytes else: raise newException(CorruptedTrieDatabase, "HexaryTrie node with an unexpected number of children") iterator keys*(self: HexaryTrie): seq[byte] = var nodeRlp = rlpFromBytes keyToLocalBytes(self.db, self.root) stack = @[(nodeRlp, initNibbleRange([]))] while stack.len > 0: yield getKeysAux(self.db, stack) proc getValuesAux(db: DB, stack: var seq[Rlp]): seq[byte] = while stack.len > 0: let nodeRlp = stack.pop() if not nodeRlp.hasData or nodeRlp.isEmpty: continue case nodeRlp.listLen of 2: let (isLeaf, _) = nodeRlp.extensionNodeKey value = nodeRlp.listElem(1) if isLeaf: return value.toBytes else: let nextLookup = value.getLookup stack.add(nextLookup) of 17: for i in 0 ..< 16: var branch = nodeRlp.listElem(i) if not branch.isEmpty: let nextLookup = branch.getLookup stack.add(nextLookup) var lastElem = nodeRlp.listElem(16) if not lastElem.isEmpty: return lastElem.toBytes else: raise newException(CorruptedTrieDatabase, "HexaryTrie node with an unexpected number of children") iterator values*(self: HexaryTrie): seq[byte] = var nodeRlp = rlpFromBytes keyToLocalBytes(self.db, self.root) stack = @[nodeRlp] while stack.len > 0: yield getValuesAux(self.db, stack) proc getPairsAux(db: DB, stack: var seq[tuple[nodeRlp: Rlp, path: NibblesSeq]]): (seq[byte], seq[byte]) = while stack.len > 0: let (nodeRlp, path) = stack.pop() if not nodeRlp.hasData or nodeRlp.isEmpty: continue case nodeRlp.listLen of 2: let (isLeaf, k) = nodeRlp.extensionNodeKey key = path & k value = nodeRlp.listElem(1) if isLeaf: doAssert(key.len mod 2 == 0) return (key.getBytes, value.toBytes) else: let nextLookup = value.getLookup stack.add((nextLookup, key)) of 17: for i in 0 ..< 16: var branch = nodeRlp.listElem(i) if not branch.isEmpty: let nextLookup = branch.getLookup var key = path.cloneAndReserveNibble() key.replaceLastNibble(i.byte) stack.add((nextLookup, key)) var lastElem = nodeRlp.listElem(16) if not lastElem.isEmpty: doAssert(path.len mod 2 == 0) return (path.getBytes, lastElem.toBytes) else: raise newException(CorruptedTrieDatabase, "HexaryTrie node with an unexpected number of children") iterator pairs*(self: HexaryTrie): (seq[byte], seq[byte]) = var nodeRlp = rlpFromBytes keyToLocalBytes(self.db, self.root) stack = @[(nodeRlp, initNibbleRange([]))] while stack.len > 0: # perhaps a Nim bug #9778 # cannot yield the helper proc directly # it will cut the yield in half let res = getPairsAux(self.db, stack) yield res iterator replicate*(self: HexaryTrie): (seq[byte], seq[byte]) = # this iterator helps 'rebuild' the entire trie without # going through a trie algorithm, but it will pull the entire # low level KV pairs. Thus the target db will only use put operations # without del or contains, can speed up huge trie replication. var localBytes = keyToLocalBytes(self.db, self.root) nodeRlp = rlpFromBytes localBytes stack = @[(nodeRlp, initNibbleRange([]))] template pushOrYield(elem: untyped) = if elem.isList: stack.add((elem, key)) else: let rlpBytes = get(self.db, elem.expectHash) let nextLookup = rlpFromBytes(rlpBytes) stack.add((nextLookup, key)) yield (elem.toBytes, rlpBytes) yield (@(self.rootHash.data), localBytes) while stack.len > 0: let (nodeRlp, path) = stack.pop() if not nodeRlp.hasData or nodeRlp.isEmpty: continue case nodeRlp.listLen of 2: let (isLeaf, k) = nodeRlp.extensionNodeKey key = path & k value = nodeRlp.listElem(1) if not isLeaf: pushOrYield(value) of 17: for i in 0 ..