Merge pull request #447 from etan-status/rm-ssz

remove outdated and incorrect SSZ code
This commit is contained in:
Etan Kissling 2021-12-10 16:57:31 +01:00 committed by GitHub
commit 923fc428f2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 0 additions and 2063 deletions

View File

@ -66,9 +66,6 @@ task test_trie, "Run trie tests":
task test_db, "Run db tests": task test_db, "Run db tests":
runTest("tests/db/all_tests") runTest("tests/db/all_tests")
task test_ssz, "Run ssz tests":
runTest("tests/ssz/all_tests")
task test_utp, "Run utp tests": task test_utp, "Run utp tests":
runTest("tests/utp/all_utp_tests") runTest("tests/utp/all_utp_tests")
@ -84,7 +81,6 @@ task test, "Run all tests":
test_p2p_task() test_p2p_task()
test_trie_task() test_trie_task()
test_db_task() test_db_task()
test_ssz_task()
test_utp_task() test_utp_task()
task test_discv5_full, "Run discovery v5 and its dependencies tests": task test_discv5_full, "Run discovery v5 and its dependencies tests":

View File

@ -1,313 +0,0 @@
# nim-eth
# Copyright (c) 2018-2021 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [Defect].}
import
stew/[bitops2, endians2, ptrops]
type
Bytes = seq[byte]
BitSeq* = distinct Bytes
## The current design of BitSeq tries to follow precisely
## the bitwise representation of the SSZ bitlists.
## This is a relatively compact representation, but as
## evident from the code below, many of the operations
## are not trivial.
BitArray*[bits: static int] = object
bytes*: array[(bits + 7) div 8, byte]
func bitsLen*(bytes: openArray[byte]): int =
let
bytesCount = bytes.len
lastByte = bytes[bytesCount - 1]
markerPos = log2trunc(lastByte)
bytesCount * 8 - (8 - markerPos)
template len*(s: BitSeq): int =
bitsLen(Bytes s)
template len*(a: BitArray): int =
a.bits
func add*(s: var BitSeq, value: bool) =
let
lastBytePos = s.Bytes.len - 1
lastByte = s.Bytes[lastBytePos]
if (lastByte and byte(128)) == 0:
# There is at least one leading zero, so we have enough
# room to store the new bit
let markerPos = log2trunc(lastByte)
s.Bytes[lastBytePos].changeBit markerPos, value
s.Bytes[lastBytePos].setBit markerPos + 1
else:
s.Bytes[lastBytePos].changeBit 7, value
s.Bytes.add byte(1)
func toBytesLE(x: uint): array[sizeof(x), byte] =
# stew/endians2 supports explicitly sized uints only
when sizeof(uint) == 4:
static: doAssert sizeof(uint) == sizeof(uint32)
toBytesLE(x.uint32)
elif sizeof(uint) == 8:
static: doAssert sizeof(uint) == sizeof(uint64)
toBytesLE(x.uint64)
else:
static: doAssert false, "requires a 32-bit or 64-bit platform"
func loadLEBytes(WordType: type, bytes: openArray[byte]): WordType =
# TODO: this is a temporary proc until the endians API is improved
var shift = 0
for b in bytes:
result = result or (WordType(b) shl shift)
shift += 8
func storeLEBytes(value: SomeUnsignedInt, dst: var openArray[byte]) =
doAssert dst.len <= sizeof(value)
let bytesLE = toBytesLE(value)
copyMem(addr dst[0], unsafeAddr bytesLE[0], dst.len)
template loopOverWords(lhs, rhs: BitSeq,
lhsIsVar, rhsIsVar: static bool,
WordType: type,
lhsBits, rhsBits, body: untyped) =
const hasRhs = astToStr(lhs) != astToStr(rhs)
let bytesCount = len Bytes(lhs)
when hasRhs: doAssert len(Bytes(rhs)) == bytesCount
var fullWordsCount = bytesCount div sizeof(WordType)
let lastWordSize = bytesCount mod sizeof(WordType)
block:
var lhsWord: WordType
when hasRhs:
var rhsWord: WordType
var firstByteOfLastWord, lastByteOfLastWord: int
# TODO: Returning a `var` value from an iterator is always safe due to
# the way inlining works, but currently the compiler reports an error
# when a local variable escapes. We have to cheat it with this location
# obfuscation through pointers:
template lhsBits: auto = (addr(lhsWord))[]
when hasRhs:
template rhsBits: auto = (addr(rhsWord))[]
template lastWordBytes(bitseq): auto =
Bytes(bitseq).toOpenArray(firstByteOfLastWord, lastByteOfLastWord)
template initLastWords =
lhsWord = loadLEBytes(WordType, lastWordBytes(lhs))
when hasRhs: rhsWord = loadLEBytes(WordType, lastWordBytes(rhs))
if lastWordSize == 0:
firstByteOfLastWord = bytesCount - sizeof(WordType)
lastByteOfLastWord = bytesCount - 1
dec fullWordsCount
else:
firstByteOfLastWord = bytesCount - lastWordSize
lastByteOfLastWord = bytesCount - 1
initLastWords()
let markerPos = log2trunc(lhsWord)
when hasRhs: doAssert log2trunc(rhsWord) == markerPos
lhsWord.clearBit markerPos
when hasRhs: rhsWord.clearBit markerPos
body
when lhsIsVar or rhsIsVar:
let
markerBit = uint(1 shl markerPos)
mask = markerBit - 1'u
when lhsIsVar:
let lhsEndResult = (lhsWord and mask) or markerBit
storeLEBytes(lhsEndResult, lastWordBytes(lhs))
when rhsIsVar:
let rhsEndResult = (rhsWord and mask) or markerBit
storeLEBytes(rhsEndResult, lastWordBytes(rhs))
var lhsCurrAddr = cast[ptr WordType](unsafeAddr Bytes(lhs)[0])
let lhsEndAddr = offset(lhsCurrAddr, fullWordsCount)
when hasRhs:
var rhsCurrAddr = cast[ptr WordType](unsafeAddr Bytes(rhs)[0])
while lhsCurrAddr < lhsEndAddr:
template lhsBits: auto = lhsCurrAddr[]
when hasRhs:
template rhsBits: auto = rhsCurrAddr[]
body
lhsCurrAddr = offset(lhsCurrAddr, 1)
when hasRhs: rhsCurrAddr = offset(rhsCurrAddr, 1)
iterator words*(x: var BitSeq): var uint =
loopOverWords(x, x, true, false, uint, word, wordB):
yield word
iterator words*(x: BitSeq): uint =
loopOverWords(x, x, false, false, uint, word, word):
yield word
iterator words*(a, b: BitSeq): (uint, uint) =
loopOverWords(a, b, false, false, uint, wordA, wordB):
yield (wordA, wordB)
iterator words*(a: var BitSeq, b: BitSeq): (var uint, uint) =
loopOverWords(a, b, true, false, uint, wordA, wordB):
yield (wordA, wordB)
iterator words*(a, b: var BitSeq): (var uint, var uint) =
loopOverWords(a, b, true, true, uint, wordA, wordB):
yield (wordA, wordB)
func `[]`*(s: BitSeq, pos: Natural): bool {.inline.} =
doAssert pos < s.len
s.Bytes.getBit pos
func `[]=`*(s: var BitSeq, pos: Natural, value: bool) {.inline.} =
doAssert pos < s.len
s.Bytes.changeBit pos, value
func setBit*(s: var BitSeq, pos: Natural) {.inline.} =
doAssert pos < s.len
setBit s.Bytes, pos
func clearBit*(s: var BitSeq, pos: Natural) {.inline.} =
doAssert pos < s.len
clearBit s.Bytes, pos
func init*(T: type BitSeq, len: int): T =
result = BitSeq newSeq[byte](1 + len div 8)
Bytes(result).setBit len
func init*(T: type BitArray): T =
# The default zero-initializatio is fine
discard
template `[]`*(a: BitArray, pos: Natural): bool =
getBit a.bytes, pos
template `[]=`*(a: var BitArray, pos: Natural, value: bool) =
changeBit a.bytes, pos, value
template setBit*(a: var BitArray, pos: Natural) =
setBit a.bytes, pos
template clearBit*(a: var BitArray, pos: Natural) =
clearBit a.bytes, pos
# TODO: Submit this to the standard library as `cmp`
# At the moment, it doesn't work quite well because Nim selects
# the generic cmp[T] from the system module instead of choosing
# the openArray overload
func compareArrays[T](a, b: openArray[T]): int =
result = cmp(a.len, b.len)
if result != 0: return
for i in 0 ..< a.len:
result = cmp(a[i], b[i])
if result != 0: return
template cmp*(a, b: BitSeq): int =
compareArrays(Bytes a, Bytes b)
template `==`*(a, b: BitSeq): bool =
cmp(a, b) == 0
func `$`*(a: BitSeq | BitArray): string =
let length = a.len
result = newStringOfCap(2 + length)
result.add "0b"
for i in countdown(length - 1, 0):
result.add if a[i]: '1' else: '0'
func incl*(tgt: var BitSeq, src: BitSeq) =
# Update `tgt` to include the bits of `src`, as if applying `or` to each bit
doAssert tgt.len == src.len
for tgtWord, srcWord in words(tgt, src):
tgtWord = tgtWord or srcWord
func overlaps*(a, b: BitSeq): bool =
for wa, wb in words(a, b):
if (wa and wb) != 0:
return true
func countOverlap*(a, b: BitSeq): int =
var res = 0
for wa, wb in words(a, b):
res += countOnes(wa and wb)
res
func isSubsetOf*(a, b: BitSeq): bool =
let alen = a.len
doAssert b.len == alen
for i in 0 ..< alen:
if a[i] and not b[i]:
return false
true
func isZeros*(x: BitSeq): bool =
for w in words(x):
if w != 0: return false
return true
func countOnes*(x: BitSeq): int =
# Count the number of set bits
var res = 0
for w in words(x):
res += w.countOnes()
res
func clear*(x: var BitSeq) =
for w in words(x):
w = 0
func countZeros*(x: BitSeq): int =
x.len() - x.countOnes()
template bytes*(x: BitSeq): untyped =
seq[byte](x)
iterator items*(x: BitArray): bool =
for i in 0..<x.bits:
yield x[i]
iterator pairs*(x: BitArray): (int, bool) =
for i in 0..<x.bits:
yield (i, x[i])
func incl*(a: var BitArray, b: BitArray) =
# Update `a` to include the bits of `b`, as if applying `or` to each bit
for i in 0..<a.bytes.len:
a[i] = a[i] or b[i]
func clear*(a: var BitArray) =
for b in a.bytes.mitems(): b = 0
# Set operations
func `+`*(a, b: BitArray): BitArray =
for i in 0..<a.bytes.len:
result.bytes[i] = a.bytes[i] or b.bytes[i]
func `-`*(a, b: BitArray): BitArray =
for i in 0..<a.bytes.len:
result.bytes[i] = a.bytes[i] and (not b.bytes[i])
iterator oneIndices*(a: BitArray): int =
for i in 0..<a.len:
if a[i]: yield i

View File

@ -1,218 +0,0 @@
# nim-eth - Limited SSZ implementation
# Copyright (c) 2018-2021 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [Defect].}
import
std/[typetraits, options],
stew/[endians2, objects],
./types
template raiseIncorrectSize*(T: type) =
const typeName = name(T)
raise newException(MalformedSszError,
"SSZ " & typeName & " input of incorrect size")
template setOutputSize[R, T](a: var array[R, T], length: int) =
if length != a.len:
raiseIncorrectSize a.type
proc setOutputSize(list: var List, length: int) {.raises: [SszError, Defect].} =
if not list.setLen length:
raise newException(MalformedSszError, "SSZ list maximum size exceeded")
# fromSszBytes copies the wire representation to a Nim variable,
# assuming there's enough data in the buffer
func fromSszBytes*(T: type UintN, data: openArray[byte]):
T {.raises: [MalformedSszError, Defect].} =
## Convert directly to bytes the size of the int. (e.g. ``uint16 = 2 bytes``)
## All integers are serialized as **little endian**.
if data.len != sizeof(result):
raiseIncorrectSize T
T.fromBytesLE(data)
func fromSszBytes*(T: type bool, data: openArray[byte]):
T {.raises: [MalformedSszError, Defect].} =
# Strict: only allow 0 or 1
if data.len != 1 or byte(data[0]) > byte(1):
raise newException(MalformedSszError, "invalid boolean value")
data[0] == 1
template fromSszBytes*(T: type BitSeq, bytes: openArray[byte]): auto =
BitSeq @bytes
proc `[]`[T, U, V](s: openArray[T], x: HSlice[U, V]) {.error:
"Please don't use openArray's [] as it allocates a result sequence".}
template checkForForbiddenBits(ResulType: type,
input: openArray[byte],
expectedBits: static int64) =
## This checks if the input contains any bits set above the maximum
## sized allowed. We only need to check the last byte to verify this:
const bitsInLastByte = (expectedBits mod 8)
when bitsInLastByte != 0:
# As an example, if there are 3 bits expected in the last byte,
# we calculate a bitmask equal to 11111000. If the input has any
# raised bits in range of the bitmask, this would be a violation
# of the size of the BitArray:
const forbiddenBitsMask = byte(byte(0xff) shl bitsInLastByte)
if (input[^1] and forbiddenBitsMask) != 0:
raiseIncorrectSize ResulType
func readSszValue*[T](input: openArray[byte], val: var T)
{.raises: [SszError, Defect].} =
mixin fromSszBytes, toSszType
template readOffsetUnchecked(n: int): uint32 {.used.}=
fromSszBytes(uint32, input.toOpenArray(n, n + offsetSize - 1))
template readOffset(n: int): int {.used.} =
let offset = readOffsetUnchecked(n)
if offset > input.len.uint32:
raise newException(MalformedSszError, "SSZ list element offset points past the end of the input")
int(offset)
when val is BitList:
if input.len == 0:
raise newException(MalformedSszError, "Invalid empty SSZ BitList value")
# Since our BitLists have an in-memory representation that precisely
# matches their SSZ encoding, we can deserialize them as regular Lists:
const maxExpectedSize = (val.maxLen div 8) + 1
type MatchingListType = List[byte, maxExpectedSize]
when false:
# TODO: Nim doesn't like this simple type coercion,
# we'll rely on `cast` for now (see below)
readSszValue(input, MatchingListType val)
else:
static:
# As a sanity check, we verify that the coercion is accepted by the compiler:
doAssert MatchingListType(val) is MatchingListType
readSszValue(input, cast[ptr MatchingListType](addr val)[])
let resultBytesCount = len bytes(val)
if bytes(val)[resultBytesCount - 1] == 0:
raise newException(MalformedSszError, "SSZ BitList is not properly terminated")
if resultBytesCount == maxExpectedSize:
checkForForbiddenBits(T, input, val.maxLen + 1)
elif val is List|array:
type E = type val[0]
when E is byte:
val.setOutputSize input.len
if input.len > 0:
copyMem(addr val[0], unsafeAddr input[0], input.len)
elif isFixedSize(E):
const elemSize = fixedPortionSize(E)
if input.len mod elemSize != 0:
var ex = new SszSizeMismatchError
ex.deserializedType = cstring typetraits.name(T)
ex.actualSszSize = input.len
ex.elementSize = elemSize
raise ex
val.setOutputSize input.len div elemSize
for i in 0 ..< val.len:
let offset = i * elemSize
readSszValue(input.toOpenArray(offset, offset + elemSize - 1), val[i])
else:
if input.len == 0:
# This is an empty list.
# The default initialization of the return value is fine.
val.setOutputSize 0
return
elif input.len < offsetSize:
raise newException(MalformedSszError, "SSZ input of insufficient size")
var offset = readOffset 0
let resultLen = offset div offsetSize
if resultLen == 0:
# If there are too many elements, other constraints detect problems
# (not monotonically increasing, past end of input, or last element
# not matching up with its nextOffset properly)
raise newException(MalformedSszError, "SSZ list incorrectly encoded of zero length")
val.setOutputSize resultLen
for i in 1 ..< resultLen:
let nextOffset = readOffset(i * offsetSize)
if nextOffset <= offset:
raise newException(MalformedSszError, "SSZ list element offsets are not monotonically increasing")
else:
readSszValue(input.toOpenArray(offset, nextOffset - 1), val[i - 1])
offset = nextOffset
readSszValue(input.toOpenArray(offset, input.len - 1), val[resultLen - 1])
elif val is UintN|bool:
val = fromSszBytes(T, input)
elif val is BitArray:
if sizeof(val) != input.len:
raiseIncorrectSize(T)
checkForForbiddenBits(T, input, val.bits)
copyMem(addr val.bytes[0], unsafeAddr input[0], input.len)
elif val is object|tuple:
let inputLen = uint32 input.len
const minimallyExpectedSize = uint32 fixedPortionSize(T)
if inputLen < minimallyExpectedSize:
raise newException(MalformedSszError, "SSZ input of insufficient size")
enumInstanceSerializedFields(val, fieldName, field):
const boundingOffsets = getFieldBoundingOffsets(T, fieldName)
# type FieldType = type field # buggy
# For some reason, Nim gets confused about the alias here. This could be a
# generics caching issue caused by the use of distinct types. Such an
# issue is very scary in general.
# The bug can be seen with the two List[uint64, N] types that exist in
# the spec, with different N.
type SszType = type toSszType(declval type(field))
when isFixedSize(SszType):
const
startOffset = boundingOffsets[0]
endOffset = boundingOffsets[1]
else:
let
startOffset = readOffsetUnchecked(boundingOffsets[0])
endOffset = if boundingOffsets[1] == -1: inputLen
else: readOffsetUnchecked(boundingOffsets[1])
when boundingOffsets.isFirstOffset:
if startOffset != minimallyExpectedSize:
raise newException(MalformedSszError, "SSZ object dynamic portion starts at invalid offset")
if startOffset > endOffset:
raise newException(MalformedSszError, "SSZ field offsets are not monotonically increasing")
elif endOffset > inputLen:
raise newException(MalformedSszError, "SSZ field offset points past the end of the input")
elif startOffset < minimallyExpectedSize:
raise newException(MalformedSszError, "SSZ field offset points outside bounding offsets")
# TODO The extra type escaping here is a work-around for a Nim issue:
when type(field) is type(SszType):
readSszValue(
input.toOpenArray(int(startOffset), int(endOffset - 1)),
field)
else:
field = fromSszBytes(
type(field),
input.toOpenArray(int(startOffset), int(endOffset - 1)))
else:
unsupported T