< 16: var branch = nodeRlp.listElem(i) if not branch.isEmpty: var key = path.cloneAndReserveNibble() key.replaceLastNibble(i.byte) pushOrYield(branch) else: raise newException(CorruptedTrieDatabase, "HexaryTrie node with an unexpected number of children") proc getValues*(self: HexaryTrie): seq[seq[byte]] = result = @[] for v in self.values: result.add v proc getKeys*(self: HexaryTrie): seq[seq[byte]] = result = @[] for k in self.keys: result.add k template getNode(elem: untyped): untyped = if elem.isList: @(elem.rawData) else: get(db, elem.expectHash) proc getBranchAux(db: DB, node: openArray[byte], path: NibblesSeq, output: var seq[seq[byte]]) = var nodeRlp = rlpFromBytes node if not nodeRlp.hasData or nodeRlp.isEmpty: return case nodeRlp.listLen of 2: let (isLeaf, k) = nodeRlp.extensionNodeKey let sharedNibbles = sharedPrefixLen(path, k) if sharedNibbles == k.len: let value = nodeRlp.listElem(1) if not isLeaf: let nextLookup = value.getNode output.add nextLookup getBranchAux(db, nextLookup, path.slice(sharedNibbles), output) of 17: if path.len != 0: var branch = nodeRlp.listElem(path[0].int) if not branch.isEmpty: let nextLookup = branch.getNode output.add nextLookup getBranchAux(db, nextLookup, path.slice(1), output) else: raise newException(CorruptedTrieDatabase, "HexaryTrie node with an unexpected number of children") proc getBranch*(self: HexaryTrie; key: openArray[byte]): seq[seq[byte]] = result = @[] var node = keyToLocalBytes(self.db, self.root) result.add node getBranchAux(self.db, node, initNibbleRange(key), result) proc dbDel(t: var HexaryTrie, data: openArray[byte]) = if data.len >= 32: t.prune(data.keccak.data) proc dbPut(db: DB, data: openArray[byte]): TrieNodeKey = result.hash = data.keccak result.usedBytes = 32 put(db, result.asDbKey, data) proc appendAndSave(rlpWriter: var RlpWriter, data: openArray[byte], db: DB) = if data.len >= 32: var nodeKey = dbPut(db, data) rlpWriter.append(nodeKey.hash) else: rlpWriter.appendRawBytes(data) proc isTrieBranch(rlp: Rlp): bool = rlp.isList and (var len = rlp.listLen; len == 2 or len == 17) proc replaceValue(data: Rlp, key: NibblesSeq, value: openArray[byte]): seq[byte] = if data.isEmpty: let prefix = hexPrefixEncode(key, true) return encodeList(prefix, value) doAssert data.isTrieBranch if data.listLen == 2: return encodeList(data.listElem(0), value) var r = initRlpList(17) # XXX: This can be optimized to a direct bitwise copy of the source RLP var iter = data # We already know that we are working with a list doAssert iter.enterList() for i in 0 ..< 16: r.append iter iter.skipElem r.append value return r.finish() proc isTwoItemNode(self: HexaryTrie; r: Rlp): bool = if r.isBlob: let resolved = self.db.get(r) let rlp = rlpFromBytes(resolved) return rlp.isList and rlp.listLen == 2 else: return r.isList and r.listLen == 2 proc findSingleChild(r: Rlp; childPos: var byte): Rlp = result = zeroBytesRlp var i: byte = 0 var rlp = r for elem in rlp: if not elem.isEmpty: if not result.hasData: result = elem childPos = i else: return zeroBytesRlp inc i proc deleteAt(self: var HexaryTrie; origRlp: Rlp, key: NibblesSeq): seq[byte] {.gcsafe.