View File

@ -1,111 +0,0 @@
{.push raises: [Defect].}
import
math, sequtils, ssz_serialization, options, algorithm,
nimcrypto/hash,
../common/eth_types, ./types, ./merkleization
const maxTreeDepth: uint64 = 32
const empty: seq[Digest] = @[]
type
MerkleNodeType = enum
LeafType,
NodeType,
ZeroType
MerkleNode = ref object
case kind: MerkleNodeType
of LeafType:
digest: Digest
of NodeType:
innerDigest: Digest
left: MerkleNode
right: MerkleNode
of ZeroType:
depth: uint64
func zeroNodes(): seq[MerkleNode] =
var nodes = newSeq[MerkleNode]()
for i in 0..maxTreeDepth:
nodes.add(MerkleNode(kind: ZeroType, depth: i))
return nodes
let zNodes = zeroNodes()
# This look like something that should be in standard lib.
func splitAt[T](s: openArray[T], idx: uint64): (seq[T], seq[T]) =
var lSeq = newSeq[T]()
var rSeq = newSeq[T]()
for i, e in s:
if (uint64(i) < idx):
lSeq.add(e)
else:
rSeq.add(e)
(lSeq, rSeq)
func splitLeaves(l: openArray[Digest], cap: uint64): (seq[Digest], seq[Digest]) =
if (uint64(len(l)) <= cap):
(l.toSeq(), empty)
else:
splitAt(l, cap)
proc getSubTrees(node: MerkleNode): Option[(MerkleNode, MerkleNode)] =
case node.kind
of LeafType:
return none[(MerkleNode, MerkleNode)]()
of NodeType:
return some((node.left, node.right))
of ZeroType:
if node.depth == 0:
return none[(MerkleNode, MerkleNode)]()
else:
return some((zNodes[node.depth - 1], zNodes[node.depth - 1]))
func hash*(node: MerkleNode): Digest =
case node.kind
of LeafType:
node.digest
of NodeType:
node.innerDigest
of ZeroType:
zeroHashes[node.depth]
func getCapacityAtDepth(depth: uint64): uint64 =
uint64 math.pow(2'f64, float64 depth)
func createTree*(leaves: openArray[Digest], depth: uint64): MerkleNode =
if len(leaves) == 0:
return MerkleNode(kind: ZeroType, depth: depth)
elif depth == 0:
return MerkleNode(kind: LeafType, digest: leaves[0])
else:
let nexLevelDepth = depth - 1
let subCap = getCapacityAtDepth(nexLevelDepth)
let (left, right) = splitLeaves(leaves, subCap)
let leftTree = createTree(left, nexLevelDepth)
let rightTree = createTree(right, nexLevelDepth)
let finalHash = mergeBranches(leftTree.hash(), rightTree.hash())
return MerkleNode(kind: NodeType, innerDigest: finalHash, left: leftTree, right: rightTree)
proc genProof*(tree: MerkleNode, idx: uint64, treeDepth: uint64): seq[Digest] =
var proof = newSeq[Digest]()
var currNode = tree
var currDepth = treeDepth
while currDepth > 0:
let ithBit = (idx shr (currDepth - 1)) and 1
# should be safe to call unsafeGet() as leaves are on lowest level, and depth is
# always larger than 0
let (left, right) = getSubTrees(currNode).unsafeGet()
if ithBit == 1:
proof.add(left.hash())
currNode = right
else:
proof.add(right.hash())
currNode = left
currDepth = currDepth - 1
proof.reverse()
proof
# TODO add method to add leaf to the exisiting tree

View File

@ -1,660 +0,0 @@
# ssz_serialization
# Copyright (c) 2018-2021 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# This module contains the parts necessary to create a merkle hash from the core
# SSZ types outlined in the spec:
# https://github.com/ethereum/consensus-specs/blob/v1.0.1/ssz/simple-serialize.md#merkleization
{.push raises: [Defect].}
import
math, sequtils,
stew/[bitops2, endians2, ptrops],
stew/ranges/ptr_arith, nimcrypto/[hash, sha2],
serialization/testing/tracing,
"."/[bitseqs, types]
export
types
when hasSerializationTracing:
import stew/byteutils, typetraits
const
zero64 = default array[64, byte]
bitsPerChunk = bytesPerChunk * 8
func binaryTreeHeight*(totalElements: Limit): int =
bitWidth nextPow2(uint64 totalElements)
type
SszMerkleizerImpl = object
combinedChunks: ptr UncheckedArray[Digest]
totalChunks: uint64
topIndex: int
SszMerkleizer*[limit: static[Limit]] = object
combinedChunks: ref array[binaryTreeHeight limit, Digest]
impl: SszMerkleizerImpl
template chunks*(m: SszMerkleizerImpl): openArray[Digest] =
m.combinedChunks.toOpenArray(0, m.topIndex)
template getChunkCount*(m: SszMerkleizer): uint64 =
m.impl.totalChunks
template getCombinedChunks*(m: SszMerkleizer): openArray[Digest] =
toOpenArray(m.impl.combinedChunks, 0, m.impl.topIndex)
type DigestCtx* = sha2.sha256
template computeDigest*(body: untyped): Digest =
## This little helper will init the hash function and return the sliced
## hash:
## let hashOfData = withHash: h.update(data)
when nimvm:
# In SSZ, computeZeroHashes require compile-time SHA256
block:
var h {.inject.}: sha256
init(h)
body
finish(h)
else:
block:
var h {.inject, noInit.}: DigestCtx
init(h)
body
finish(h)
func digest(a: openArray[byte]): Digest =
result = computeDigest:
h.update(a)
func digest(a, b: openArray[byte]): Digest =
result = computeDigest:
trs "DIGESTING ARRAYS ", toHex(a), " ", toHex(b)
trs toHex(a)
trs toHex(b)
h.update a
h.update b
trs "HASH RESULT ", result
func digest(a, b, c: openArray[byte]): Digest =
result = computeDigest:
trs "DIGESTING ARRAYS ", toHex(a), " ", toHex(b), " ", toHex(c)
h.update a
h.update b
h.update c
trs "HASH RESULT ", result
func mergeBranches(existing: Digest, newData: openArray[byte]): Digest =
trs "MERGING BRANCHES OPEN ARRAY"
let paddingBytes = bytesPerChunk - newData.len
digest(existing.data, newData, zero64.toOpenArray(0, paddingBytes - 1))
template mergeBranches(existing: Digest, newData: array[32, byte]): Digest =
trs "MERGING BRANCHES ARRAY"
digest(existing.data, newData)
template mergeBranches*(a, b: Digest): Digest =
trs "MERGING BRANCHES DIGEST"
digest(a.data, b.data)
func computeZeroHashes: array[sizeof(Limit) * 8, Digest] =
result[0] = Digest()
for i in 1 .. result.high:
result[i] = mergeBranches(result[i - 1], result[i - 1])
const zeroHashes* = computeZeroHashes()
func addChunk*(merkleizer: var SszMerkleizerImpl, data: openArray[byte]) =
doAssert data.len > 0 and data.len <= bytesPerChunk
if getBitLE(merkleizer.totalChunks, 0):
var hash = mergeBranches(merkleizer.combinedChunks[0], data)
for i in 1 .. merkleizer.topIndex:
trs "ITERATING"
if getBitLE(merkleizer.totalChunks, i):
trs "CALLING MERGE BRANCHES"
hash = mergeBranches(merkleizer.combinedChunks[i], hash)
else:
trs "WRITING FRESH CHUNK AT ", i, " = ", hash
merkleizer.combinedChunks[i] = hash
break
else:
let paddingBytes = bytesPerChunk - data.len
merkleizer.combinedChunks[0].data[0..<data.len] = data
merkleizer.combinedChunks[0].data[data.len..<bytesPerChunk] =
zero64.toOpenArray(0, paddingBytes - 1)
trs "WROTE BASE CHUNK ",
toHex(merkleizer.combinedChunks[0].data), " ", data.len
inc merkleizer.totalChunks
template isOdd(x: SomeNumber): bool =
(x and 1) != 0
func addChunkAndGenMerkleProof*(merkleizer: var SszMerkleizerImpl,
hash: Digest,
outProof: var openArray[Digest]) =
var
hashWrittenToMerkleizer = false
hash = hash
doAssert merkleizer.topIndex < outProof.len
for level in 0 .. merkleizer.topIndex:
if getBitLE(merkleizer.totalChunks, level):
outProof[level] = merkleizer.combinedChunks[level]
hash = mergeBranches(merkleizer.combinedChunks[level], hash)
else:
if not hashWrittenToMerkleizer:
merkleizer.combinedChunks[level] = hash
hashWrittenToMerkleizer = true
outProof[level] = zeroHashes[level]
hash = mergeBranches(hash, zeroHashes[level])
merkleizer.totalChunks += 1
func completeStartedChunk(merkleizer: var SszMerkleizerImpl,
hash: Digest, atLevel: int) =
when false:
let
insertedChunksCount = 1'u64 shl (atLevel - 1)
chunksStateMask = (insertedChunksCount shl 1) - 1
doAssert (merkleizer.totalChunks and chunksStateMask) == insertedChunksCount
var hash = hash
for i in atLevel .. merkleizer.topIndex:
if getBitLE(merkleizer.totalChunks, i):
hash = mergeBranches(merkleizer.combinedChunks[i], hash)
else:
merkleizer.combinedChunks[i] = hash
break
func addChunksAndGenMerkleProofs*(merkleizer: var SszMerkleizerImpl,
chunks: openArray[Digest]): seq[Digest] =
doAssert chunks.len > 0 and merkleizer.topIndex > 0
let proofHeight = merkleizer.topIndex + 1
result = newSeq[Digest](chunks.len * proofHeight)
if chunks.len == 1:
merkleizer.addChunkAndGenMerkleProof(chunks[0], result)
return
let newTotalChunks = merkleizer.totalChunks + chunks.len.uint64
var
# A perfect binary tree will take either `chunks.len * 2` values if the
# number of elements in the base layer is odd and `chunks.len * 2 - 1`
# otherwise. Each row may also need a single extra element at most if
# it must be combined with the existing values in the Merkleizer:
merkleTree = newSeqOfCap[Digest](chunks.len + merkleizer.topIndex)
inRowIdx = merkleizer.totalChunks
postUpdateInRowIdx = newTotalChunks
zeroMixed = false
template writeResult(chunkIdx, level: int, chunk: Digest) =
result[chunkIdx * proofHeight + level] = chunk
# We'll start by generating the first row of the merkle tree.
var currPairEnd = if inRowIdx.isOdd:
# an odd chunk number means that we must combine the
# hash with the existing pending sibling hash in the
# merkleizer.
writeResult(0, 0, merkleizer.combinedChunks[0])
merkleTree.add mergeBranches(merkleizer.combinedChunks[0], chunks[0])
# TODO: can we immediately write this out?
merkleizer.completeStartedChunk(merkleTree[^1], 1)
2
else:
1
if postUpdateInRowIdx.isOdd:
merkleizer.combinedChunks[0] = chunks[^1]
while currPairEnd < chunks.len:
writeResult(currPairEnd - 1, 0, chunks[currPairEnd])
writeResult(currPairEnd, 0, chunks[currPairEnd - 1])
merkleTree.add mergeBranches(chunks[currPairEnd - 1],
chunks[currPairEnd])
currPairEnd += 2
if currPairEnd - 1 < chunks.len:
zeroMixed = true
writeResult(currPairEnd - 1, 0, zeroHashes[0])
merkleTree.add mergeBranches(chunks[currPairEnd - 1],
zeroHashes[0])
var
level = 0
baseChunksPerElement = 1
treeRowStart = 0
rowLen = merkleTree.len
template writeProofs(rowChunkIdx: int, hash: Digest) =
let
startAbsIdx = (inRowIdx.int + rowChunkIdx) * baseChunksPerElement
endAbsIdx = startAbsIdx + baseChunksPerElement
startResIdx = max(startAbsIdx - merkleizer.totalChunks.int, 0)
endResIdx = min(endAbsIdx - merkleizer.totalChunks.int, chunks.len)
for resultPos in startResIdx ..< endResIdx:
writeResult(resultPos, level, hash)
if rowLen > 1:
while level < merkleizer.topIndex:
inc level
baseChunksPerElement *= 2
inRowIdx = inRowIdx div 2
postUpdateInRowIdx = postUpdateInRowIdx div 2
var currPairEnd = if inRowIdx.isOdd:
# an odd chunk number means that we must combine the
# hash with the existing pending sibling hash in the
# merkleizer.
writeProofs(0, merkleizer.combinedChunks[level])
merkleTree.add mergeBranches(merkleizer.combinedChunks[level],
merkleTree[treeRowStart])
# TODO: can we immediately write this out?
merkleizer.completeStartedChunk(merkleTree[^1], level + 1)
2
else:
1
if postUpdateInRowIdx.isOdd:
merkleizer.combinedChunks[level] = merkleTree[treeRowStart + rowLen -
ord(zeroMixed) - 1]
while currPairEnd < rowLen:
writeProofs(currPairEnd - 1, merkleTree[treeRowStart + currPairEnd])
writeProofs(currPairEnd, merkleTree[treeRowStart + currPairEnd - 1])
merkleTree.add mergeBranches(merkleTree[treeRowStart + currPairEnd - 1],
merkleTree[treeRowStart + currPairEnd])
currPairEnd += 2
if currPairEnd - 1 < rowLen:
zeroMixed = true
writeProofs(currPairEnd - 1, zeroHashes[level])
merkleTree.add mergeBranches(merkleTree[treeRowStart + currPairEnd - 1],
zeroHashes[level])
treeRowStart += rowLen
rowLen = merkleTree.len - treeRowStart
if rowLen == 1:
break
doAssert rowLen == 1
if (inRowIdx and 2) != 0:
merkleizer.completeStartedChunk(
mergeBranches(merkleizer.combinedChunks[level + 1], merkleTree[^1]),
level + 2)
if (not zeroMixed) and (postUpdateInRowIdx and 2) != 0:
merkleizer.combinedChunks[level + 1] = merkleTree[^1]
while level < merkleizer.topIndex:
inc level
baseChunksPerElement *= 2
inRowIdx = inRowIdx div 2
let hash = if getBitLE(merkleizer.totalChunks, level):
merkleizer.combinedChunks[level]
else:
zeroHashes[level]
writeProofs(0, hash)
merkleizer.totalChunks = newTotalChunks
proc init*(S: type SszMerkleizer): S =
new result.combinedChunks
result.impl = SszMerkleizerImpl(
combinedChunks: cast[ptr UncheckedArray[Digest]](
addr result.combinedChunks[][0]),
topIndex: binaryTreeHeight(result.limit) - 1,
totalChunks: 0)
proc init*(S: type SszMerkleizer,
combinedChunks: openArray[Digest],
totalChunks: uint64): S =
new result.combinedChunks
result.combinedChunks[][0 ..< combinedChunks.len] = combinedChunks
result.impl = SszMerkleizerImpl(
combinedChunks: cast[ptr UncheckedArray[Digest]](
addr result.combinedChunks[][0]),
topIndex: binaryTreeHeight(result.limit) - 1,
totalChunks: totalChunks)
proc copy*[L: static[Limit]](cloned: SszMerkleizer[L]): SszMerkleizer[L] =