} proc deleteAux(self: var HexaryTrie; rlpWriter: var RlpWriter; origRlp: Rlp; path: NibblesSeq): bool = if origRlp.isEmpty: return false var toDelete = if origRlp.isList: origRlp else: rlpFromBytes self.db.get(origRlp) let b = self.deleteAt(toDelete, path) if b.len == 0: return false rlpWriter.appendAndSave(b, self.db) return true proc graft(self: var HexaryTrie; r: Rlp): seq[byte] = doAssert r.isList and r.listLen == 2 var (_, origPath) = r.extensionNodeKey var value = r.listElem(1) if not value.isList: let nodeKey = value.expectHash var resolvedData = self.db.get(nodeKey) self.prune(nodeKey) value = rlpFromBytes resolvedData doAssert value.listLen == 2 let (valueIsLeaf, valueKey) = value.extensionNodeKey var rlpWriter = initRlpList(2) rlpWriter.append hexPrefixEncode(origPath, valueKey, valueIsLeaf) rlpWriter.append value.listElem(1) return rlpWriter.finish proc mergeAndGraft(self: var HexaryTrie; soleChild: Rlp, childPos: byte): seq[byte] = var output = initRlpList(2) if childPos == 16: output.append hexPrefixEncode(NibblesSeq(), true) else: doAssert(not soleChild.isEmpty) output.append int(hexPrefixEncodeByte(childPos)) output.append(soleChild) result = output.finish() if self.isTwoItemNode(soleChild): result = self.graft(rlpFromBytes(result)) proc deleteAt(self: var HexaryTrie; origRlp: Rlp, key: NibblesSeq): seq[byte] = if origRlp.isEmpty: return doAssert origRlp.isTrieBranch let origBytes = @(origRlp.rawData) if origRlp.listLen == 2: let (isLeaf, k) = origRlp.extensionNodeKey if k == key and isLeaf: self.dbDel origBytes return emptyRlp if key.startsWith(k): var rlpWriter = initRlpList(2) path = origRlp.listElem(0) value = origRlp.listElem(1) rlpWriter.append(path) if not self.deleteAux(rlpWriter, value, key.slice(k.len)): return self.dbDel origBytes var finalBytes = rlpWriter.finish var rlp = rlpFromBytes(finalBytes) if self.isTwoItemNode(rlp.listElem(1)): return self.graft(rlp) return finalBytes else: return else: if key.len == 0 and origRlp.listElem(16).isEmpty: self.dbDel origBytes var foundChildPos: byte let singleChild = origRlp.findSingleChild(foundChildPos) if singleChild.hasData and foundChildPos != 16: result = self.mergeAndGraft(singleChild, foundChildPos) else: var rlpRes = initRlpList(17) var iter = origRlp # We already know that we are working with a list doAssert iter.enterList for i in 0 ..< 16: rlpRes.append iter iter.skipElem rlpRes.append "" return rlpRes.finish else: var rlpWriter = initRlpList(17) let keyHead = int(key[0]) var i = 0 var origCopy = origRlp for elem in items(origCopy): if i == keyHead: if not self.deleteAux(rlpWriter, elem, key.slice(1)): return else: rlpWriter.append(elem) inc i self.dbDel origBytes result = rlpWriter.finish var resultRlp = rlpFromBytes(result) var foundChildPos: byte let singleChild = resultRlp.findSingleChild(foundChildPos) if singleChild.hasData: result = self.mergeAndGraft(singleChild, foundChildPos) proc del*(self: var HexaryTrie; key: openArray[byte]) = var rootBytes = keyToLocalBytes(self.db, self.root) rootRlp = rlpFromBytes rootBytes var newRootBytes = self.deleteAt(rootRlp, initNibbleRange(key)) if newRootBytes.len > 0: if rootBytes.len < 32: self.prune(self.root.asDbKey) self.root = self.db.dbPut(newRootBytes) proc mergeAt(self: var HexaryTrie, orig: Rlp, origHash: KeccakHash, key: NibblesSeq, value: openArray[byte], isInline = false): seq[byte] {.gcsafe.