new result.combinedChunks
result.combinedChunks[] = cloned.combinedChunks[]
result.impl = SszMerkleizerImpl(
combinedChunks: cast[ptr UncheckedArray[Digest]](
addr result.combinedChunks[][0]),
topIndex: binaryTreeHeight(L) - 1,
totalChunks: cloned.totalChunks)
template addChunksAndGenMerkleProofs*(
merkleizer: var SszMerkleizer,
chunks: openArray[Digest]): seq[Digest] =
addChunksAndGenMerkleProofs(merkleizer.impl, chunks)
template addChunk*(merkleizer: var SszMerkleizer, data: openArray[byte]) =
addChunk(merkleizer.impl, data)
template totalChunks*(merkleizer: SszMerkleizer): uint64 =
merkleizer.impl.totalChunks
template getFinalHash*(merkleizer: SszMerkleizer): Digest =
merkleizer.impl.getFinalHash
template createMerkleizer*(totalElements: static Limit): SszMerkleizerImpl =
trs "CREATING A MERKLEIZER FOR ", totalElements
const treeHeight = binaryTreeHeight totalElements
var combinedChunks {.noInit.}: array[treeHeight, Digest]
let topIndex = treeHeight - 1
SszMerkleizerImpl(
combinedChunks: cast[ptr UncheckedArray[Digest]](addr combinedChunks),
topIndex: if (topIndex < 0): 0 else: topIndex,
totalChunks: 0)
func getFinalHash*(merkleizer: SszMerkleizerImpl): Digest =
if merkleizer.totalChunks == 0:
return zeroHashes[merkleizer.topIndex]
let
bottomHashIdx = firstOne(merkleizer.totalChunks) - 1
submittedChunksHeight = bitWidth(merkleizer.totalChunks - 1)
topHashIdx = merkleizer.topIndex
trs "BOTTOM HASH ", bottomHashIdx
trs "SUBMITTED HEIGHT ", submittedChunksHeight
trs "TOP HASH IDX ", topHashIdx
if bottomHashIdx != submittedChunksHeight:
# Our tree is not finished. We must complete the work in progress
# branches and then extend the tree to the right height.
result = mergeBranches(merkleizer.combinedChunks[bottomHashIdx],
zeroHashes[bottomHashIdx])
for i in bottomHashIdx + 1 ..< topHashIdx:
if getBitLE(merkleizer.totalChunks, i):
result = mergeBranches(merkleizer.combinedChunks[i], result)
trs "COMBINED"
else:
result = mergeBranches(result, zeroHashes[i])
trs "COMBINED WITH ZERO"
elif bottomHashIdx == topHashIdx:
# We have a perfect tree (chunks == 2**n) at just the right height!
result = merkleizer.combinedChunks[bottomHashIdx]
else:
# We have a perfect tree of user chunks, but we have more work to
# do - we must extend it to reach the desired height
result = mergeBranches(merkleizer.combinedChunks[bottomHashIdx],
zeroHashes[bottomHashIdx])
for i in bottomHashIdx + 1 ..< topHashIdx:
result = mergeBranches(result, zeroHashes[i])
func mixInLength*(root: Digest, length: int): Digest =
var dataLen: array[32, byte]
dataLen[0..<8] = uint64(length).toBytesLE()
mergeBranches(root, dataLen)
func hash_tree_root*(x: auto): Digest {.gcsafe, raises: [Defect].}
template merkleizeFields(totalElements: static Limit, body: untyped): Digest =
var merkleizer {.inject.} = createMerkleizer(totalElements)
template addField(field) =
let hash = hash_tree_root(field)
trs "MERKLEIZING FIELD ", astToStr(field), " = ", hash
addChunk(merkleizer, hash.data)
trs "CHUNK ADDED"
body
getFinalHash(merkleizer)
template writeBytesLE(chunk: var array[bytesPerChunk, byte], atParam: int,
val: SomeUnsignedInt) =
let at = atParam
chunk[at ..< at + sizeof(val)] = toBytesLE(val)
func chunkedHashTreeRootForBasicTypes[T](merkleizer: var SszMerkleizerImpl,
arr: openArray[T]): Digest =
static:
doAssert T is BasicType
doAssert bytesPerChunk mod sizeof(T) == 0
if arr.len == 0:
return getFinalHash(merkleizer)
when sizeof(T) == 1 or cpuEndian == littleEndian:
var
remainingBytes = when sizeof(T) == 1: arr.len
else: arr.len * sizeof(T)
pos = cast[ptr byte](unsafeAddr arr[0])
while remainingBytes >= bytesPerChunk:
merkleizer.addChunk(makeOpenArray(pos, bytesPerChunk))
pos = offset(pos, bytesPerChunk)
remainingBytes -= bytesPerChunk
if remainingBytes > 0:
merkleizer.addChunk(makeOpenArray(pos, remainingBytes))
else:
const valuesPerChunk = bytesPerChunk div sizeof(T)
var writtenValues = 0
var chunk: array[bytesPerChunk, byte]
while writtenValues < arr.len - valuesPerChunk:
for i in 0 ..< valuesPerChunk:
chunk.writeBytesLE(i * sizeof(T), arr[writtenValues + i])
merkleizer.addChunk chunk
inc writtenValues, valuesPerChunk
let remainingValues = arr.len - writtenValues
if remainingValues > 0:
var lastChunk: array[bytesPerChunk, byte]
for i in 0 ..< remainingValues:
lastChunk.writeBytesLE(i * sizeof(T), arr[writtenValues + i])
merkleizer.addChunk lastChunk
getFinalHash(merkleizer)
func bitListHashTreeRoot(merkleizer: var SszMerkleizerImpl, x: BitSeq): Digest =
# TODO: Switch to a simpler BitList representation and
# replace this with `chunkedHashTreeRoot`
var
totalBytes = bytes(x).len
lastCorrectedByte = bytes(x)[^1]
if lastCorrectedByte == byte(1):
if totalBytes == 1:
# This is an empty bit list.
# It should be hashed as a tree containing all zeros:
return mergeBranches(zeroHashes[merkleizer.topIndex],
zeroHashes[0]) # this is the mixed length
totalBytes -= 1
lastCorrectedByte = bytes(x)[^2]
else:
let markerPos = log2trunc(lastCorrectedByte)
lastCorrectedByte.clearBit(markerPos)
var
bytesInLastChunk = totalBytes mod bytesPerChunk
fullChunks = totalBytes div bytesPerChunk
if bytesInLastChunk == 0:
fullChunks -= 1
bytesInLastChunk = 32
for i in 0 ..< fullChunks:
let
chunkStartPos = i * bytesPerChunk
chunkEndPos = chunkStartPos + bytesPerChunk - 1
merkleizer.addChunk bytes(x).toOpenArray(chunkStartPos, chunkEndPos)
var
lastChunk: array[bytesPerChunk, byte]
chunkStartPos = fullChunks * bytesPerChunk
for i in 0 .. bytesInLastChunk - 2:
lastChunk[i] = bytes(x)[chunkStartPos + i]
lastChunk[bytesInLastChunk - 1] = lastCorrectedByte
merkleizer.addChunk lastChunk.toOpenArray(0, bytesInLastChunk - 1)
let contentsHash = merkleizer.getFinalHash
mixInLength contentsHash, x.len
func maxChunksCount(T: type, maxLen: Limit): Limit =
when T is BitList|BitArray:
(maxLen + bitsPerChunk - 1) div bitsPerChunk
elif T is array|List:
maxChunkIdx(ElemType(T), maxLen)
else:
unsupported T # This should never happen
func hashTreeRootAux[T](x: T): Digest =
when T is bool|char:
result.data[0] = byte(x)
elif T is SomeUnsignedInt:
when cpuEndian == bigEndian:
result.data[0..<sizeof(x)] = toBytesLE(x)
else:
copyMem(addr result.data[0], unsafeAddr x, sizeof x)
elif (when T is array: ElemType(T) is BasicType else: false):
type E = ElemType(T)
when sizeof(T) <= sizeof(result.data):
when E is byte|bool or cpuEndian == littleEndian:
copyMem(addr result.data[0], unsafeAddr x, sizeof x)
else:
var pos = 0
for e in x:
writeBytesLE(result.data, pos, e)
pos += sizeof(E)
else:
trs "FIXED TYPE; USE CHUNK STREAM"
var merkleizer = createMerkleizer(maxChunksCount(T, Limit x.len))
chunkedHashTreeRootForBasicTypes(merkleizer, x)
elif T is BitArray:
hashTreeRootAux(x.bytes)
elif T is array|object|tuple:
trs "MERKLEIZING FIELDS"
const totalFields = when T is array: len(x)
else: totalSerializedFields(T)
merkleizeFields(Limit totalFields):
x.enumerateSubFields(f):
addField f
#elif isCaseObject(T):
# # TODO implement this
else:
unsupported T
func hashTreeRootList(x: List|BitList): Digest =
const maxLen = static(x.maxLen)
type T = type(x)
const limit = maxChunksCount(T, maxLen)
var merkleizer = createMerkleizer(limit)
when x is BitList:
merkleizer.bitListHashTreeRoot(BitSeq x)
else:
type E = ElemType(T)
let contentsHash = when E is BasicType:
chunkedHashTreeRootForBasicTypes(merkleizer, asSeq x)
else:
for elem in x:
let elemHash = hash_tree_root(elem)
merkleizer.addChunk(elemHash.data)
merkleizer.getFinalHash()
mixInLength(contentsHash, x.len)
func hash_tree_root*(x: auto): Digest {.raises: [Defect].} =
trs "STARTING HASH TREE ROOT FOR TYPE ", name(type(x))
mixin toSszType
result =
when x is List|BitList:
hashTreeRootList(x)
else:
hashTreeRootAux toSszType(x)
trs "HASH TREE ROOT FOR ", name(type x), " = ", "0x", $result
# https://github.com/ethereum/consensus-specs/blob/dev/ssz/merkle-proofs.md#get_generalized_index_length
func getGeneralizedIndexLength(x: uint64): int =
log2trunc(x)
# https://github.com/ethereum/consensus-specs/blob/dev/ssz/merkle-proofs.md#get_generalized_index_bit
func getGeneralizedIndexBit(index: uint64, position: uint64): bool =
(index and (1'u64 shl position)) > 0
# validates merkle proof. Provided index should be a generalized index of leaf node
# as defined in: https://github.com/ethereum/consensus-specs/blob/dev/ssz/merkle-proofs.md#generalized-merkle-tree-index
func isValidProof*(leaf: Digest, proof: openArray[Digest],
index: uint64, root: Digest): bool =
if len(proof) == getGeneralizedIndexLength(index):
var
value = leaf
for i, digest in proof:
value =
if getGeneralizedIndexBit(index, uint64 i):
mergeBranches(digest, value)
else:
mergeBranches(value, digest)
value == root
else:
false
proc slice[T](x: openArray[T]): seq[T] = x.toSeq()
# Helper functions to get proof for any element of a list
proc getProofForAllListElements*(list: List): seq[Digest] =
type T = type(list)
type E = ElemType(T)
# basic types have different chunking rules
static:
doAssert (E is not BasicType)
var digests: seq[Digest] = @[]
for e in list:
let root = hash_tree_root(e)
digests.add(root)
var merk = createMerkleizer(list.maxLen)
merk.addChunksAndGenMerkleProofs(digests)
proc getProofWithIdx*(list: List, allProofs: seq[Digest], idx: int): seq[Digest] =
let treeHeight = binaryTreeHeight(list.maxLen)
let startPos = idx * treeHeight
let endPos = startPos + treeHeight - 2
slice(allProofs.toOpenArray(startPos, endPos))
proc generateAndGetProofWithIdx*(list: List, idx: int): seq[Digest] =
let allProofs = getProofForAllListElements(list)
getProofWithIdx(list, allProofs, idx)