} proc mergeAt(self: var HexaryTrie, rlp: Rlp, key: NibblesSeq, value: openArray[byte], isInline = false): seq[byte] = self.mergeAt(rlp, rlp.rawData.keccak, key, value, isInline) proc mergeAtAux(self: var HexaryTrie, output: var RlpWriter, orig: Rlp, key: NibblesSeq, value: openArray[byte]) = var resolved = orig var isRemovable = false if not (orig.isList or orig.isEmpty): resolved = rlpFromBytes self.db.get(orig) isRemovable = true let b = self.mergeAt(resolved, key, value, not isRemovable) output.appendAndSave(b, self.db) proc mergeAt(self: var HexaryTrie, orig: Rlp, origHash: KeccakHash, key: NibblesSeq, value: openArray[byte], isInline = false): seq[byte] = template origWithNewValue: auto = self.prune(origHash.data) replaceValue(orig, key, value) if orig.isEmpty: return origWithNewValue() doAssert orig.isTrieBranch, $orig if orig.listLen == 2: let (isLeaf, k) = orig.extensionNodeKey var origValue = orig.listElem(1) if k == key and isLeaf: return origWithNewValue() let sharedNibbles = sharedPrefixLen(key, k) if sharedNibbles == k.len and not isLeaf: var r = initRlpList(2) r.append orig.listElem(0) self.mergeAtAux(r, origValue, key.slice(k.len), value) return r.finish if orig.rawData.len >= 32: self.prune(origHash.data) if sharedNibbles > 0: # Split the extension node var bottom = initRlpList(2) bottom.append hexPrefixEncode(k.slice(sharedNibbles), isLeaf) bottom.append origValue var top = initRlpList(2) top.append hexPrefixEncode(k.slice(0, sharedNibbles), false) top.appendAndSave(bottom.finish, self.db) return self.mergeAt(rlpFromBytes(top.finish), key, value, true) else: # Create a branch node var branches = initRlpList(17) if k.len == 0: # The key is now exhausted. This must be a leaf node doAssert isLeaf for i in 0 ..< 16: branches.append "" branches.append origValue else: let n = k[0] for i in 0 ..< 16: if byte(i) == n: if isLeaf or k.len > 1: let childNode = encodeList(hexPrefixEncode(k.slice(1), isLeaf), origValue) branches.appendAndSave(childNode, self.db) else: branches.append origValue else: branches.append "" branches.append "" return self.mergeAt(rlpFromBytes(branches.finish), key, value, true) else: if key.len == 0: return origWithNewValue() if isInline: self.prune(origHash.data) let n = key[0] var i = 0 var r = initRlpList(17) var origCopy = orig for elem in items(origCopy): if i == int(n): self.mergeAtAux(r, elem, key.slice(1), value) else: r.append(elem) inc i return r.finish proc put*(self: var HexaryTrie; key, value: openArray[byte]) = let root = self.root.hash var rootBytes = self.db.get(root.data) doAssert rootBytes.len > 0 let newRootBytes = self.mergeAt(rlpFromBytes(rootBytes), root, initNibbleRange(key), value) if rootBytes.len < 32: self.prune(root.data) self.root = self.db.dbPut(newRootBytes) proc put*(self: var SecureHexaryTrie; key, value: openArray[byte]) = put(HexaryTrie(self), key.keccak.data, value) proc get*(self: SecureHexaryTrie; key: openArray[byte]): seq[byte] = return get(HexaryTrie(self), key.keccak.data) proc del*(self: var SecureHexaryTrie; key: openArray[byte]) = del(HexaryTrie(self), key.keccak.data) proc rootHash*(self: SecureHexaryTrie): KeccakHash {.borrow.} proc rootHashHex*(self: SecureHexaryTrie): string {.borrow.} proc isPruning*(self: SecureHexaryTrie): bool {.borrow.} template contains*(self: HexaryTrie | SecureHexaryTrie; key: openArray[byte]): bool = self.get(key).len > 0