View File

@ -1,247 +0,0 @@
# nim-eth - Limited SSZ implementation
# Copyright (c) 2018-2021 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [Defect].}
## SSZ serialization for core SSZ types, as specified in:
# https://github.com/ethereum/consensus-specs/blob/v1.0.1/ssz/simple-serialize.md#serialization
import
std/[typetraits, options],
stew/[endians2, leb128, objects],
serialization, serialization/testing/tracing,
./bytes_reader, ./types
export
serialization, types, bytes_reader
type
SszReader* = object
stream: InputStream
SszWriter* = object
stream: OutputStream
SizePrefixed*[T] = distinct T
SszMaxSizeExceeded* = object of SerializationError
VarSizedWriterCtx = object
fixedParts: WriteCursor
offset: int
FixedSizedWriterCtx = object
serializationFormat SSZ
SSZ.setReader SszReader
SSZ.setWriter SszWriter, PreferredOutput = seq[byte]
template sizePrefixed*[TT](x: TT): untyped =
type T = TT
SizePrefixed[T](x)
proc init*(T: type SszReader, stream: InputStream): T {.raises: [Defect].} =
T(stream: stream)
proc writeFixedSized(s: var (OutputStream|WriteCursor), x: auto)
{.raises: [Defect, IOError].} =
mixin toSszType
when x is byte:
s.write x
elif x is bool:
s.write byte(ord(x))
elif x is UintN:
when cpuEndian == bigEndian:
s.write toBytesLE(x)
else:
s.writeMemCopy x
elif x is array:
when x[0] is byte:
trs "APPENDING FIXED SIZE BYTES", x
s.write x
else:
for elem in x:
trs "WRITING FIXED SIZE ARRAY ELEMENT"
s.writeFixedSized toSszType(elem)
elif x is tuple|object:
enumInstanceSerializedFields(x, fieldName, field):
trs "WRITING FIXED SIZE FIELD", fieldName
s.writeFixedSized toSszType(field)
else:
unsupported x.type
template writeOffset(cursor: var WriteCursor, offset: int) =
write cursor, toBytesLE(uint32 offset)
template supports*(_: type SSZ, T: type): bool =
mixin toSszType
anonConst compiles(fixedPortionSize toSszType(declval T))
func init*(T: type SszWriter, stream: OutputStream): T {.raises: [Defect].} =
result.stream = stream
proc writeVarSizeType(w: var SszWriter, value: auto)
{.gcsafe, raises: [Defect, IOError].}
proc beginRecord*(w: var SszWriter, TT: type): auto {.raises: [Defect].} =
type T = TT
when isFixedSize(T):
FixedSizedWriterCtx()
else:
const offset = when T is array: len(T) * offsetSize
else: fixedPortionSize(T)
VarSizedWriterCtx(offset: offset,
fixedParts: w.stream.delayFixedSizeWrite(offset))
template writeField*(w: var SszWriter,
ctx: var auto,
fieldName: string,
field: auto) =
mixin toSszType
when ctx is FixedSizedWriterCtx:
writeFixedSized(w.stream, toSszType(field))
else:
type FieldType = type toSszType(field)
when isFixedSize(FieldType):
writeFixedSized(ctx.fixedParts, toSszType(field))
else:
trs "WRITING OFFSET ", ctx.offset, " FOR ", fieldName
writeOffset(ctx.fixedParts, ctx.offset)
let initPos = w.stream.pos
trs "WRITING VAR SIZE VALUE OF TYPE ", name(FieldType)
when FieldType is BitList:
trs "BIT SEQ ", bytes(field)
writeVarSizeType(w, toSszType(field))
ctx.offset += w.stream.pos - initPos
template endRecord*(w: var SszWriter, ctx: var auto) =
when ctx is VarSizedWriterCtx:
finalize ctx.fixedParts
proc writeSeq[T](w: var SszWriter, value: seq[T])
{.raises: [Defect, IOError].} =
# Please note that `writeSeq` exists in order to reduce the code bloat
# produced from generic instantiations of the unique `List[N, T]` types.
when isFixedSize(T):
trs "WRITING LIST WITH FIXED SIZE ELEMENTS"
for elem in value:
w.stream.writeFixedSized toSszType(elem)
trs "DONE"
else:
trs "WRITING LIST WITH VAR SIZE ELEMENTS"
var offset = value.len * offsetSize
var cursor = w.stream.delayFixedSizeWrite offset
for elem in value:
cursor.writeFixedSized uint32(offset)
let initPos = w.stream.pos
w.writeVarSizeType toSszType(elem)
offset += w.stream.pos - initPos
finalize cursor
trs "DONE"
proc writeVarSizeType(w: var SszWriter, value: auto)
{.raises: [Defect, IOError].} =
trs "STARTING VAR SIZE TYPE"
when value is List:
# We reduce code bloat by forwarding all `List` types to a general `seq[T]`
# proc.
writeSeq(w, asSeq value)
elif value is BitList:
# ATTENTION! We can reuse `writeSeq` only as long as our BitList type is
# implemented to internally match the binary representation of SSZ BitLists
# in memory.
writeSeq(w, bytes value)
elif value is object|tuple|array:
trs "WRITING OBJECT OR ARRAY"
var ctx = beginRecord(w, type value)
enumerateSubFields(value, field):
writeField w, ctx, astToStr(field), field
endRecord w, ctx
else:
unsupported type(value)
proc writeValue*(w: var SszWriter, x: auto)
{.gcsafe, raises: [Defect, IOError].} =
mixin toSszType
type T = type toSszType(x)
when isFixedSize(T):
w.stream.writeFixedSized toSszType(x)
else:
w.writeVarSizeType toSszType(x)
func sszSize*(value: auto): int {.gcsafe, raises: [Defect].}
func sszSizeForVarSizeList[T](value: openArray[T]): int =
mixin toSszType
result = len(value) * offsetSize
for elem in value:
result += sszSize(toSszType elem)
func sszSize*(value: auto): int {.gcsafe, raises: [Defect].} =
mixin toSszType
type T = type toSszType(value)
when isFixedSize(T):
anonConst fixedPortionSize(T)
elif T is array|List:
type E = ElemType(T)
when isFixedSize(E):
len(value) * anonConst(fixedPortionSize(E))
elif T is HashArray:
sszSizeForVarSizeList(value.data)
elif T is array:
sszSizeForVarSizeList(value)
else:
sszSizeForVarSizeList(asSeq value)
elif T is BitList:
return len(bytes(value))
elif T is object|tuple:
result = anonConst fixedPortionSize(T)
enumInstanceSerializedFields(value, _{.used.}, field):
type FieldType = type toSszType(field)
when not isFixedSize(FieldType):
result += sszSize(toSszType field)
else:
unsupported T
proc writeValue*[T](w: var SszWriter, x: SizePrefixed[T])
{.raises: [Defect, IOError].} =
var cursor = w.stream.delayVarSizeWrite(Leb128.maxLen(uint64))
let initPos = w.stream.pos
w.writeValue T(x)
let length = toBytes(uint64(w.stream.pos - initPos), Leb128)
cursor.finalWrite length.toOpenArray()
proc readValue*[T](r: var SszReader, val: var T)
{.raises: [Defect, SszError, IOError].} =
when isFixedSize(T):
const minimalSize = fixedPortionSize(T)
if r.stream.readable(minimalSize):
readSszValue(r.stream.read(minimalSize), val)
else:
raise newException(MalformedSszError, "SSZ input of insufficient size")
else:
# TODO(zah) Read the fixed portion first and precisely measure the
# size of the dynamic portion to consume the right number of bytes.
readSszValue(r.stream.read(r.stream.len.get), val)
proc readSszBytes*[T](data: openArray[byte], val: var T) {.
raises: [Defect, MalformedSszError, SszSizeMismatchError].} =
when isFixedSize(T):
const minimalSize = fixedPortionSize(T)
if data.len < minimalSize:
raise newException(MalformedSszError, "SSZ input of insufficient size")
readSszValue(data, val)

View File

@ -1,302 +0,0 @@
# nim-eth - Limited SSZ implementation
# Copyright (c) 2018-2021 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [Defect].}
import
std/[tables, options, typetraits, strformat],
stew/shims/macros, stew/[byteutils, bitops2, objects],
nimcrypto/hash, serialization/[object_serialization, errors],
./bitseqs
export bitseqs
const
offsetSize* = 4
bytesPerChunk* = 32
type
UintN* = SomeUnsignedInt
BasicType* = bool|UintN
Limit* = int64
List*[T; maxLen: static Limit] = distinct seq[T]
BitList*[maxLen: static Limit] = distinct BitSeq
Digest* = MDigest[32 * 8]
# Note for readers:
# We use `array` for `Vector` and
# `BitArray` for `BitVector`
SszError* = object of SerializationError
MalformedSszError* = object of SszError
SszSizeMismatchError* = object of SszError
deserializedType*: cstring
actualSszSize*: int
elementSize*: int
# A few index types from here onwards:
# * dataIdx - leaf index starting from 0 to maximum length of collection
# * chunkIdx - leaf data index after chunking starting from 0
# * vIdx - virtual index in merkle tree - the root is found at index 1, its
# two children at 2, 3 then 4, 5, 6, 7 etc
func nextPow2Int64(x: int64): int64 =
# TODO the nextPow2 in bitops2 works with uint64 - there's a bug in the nim
# compiler preventing it to be used - it seems that a conversion to
# uint64 cannot be done with the static maxLen :(
var v = x - 1
# round down, make sure all bits are 1 below the threshold, then add 1
v = v or v shr 1
v = v or v shr 2
v = v or v shr 4
when bitsof(x) > 8:
v = v or v shr 8
when bitsof(x) > 16:
v = v or v shr 16
when bitsof(x) > 32:
v = v or v shr 32
v + 1
template dataPerChunk(T: type): int =
# How many data items fit in a chunk
when T is BasicType:
bytesPerChunk div sizeof(T)
else:
1
template chunkIdx*(T: type, dataIdx: int64): int64 =
# Given a data index, which chunk does it belong to?
dataIdx div dataPerChunk(T)
template maxChunkIdx*(T: type, maxLen: Limit): int64 =
# Given a number of data items, how many chunks are needed?
# TODO compiler bug:
# beacon_chain/ssz/types.nim(75, 53) Error: cannot generate code for: maxLen
# nextPow2(chunkIdx(T, maxLen + dataPerChunk(T) - 1).uint64).int64
nextPow2Int64(chunkIdx(T, maxLen.int64 + dataPerChunk(T) - 1))
template asSeq*(x: List): auto = distinctBase(x)
template init*[T](L: type List, x: seq[T], N: static Limit): auto =
List[T, N](x)
template init*[T, N](L: type List[T, N], x: seq[T]): auto =
List[T, N](x)
template `$`*(x: List): auto = $(distinctBase x)
template len*(x: List): auto = len(distinctBase x)
template low*(x: List): auto = low(distinctBase x)
template high*(x: List): auto = high(distinctBase x)
template `[]`*(x: List, idx: auto): untyped = distinctBase(x)[idx]
template `[]=`*(x: var List, idx: auto, val: auto) = distinctBase(x)[idx] = val
template `==`*(a, b: List): bool = distinctBase(a) == distinctBase(b)
template `&`*(a, b: List): auto = (type(a)(distinctBase(a) & distinctBase(b)))
template items* (x: List): untyped = items(distinctBase x)
template pairs* (x: List): untyped = pairs(distinctBase x)
template mitems*(x: var List): untyped = mitems(distinctBase x)
template mpairs*(x: var List): untyped = mpairs(distinctBase x)
template contains* (x: List, val: auto): untyped = contains(distinctBase x, val)
proc add*(x: var List, val: auto): bool =
if x.len < x.maxLen:
add(distinctBase x, val)
true
else:
false
proc setLen*(x: var List, newLen: int): bool =
if newLen <= x.maxLen:
setLen(distinctBase x, newLen)
true
else:
false
template init*(L: type BitList, x: seq[byte], N: static Limit): auto =
BitList[N](data: x)
template init*[N](L: type BitList[N], x: seq[byte]): auto =
L(data: x)
template init*(T: type BitList, len: int): auto = T init(BitSeq, len)
template len*(x: BitList): auto = len(BitSeq(x))
template bytes*(x: BitList): auto = seq[byte](x)
template `[]`*(x: BitList, idx: auto): auto = BitSeq(x)[idx]
template `[]=`*(x: var BitList, idx: auto, val: bool) = BitSeq(x)[idx] = val
template `==`*(a, b: BitList): bool = BitSeq(a) == BitSeq(b)
template setBit*(x: var BitList, idx: Natural) = setBit(BitSeq(x), idx)
template clearBit*(x: var BitList, idx: Natural) = clearBit(BitSeq(x), idx)
template overlaps*(a, b: BitList): bool = overlaps(BitSeq(a), BitSeq(b))
template incl*(a: var BitList, b: BitList) = incl(BitSeq(a), BitSeq(b))
template isSubsetOf*(a, b: BitList): bool = isSubsetOf(BitSeq(a), BitSeq(b))
template isZeros*(x: BitList): bool = isZeros(BitSeq(x))
template countOnes*(x: BitList): int = countOnes(BitSeq(x))
template countZeros*(x: BitList): int = countZeros(BitSeq(x))
template countOverlap*(x, y: BitList): int = countOverlap(BitSeq(x), BitSeq(y))
template `$`*(a: BitList): string = $(BitSeq(a))
iterator items*(x: BitList): bool =
for i in 0 ..< x.len:
yield x[i]
macro unsupported*(T: typed): untyped =
# TODO: {.fatal.} breaks compilation even in `compiles()` context,
# so we use this macro instead. It's also much better at figuring
# out the actual type that was used in the instantiation.
# File both problems as issues.
error "SSZ serialization of the type " & humaneTypeName(T) & " is not supported"
template ElemType*(T: type array): untyped =
type(default(T)[low(T)])
template ElemType*(T: type seq): untyped =
type(default(T)[0])
template ElemType*(T0: type List): untyped =
T0.T
func isFixedSize*(T0: type): bool {.compileTime.} =
mixin toSszType, enumAllSerializedFields
type T = type toSszType(declval T0)
when T is BasicType:
return true
elif T is array:
return isFixedSize(ElemType(T))
elif T is object|tuple:
enumAllSerializedFields(T):
when not isFixedSize(FieldType):
return false
return true
func fixedPortionSize*(T0: type): int {.compileTime.} =
mixin enumAllSerializedFields, toSszType
type T = type toSszType(declval T0)
when T is BasicType: sizeof(T)
elif T is array:
type E = ElemType(T)
when isFixedSize(E): int(len(T)) * fixedPortionSize(E)
else: int(len(T)) * offsetSize
elif T is object|tuple:
enumAllSerializedFields(T):
when isFixedSize(FieldType):
result += fixedPortionSize(FieldType)
else:
result += offsetSize
else:
unsupported T0
# TODO This should have been an iterator, but the VM can't compile the
# code due to "too many registers required".
proc fieldInfos*(RecordType: type): seq[tuple[name: string,
offset: int,
fixedSize: int,
branchKey: string]] =
mixin enumAllSerializedFields
var
offsetInBranch = {"": 0}.toTable
nestedUnder = initTable[string, string]()
enumAllSerializedFields(RecordType):
const
isFixed = isFixedSize(FieldType)
fixedSize = when isFixed: fixedPortionSize(FieldType)
else: 0
branchKey = when fieldCaseDiscriminator.len == 0: ""
else: fieldCaseDiscriminator & ":" & $fieldCaseBranches
fieldSize = when isFixed: fixedSize
else: offsetSize
nestedUnder[fieldName] = branchKey
var fieldOffset: int
offsetInBranch.withValue(branchKey, val):
fieldOffset = val[]
val[] += fieldSize
do:
try:
let parentBranch = nestedUnder.getOrDefault(fieldCaseDiscriminator, "")
fieldOffset = offsetInBranch[parentBranch]
offsetInBranch[branchKey] = fieldOffset + fieldSize
except KeyError as e:
raiseAssert e.msg
result.add((fieldName, fieldOffset, fixedSize, branchKey))
func getFieldBoundingOffsetsImpl(RecordType: type, fieldName: static string):
tuple[fieldOffset, nextFieldOffset: int, isFirstOffset: bool]
{.compileTime.} =
result = (-1, -1, false)
var fieldBranchKey: string
var isFirstOffset = true
for f in fieldInfos(RecordType):
if fieldName == f.name:
result[0] = f.offset
if f.fixedSize > 0:
result[1] = result[0] + f.fixedSize
return
else:
fieldBranchKey = f.branchKey
result.isFirstOffset = isFirstOffset
elif result[0] != -1 and
f.fixedSize == 0 and
f.branchKey == fieldBranchKey:
# We have found the next variable sized field
result[1] = f.offset
return
if f.fixedSize == 0:
isFirstOffset = false
func getFieldBoundingOffsets*(RecordType: type, fieldName: static string):
tuple[fieldOffset, nextFieldOffset: int, isFirstOffset: bool]
{.compileTime.} =
## Returns the start and end offsets of a field.
##
## For fixed-size fields, the start offset points to the first
## byte of the field and the end offset points to 1 byte past the
## end of the field.
##
## For variable-size fields, the returned offsets point to the
## statically known positions of the 32-bit offset values written
## within the SSZ object. You must read the 32-bit values stored
## at the these locations in order to obtain the actual offsets.
##
## For variable-size fields, the end offset may be -1 when the
## designated field is the last variable sized field within the
## object. Then the SSZ object boundary known at run-time marks
## the end of the variable-size field.
type T = RecordType
anonConst getFieldBoundingOffsetsImpl(T, fieldName)
template enumerateSubFields*(holder, fieldVar, body: untyped) =
when holder is array:
for fieldVar in holder: body
else:
enumInstanceSerializedFields(holder, _{.used.}, fieldVar): body
method formatMsg*(
err: ref SszSizeMismatchError,
filename: string): string {.gcsafe, raises: [Defect].} =
try:
&"SSZ size mismatch, element {err.elementSize}, actual {err.actualSszSize}, type {err.deserializedType}, file {filename}"
except CatchableError:
"SSZ size mismatch"

View File

@ -1,3 +0,0 @@
import
./test_verification,
./test_proofs

View File

@ -1,123 +0,0 @@
{.used.}
import
sequtils, unittest, math,
nimcrypto/[hash, sha2],
stew/endians2,
../eth/ssz/merkleization,
../eth/ssz/ssz_serialization,
../eth/ssz/merkle_tree
template toSszType(x: auto): auto =
x
proc h(a: openArray[byte]): Digest =
var h: sha256
h.init()
h.update(a)
h.finish()
type TestObject = object
digest: array[32, byte]
num: uint64
proc genObject(num: uint64): TestObject =
let numAsHash = h(num.toBytesLE())
TestObject(digest: numAsHash.data, num: num)
proc genNObjects(n: int): seq[TestObject] =
var objs = newSeq[TestObject]()
for i in 1..n:
let obj = genObject(uint64 i)
objs.add(obj)
objs
proc getGenIndex(idx: int, depth: uint64): uint64 =
uint64 (math.pow(2'f64, float64 depth) + float64 idx)
# Normal hash_tree_root add list length to final hash calculation. Proofs by default
# are generated without it. If necessary length of the list can be added manually
# at the end of the proof but here we are just hashing list with no mixin.
proc getListRootNoMixin(list: List): Digest =
var merk = createMerkleizer(list.maxLen)
for e in list:
let hash = hash_tree_root(e)
merk.addChunk(hash.data)
merk.getFinalHash()
type TestCase = object
numOfElements: int
limit: int
const TestCases = (
TestCase(numOfElements: 0, limit: 2),
TestCase(numOfElements: 1, limit: 2),
TestCase(numOfElements: 2, limit: 2),
TestCase(numOfElements: 0, limit: 4),
TestCase(numOfElements: 1, limit: 4),
TestCase(numOfElements: 2, limit: 4),
TestCase(numOfElements: 3, limit: 4),
TestCase(numOfElements: 4, limit: 4),
TestCase(numOfElements: 0, limit: 8),
TestCase(numOfElements: 1, limit: 8),
TestCase(numOfElements: 2, limit: 8),
TestCase(numOfElements: 3, limit: 8),
TestCase(numOfElements: 4, limit: 8),
TestCase(numOfElements: 5, limit: 8),
TestCase(numOfElements: 6, limit: 8),
TestCase(numOfElements: 7, limit: 8),
TestCase(numOfElements: 8, limit: 8),
TestCase(numOfElements: 0, limit: 16),
TestCase(numOfElements: 1, limit: 16),
TestCase(numOfElements: 2, limit: 16),
TestCase(numOfElements: 3, limit: 16),
TestCase(numOfElements: 4, limit: 16),
TestCase(numOfElements: 5, limit: 16),
TestCase(numOfElements: 6, limit: 16),
TestCase(numOfElements: 7, limit: 16),
TestCase(numOfElements: 16, limit: 16),
TestCase(numOfElements: 32, limit: 32),
TestCase(numOfElements: 64, limit: 64)
)
suite "Merkle Proof generation":
test "generation of proof for various tree sizes":
for testCase in TestCases.fields:
let testObjects = genNObjects(testCase.numOfElements)
let treeDepth = uint64 binaryTreeHeight(testCase.limit) - 1
# Create List and and genereate root by using merkelizer
let list = List.init(testObjects, testCase.limit)
let listRoot = getListRootNoMixin(list)
# Create sparse merkle tree from list elements and generate root
let listDigests = map(testObjects, proc(x: TestObject): Digest = hash_tree_root(x))
let tree = createTree(listDigests, treeDepth)
let treeHash = tree.hash()
# Assert that by using both methods we get same hash
check listRoot == treeHash
for i, e in list:
# generate proof by using merkelizer
let merkleizerProof = generateAndGetProofWithIdx(list, i)
# generate proof by sparse merkle tree
let sparseTreeProof = genProof(tree, uint64 i, treeDepth)
let leafHash = hash_tree_root(e)
let genIndex = getGenIndex(i, treeDepth)
# both proof are valid. If both are valid that means that both proof are
# effectivly the same
let isValidProof = isValidProof(leafHash , merkleizerProof, genIndex, listRoot)
let isValidProof1 = isValidProof(leafHash , sparseTreeProof, genIndex, listRoot)
check isValidProof
check isValidProof1

View File

@ -1,82 +0,0 @@
{.used.}
import
sequtils, unittest,
nimcrypto/[hash, sha2],
../eth/ssz/merkleization
type TestCase = object
root: string
proof: seq[string]
leaf: string
index: uint64
valid: bool
let testCases = @[
TestCase(
root: "2a23ef2b7a7221eaac2ffb3842a506a981c009ca6c2fcbf20adbc595e56f1a93",
proof: @[
"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
"f5a5fd42d16a20302798ef6ed309979b43003d2320d9f0e8ea9831a92759fb4b"
],
leaf: "0100000000000000000000000000000000000000000000000000000000000000",
index: 4,
valid: true
),
TestCase(
root: "2a23ef2b7a7221eaac2ffb3842a506a981c009ca6c2fcbf20adbc595e56f1a93",
proof: @[
"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
"f5a5fd42d16a20302798ef6ed309979b43003d2320d9f0e8ea9831a92759fb4b"
],
leaf: "0100000000000000000000000000000000000000000000000000000000000000",
index: 6,
valid: false
),
TestCase(
root: "2a23ef2b7a7221eaac2ffb3842a506a981c009ca6c2fcbf20adbc595e56f1a93",
proof: @[
"0100000000000000000000000000000000000000000000000000000000000000",
"f5a5fd42d16a20302798ef6ed309979b43003d2320d9f0e8ea9831a92759fb4b"
],
leaf: "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
index: 5,
valid: true
),
TestCase(
root: "f1824b0084956084591ff4c91c11bcc94a40be82da280e5171932b967dd146e9",
proof: @[
"35210d64853aee79d03f30cf0f29c1398706cbbcacaf05ab9524f00070aec91e",
"f38a181470ef1eee90a29f0af0a9dba6b7e5d48af3c93c29b4f91fa11b777582"
],
leaf: "0100000000000000000000000000000000000000000000000000000000000000",
index: 7,
valid: true
),
TestCase(
root: "f1824b0084956084591ff4c91c11bcc94a40be82da280e5171932b967dd146e9",
proof: @[
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000",
"f5a5fd42d16a20302798ef6ed309979b43003d2320d9f0e8ea9831a92759fb4b",
"0100000000000000000000000000000000000000000000000000000000000000",
"f38a181470ef1eee90a29f0af0a9dba6b7e5d48af3c93c29b4f91fa11b777582"
],
leaf: "6001000000000000000000000000000000000000000000000000000000000000",
index: 49,
valid: true
)
]
suite "Merkle Proof verification":
test "correctly verify proof":
for testCase in testCases:
let root = MDigest[256].fromHex(testCase.root)
let proof = map(testCase.proof, proc(x: string): Digest = MDigest[256].fromHex(x))
let leaf = MDigest[256].fromHex(testCase.leaf)
let valid = isValidProof(leaf, proof, testCase.index, root)
if (testCase.valid):
check valid
else:
check (not valid)